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Hence v’ = ieE/mw. The displacement r of the electron due to the field is givenby i =¥,
and thereforer = — eE/m®?. The polarization P of the body is the dipole moment per unit
volume. Summing over all electrons, we find P = Ser = — e N E/mw?, where N is the
number of electrons in all the atoms in unit volume of the substance. By the definition of
the electric induction, we have D = ¢E = E + 47 P. We thus have the formula

e(w)=1-4nNe*/mw?. (78.1)

The range of frequencies over which this formula is applicable begins, in practice, at the
far ultra-violet for light elements and at the X-ray region for heavier elements.

If ¢(w) is to retain the significance which it has in Maxwell’s equations, the frequency
must also satisfy the condition w < c/a. We shall see later (§124), however, that the
expression (78.1) can be allotted a certain physical significance even at higher frequencies.

§79. The dispersion of the magnetic permeability

Unlike &(w), the magnetic permeability u(w) ceases to have any physical meaning at
relatively low frequencies. To take account of the deviation of # (w) from unity would thes
be an unwarrantable refinement. To show this, let us investigate to what extent the physical
meaning of the quantity M = (B — H)/4r, as being the magnetic moment per unit volume,

is maintained in a variable field. The magnetic moment of a body is, by definition, the
integral
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The mean value of the microscopic current density is related to the mean field by equatiom
(75.7):
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Subtracting the equation curl H = (1/c) dD/dt, we obtain
pv = c curl M+ 9P/ot, (193

The integral (79.1) can, as shown in §29, be put in the form {MdV only if pv = ccurlM
and M = 0 outside the body.

Thus the physical meaning of M, and therefore of the magnetic susceptibility, depends
on the possibility of neglecting the term 0P/dt in (79.3). Let us see to what extent the
conditions can be fulfilled which make this neglect permissible. '

For a given frequency, the most favourable conditions for measuring the susceptibility !
are those where the body is as small as possible (to increase the space derivatives in curl Ml
and the electric field is as weak as possible (to reduce P). The field of an electromagnetic
wave does not satisfy the latter condition, because E ~ H. Let us therefore consider &
variable magnetic field, say in a solenoid, with the body under investigation placed on the
axis. The electric field is due only to induction by the variable magnetic field, and the ordes
of magnitude of E inside the body can be obtained by estimating the terms in the equation
curlE = —(1/c)0B/ot, whence E/I ~ wH/c or E ~ (wl/c)H, where [ is the dimension of
the body. Puttinge — 1 ~ 1, we have 0P/dt ~ wE ~ w?1H/c. For the space derivatives
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the magnetic moment M = y H we have ¢ curl M ~ ¢ xH/L If |0 P/0t| is small compared
with |c curl M|, we must-have .
P < xc?/w?. (79.4)

It is evident that the concept of magnetic susceptibility can be meaningful only if this
inequality allows dimensions of the body which are (at least) just macroscopic, i.e. if it is
compatible with the inequality I > a, where a is the atomic dimension. This condition is
certainly not fulfilled for the optical frequency range; for such frequencies, the magnetic
susceptibility isalways ~ v?/c2 where vis the electron velocity in the atom;} but the optical
frequencies themselves are ~ v/a, and therefore the ri ght-hand side of the inequality (79.4)
is ~ a2,

- Thus there is no meaning in using the magnetic susceptibility from optical frequencies
onward, and in discussing such phenomena we must put u = 1. To distinguish between B
and H in this frequency range would be an over-refinement. Actually, the same is true for
many phenomena even at frequencies well below the optical range.}

The presence of a considerable dispersion of the permeability makes possible the
existence of quasi-steady oscillations of the magnetization in ferromagnetic bodies. In
order to exclude the possible influence of the conductivity, we shall consider ferrites, which
are non-metallic ferromagnets. )

The term “quasi-steady” means, as usual (§58), that the frequency is assumed to satisfy .
the condition w < ¢/, where [ is the characteristic dimension of the body (or the
“wavelength” of the oscillation). In addition, we shall neglect the exchange energy related
to the inhomogeneity of the magnetization resulting from the oscillations; that is, the
spatial dispersion (§103) of the permeability is assumed to be unimportant. For this, the
dimensions / must be much greater than the characteristic length for the inhomogeneity
energy: [ > \/ , where a is of the order of the coefficients in 43.1).

We can put H and B in the forms H = Hy + H, B = B, + B, where H, and B, are the
field and induction in the statically magnetized body, H' and B’ the variable parts in the
oscillations. When the displacement current is neglected, these variable parts satisfy the
equations

curlH' =0, divB' =0, (79.5)

which differ from the magnetostatic equations only in that the permeability is now (for a
monochromatic field oc e™'*) a function of the frequency, not a constant.§ A ferro-
magnetic medium is magnetically anisotropic, and its permeability is therefore a tensor
gz (w), which determines the linear relation between the variable parts of the induction and
the field.

+ This estimate relates to the diamagnetic susceptibility; the relaxation times of any paramagnetic or
ferromagnetic processes are certainly long compared with the optical periods. It must be emphasized, however,
that the estimates are made for an isotropic body, and must be used with caution when applied to ferromagnets. In
particular, the gyrotropic terms in the tensor Uy which decrease only slowly (as 1/w) with increasing frequency
{sec Problem 1) may be important even at fairly high frequencies.

% This is discussed from a somewhat different standpoint in §103 below; see the second footnote to that
section.

§ These oscillations are therefore called magnetostatic oscillations. The theory has been given by C. Kittel
{1947) for homogeneous (see below) magnetostatic oscillations and by L. R. Walker (1957) for inhomogeneous
ones.
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The first equation (79.5) shows that the magnetic field has a potential: H' = — grad#
Substituting in the second equation B'; = p, H', = —pu, 0y/0x,, we then obtain
equation for the potential within the body:

Hix ()9 /0x; 0x, = 0. L

Outside the body, the potential satisfies Laplace’s equation Ay = 0; on the surface,
and B’, must as usual be continuous. The first condition is equivalent to the continuity
the potential y itself; the second implies the continuity of u,, n,0y /0x,, where nis a
vector along the normal to the surface. Far from the body, we must have y — 0.

The problem thus formulated has non-trivial solutions only for certain values of the &
regarded as parameters. Equating the functions p,(w) to these, we find the na
oscillation frequencies of the magnetization of the body, called the inhomogenes
ferromagnetic resonance frequencies.

The simplest type of magnetostatic oscillation of a uniformly magnetized ellips
consists in oscillations which maintain the uniformity, the magnetization oscillating
whole. To find their frequencies, it is not necessary to obtain a new solution of the
equations; they can be derived directly from the relations (29.14):

Hi+ny (B,—Hy) = 9,
where n, is the demagnetizing factor tensor of the ellipsoid; H and B relate to the
within it,and $is the external magnetic field. The latter is assumed to be uniform;in H
B, we again separate the oscillatory parts H' and B’, which are now uniform throughout
body. For these we have '

H +n,(B,—H)=0
or

(O + 4mny xy)H', = 0,
with the magnetic susceptibility tensor x,,(w) defined by p,, = J;, + 4ny,,. Equating to2e
the determinant of this system of linear homogeneous equations, we find

det |6 + dmn, x, ()| = O, (

the roots of which give the natural oscillation frequencies. These are called
homogeneous ferromagnetic resonance frequencies.

PROBLEMS

PrOBLEM 1. Using the macroscopic equation of motion of the magnetic moment (the Landau-Li
equation; see SP 2, (69.9)), derive the magnetic permeability tensor for a uniformly magnetized unizmi
ferromagnet of the easy-axis type, in the absence of dissipation (L. D. Landau and E. M. Lifshitz, 19351

SoLuTION. The equation of motion of the magnetization in a ferromagnet is
M =y(H+BM,v)xM,

where y = gle|/2mc (g being the gyrbmagnetic ratio), § > O the anisotropy coefficient, and v a unit vector
the axis of easy magnetization (the z-axis). We write H = Hy + H’, where H' is a small variable field in
direction, and H,, a constant field which we take to be along the z-axis.t The transverse magnetization M, M,

t+ This field is used here with a view to applying the results in the subsequent Problems.



