### Elektronová Paramagnetická Rezonance

## Teorie a základní principy



### Paramagnetické částice



●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

## Paramagnetické částice

... částice, které mají nenulový magnetický moment...

Jsou to:

- částice s neúplným počtem elektronů ve valenční slupce (orbitální moment)
- částice s nenulovým celkovým spinem (spinový moment elektronů a jádra)

Celkový magnetický moment je složen z jednotlivých příspěvků. Úplný popis interakce mezi jednotlivými momenty a případně vnějším polem je poměrně komplikovaný a proto se často v praxi přistupuje k poruchové metodě a určitým aproximacím. Tak hovoříme o typech vazby mezi momenty, např. spin-orbitální, spin-spinová,... podle majoritního příspěvku k hamiltoniánu.

# Zeemanův jev





Energiové hladiny paramagnetické částice, která se nachází v magnetickém poli, jsou vlivem tohoto magnetického pole rozštěpeny. Mezi nimi pak může dojít k přechodům spojeným s absorpcí či emisí fotonu.

### Podmínka EPR rezonance



 $h\nu = g_J \mu_B B_0$ 

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quin

### Podmínka EPR rezonance

Vzorek obsahující paramagnetické částice je umístěn uvnitř mikrovlnného rezonátoru, který se nachází v homogenním magnetickém poli o indukci B. Do rezonátoru je přiváděno mikrovlnné záření o konstantní frekvenci  $\nu$ .

 $h\nu = g_J \mu_B B_0$ 

kde

- h...Planckova konstanta
- $\nu$ ... frekvence záření

*g*<sub>J</sub>... Landého g-faktor (efektivní g-faktor, vzniklý kombinací spinového a orbitálního g-faktoru)

 $\mu_B$ ... Bohrův magneton  $\mu_B = \frac{eh}{4\pi m_e}$ 

*B*...indukce magnetického pole

# g-faktor



## Alfred Landé

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

# g-faktor

S pohybem elektronu (spin, orbitální pohyb) – nebo protonu – je spojen indukovaný magnetický moment. Jak účinně je tento magnetický moment indukován charakterizuje bezrozměrné číslo zvané *g-faktor* (gyromagnetický faktor, faktor rozštěpení).

#### Rozlišujeme

- elektronový spinový g-faktor  $g_S$  spojený se spinem
- elektronový orbitální g-faktror  $g_L$  spojený s orbitálním momentem
- Landého g-faktor g<sub>J</sub> spojený jak se spinem, tak s orbitálním momentem (jejich kvantově-mechanickou kombinací)
- neutronový spinový g-faktor g<sub>n</sub>
- protonový spinový g-faktor  $g_p$

Pro Landého g-faktor z poruchové teorie v aproximaci prvního řádu, pro slabé indukce magnetického pole platí

$$g_J = g_L \frac{J(J+1) - S(S+1) + L(L+1)}{2J(J+1)} + g_S \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)} \approx 1 + \frac{J(J+1) - L(L+1) + S(S+1)}{2J(J+1)}$$

kde

- S... výsledné spinové kvantové číslo,  $S = |s_1 s_2| \dots |s_1 + s_2|$
- $L_{\cdots}$  výsledné orbitální kvantové číslo,  $L = |l_1 l_2| \dots |l_1 + l_2|$
- J... kombinace L a S, například pro LS-vazbu J = |L S| ... |L + S|

Pro volný elektron bez interakce s okolím  $g_S \approx 2$  (přesněji po započtení relativistických efektů  $g_S = 2.00232$ ) a  $g_L = 1$ . V atomech a molekulách je hodnota  $g_J$  (faktoru spin-orbitální interakce) vlivem okolí změněna.

### Výběrová pravidla pro EPR přechody



## Výběrová pravidla pro EPR přechody

Kvantový systém umožňuje *pouze některé přechody*. Tato omezení jsou popsána tzv. *výběrovými pravidly*. Výběrová pravidla jsou uváděna jako *povolené změny v kvantových číslech*. Pro různá kvantová čísla existují různá výběrová pravidla.

Pro elektrické dipólové přechody tak obvykle máme  $\Delta m = 0$ .

Pro EPR přechody jsou povoleny  $\Delta m = \pm 1$ .

Výběrová pravidla však mají spíše pravděpodobnostní charakter a pro různé systému jsou více či méně efektivní.

#### Základní stav atomu kyslíku, <sup>16</sup>O(<sup>3</sup>P)

| Elektronová konfigurace:              | $\dots 1 s^2 \ 2 s^2 \ 2 p^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Počet chybějících valenčních elektron | າů:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Celkový spin:                         | $S = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Multiplicita:                         | 2S + 1 = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Orbitální moment:                     | $L =  l_1 - l_2  \dots  l_1 + l_2  = 0, 1, 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pauliho vylučovací princip:           | zakázána $L=2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Výsledný orbitální moment:            | $\dots L = 1$ , označen jako stav P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Energiové hladiny:                    | <sup>3</sup> P <sub>2</sub> , <sup>3</sup> P <sub>1</sub> , <sup>3</sup> P <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Povolené přechody:                    | $\dots  \Delta m_j = \pm 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| . <sup>3</sup> n                      | 3P0 mj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $^{3}P_{1}$                           | <sup>3</sup> P <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       | 3P2 2<br>3P2 2<br>3P |
| v                                     | B=0 B>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Základní stav atomu kyslíku, <sup>16</sup>O(<sup>3</sup>P)

V zaznamenaném spektru základního stavu atomu kyslíku jsou 4 čáry náležící  ${}^{3}P_{2}$  přechodům, obklopené 2 čarami náležícími  ${}^{3}P_{1}$ . Jak je ale možné, že čtyři čáry náležící stejné hodnotě J mají různé hodnoty  $B_{0}$ ? Ačkoliv pro většinu atomů můžeme použít aproximaci

#### $\Delta E \propto B$

atomární kyslík je jeden z těch, kde se projevují též vyšší mocniny v Taylorově řadě Hamiltoniánu, popisujícího interakci elektromagnetického záření ze Zeemanovsky rozštěpenými hladinami. Tedy správně bychom měli psát

$$\Delta E \propto a_1 B + a_2 B^2 + a_3 B^3 + \dots$$

kde  $a_i$  jsou konstanty.

#### Základní stav atomu dusíku, <sup>14</sup>N(<sup>4</sup>S)

| Elektronová konfigurace:    | $\ldots 1 s^2 2 s^2 2 p^3.$                                               |
|-----------------------------|---------------------------------------------------------------------------|
| Počet valenčních elektronů: |                                                                           |
| Celkový spin elektronů:     | $\dots \dots S = \frac{3}{2}$                                             |
| Celkový spin jádra:         | $\dots \dots I = \tilde{1}$                                               |
| Multiplicita:               | 2S + 1 = 4                                                                |
| Hyperjemná struktura:       | 2I + 1 = 3                                                                |
| Orbitální moment:           | $L =  l_1 - l_2  \dots  l_1 + l_2  = 0$                                   |
| Výsledný orbitální moment:  | . $L = 0$ , označen jako stav S                                           |
| Energiové hladiny:          | . ${}^{4}S_{-3/2}$ , ${}^{3}S_{-1/2}$ , ${}^{4}S_{3/2}$ , ${}^{3}S_{1/2}$ |
| Povolené přechody:          | $\dots \qquad \Delta m_j = 0, \pm 1.$                                     |
|                             | 4S32<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>1           |
|                             | B=0 B>0                                                                   |

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

#### Základní stav atomu dusíku, <sup>14</sup>N(<sup>4</sup>S)

Stejné důvody jako byly uvedeny pro kyslík, jsou zodpovědné za fakt, že tři čáry mají různé hodnoty  $B_0$ . Základní stav dusíku je tedy označován  ${}^4S_{3/2}$ . V magnetickém poli se energiové hladiny štěpí na čtyři hladiny (2J + 1). Pozorované 3 čáry mají stejnou intenzitu (pravděpodobnost přechodu) a jsou separované o  $3.7 \times 10^{-4}$  T.



# Elektronová Paramagnetická Rezonance Experiment



Princip detekce Uspořádání experimentu Optimalizace parametrů



- umožňuje vyšší citlivost detekce
- k lineárně zvyšovanému nebo snižovanému magnetickému poli se přidává střídavá složka o konstantní frekvenci 100kHz a amplitudě nastavitelné pro danou spektrální čáru (*amplituda modulace*)
- dané hodnoty indukce magnetického pole B se tak dosahuje několikrát opakovaně
- výsledný signál dále ještě prochází úzkopásmovým frekvenčním filtrem (100kHz) a výsledkem je méně šumu.
- vedlejším produktem této metody je že zaznamenáváme derivaci absorpce

#### Schéma spektrometeru EPR



## Amplituda modulace magnetického pole

Význam pojmu amplituda modulace magnetického pole je patrný na obrázku zobrazujícího princip synchronní detekce



Největší hodnoty p-t-p výšky lze dosáhnout pro amplitudu modulace okolo 1.5 až 2.0 krát větší než šířka skutečné nerozšířené čáry.

#### Amplituda modulace magnetického pole

Pro kvalitativní měření však potřebujeme lineární charakteristiku (abychom mohli snadno udělat přepočet na jednotnou modulaci). Máme tedy dvě možnosti:

- 1. použít lineární část nárustu na charakteristice výška čáry v závislosti na amplitudě modulace, nebo
- 2. namísto vyhodnocování na základě výšky čáry použijeme druhou integraci (která je v závislosti na amplitudě modulace lineární).

Amplituda modulace magnetického pole



Vliv amplitudy modulace magnetického pole na tvar EPR čáry.

## Absorpce mikrovlnného záření a vliv měřícího výkonu



Blokové schéma principiálního uspořádání.

Měřícím výkonem se rozumí mikrovlnný výkon záření, kterým ozařujeme vzorek. V nenasyceném stavu se při zvýšení měřícím výkonu zvýší též absorpce. Postupně se ale se zvyšujícím výkonem dojde k *saturaci* (kdy už vzorek není schopen absorbovat žádné další záření) a zvýšímeli výkon ještě víc, začne absorpce dokonce klesat.

# Absorpce mikrovlnného záření a vliv měřícího výkonu

#### Reflexní uspořádání

Většina přístrojů je konstruována v reflexním uspořádání. Ze zákona zachování energie jsou změny v absorpci přímo svázány se změnami v koeficientu odrazu a tak jsou výsledky identické.

Reflexní uspořádání je přitom konstrukčně i manipulačně výhodnější. Vzorek je umístěn v rezonanční dutině. Díky vysokému Q-faktoru pak vzorek interaguje s mnohem silnějším mikrovlnným polem, než kdyby byl umístěn přímo do mikrovlnného svazku.

Umístění EPR vzorku do rezonanční dutiny navíc umožňuje určitou separaci magnetického a elektrického vf. pole a tedy i potlačení např. nerezonanční dielektrické absorpce ve vzorku.

Vliv prostředí na šířku a tvar spektrální čáry EPR Žádná spektrální čára není úplně monochromatická.

Z principu neurčitosti

 $\Delta E \cdot \Delta t \sim \hbar$ 

šířka čáry  $\Delta E$  je nepřímo úměrná době života excitované částice  $\Delta t$ .

Dále se může čára rozšiřovat vlivem různých vnějších faktorů, jako například tlakové rozšíření nebo Dopplerovo rozšíření.



Příklad tlakového srážkového rozšíření. EPR čára atomu kyslíku, tlak 10-100Pa. Vzájemné srážky u atomu kyslíku vedou ke zkreslení energiových hladin. Čtyři čáry náležící  ${}^{3}P_{2}$  se pak při vyšším tlaku slijí v jedinou čáru.

#### Populace energiových hladin

Měřený vzorek se obvykle sestává z mnoha paramagnetických částic. K jeho popisu se nejlépe hodí statistický přístup. V termodynamické rovnováze je statistické rozdělení popsáno *Boltzmannovým rozdělením*:

$$\frac{n_{\rm upper}}{n_{\rm lower}} = \exp\left(-\frac{E_{\rm upper} - E_{\rm lower}}{kT}\right)$$
(1)

To znamená, že v rezonanci, kdy  $\frac{n_{\text{upper}}}{n_{\text{lower}}} = \exp\left(-\frac{h\nu}{kT}\right)$ , pro teplotu T = 298K a frekvenci  $\nu = 9.75$ GHz (pásmo X) je poměr  $\frac{n_{\text{upper}}}{n_{\text{lower}}} = 0.998$ , tedy horní hladina má jen o 0.2% nižší populaci než hladina spodní. Ale i tak malý rozdíl populací stačí, aby přechody z nižsích hladin do vyšších byly častější a tedy aby mohla být energie absorbována.

## Populace energiových hladin

#### Zářivé přechody

- 1. *absorpce*
- 2. spontánní emise
- 3. stimulovaná emise

Stimulovaná emise a absorpce probíhají se stejnou pravděpodobností. Kdyby tedy existovaly pouze tyto dva procesy, nebude žádný makroskopický efekt zesílení nebo zeslabení elektromagnetického záření pozorovatelný.

#### Nezářivé přechody

Krom zářivých přechodů může též docházet k nezářivým relaxačním procesům, způsobených zejména srážkami, kdy je energie dodána/odnesena jinou částicí. Tyto přechody jsou velmi důležité, jinak by ozařování vzorku, dříve či později vedlo k vyrovnání populací obou hladin a žádnou další absorpci bychom nepozorovali.

#### Z čeho při kalibraci vycházíme:

Základním předpokladem je stavová rovnice ideálního plynu

$$p = nkT \tag{2}$$

pak můžeme určit absolutní koncentraci O<sub>2</sub>:

$$[O_2] = \frac{p}{kT} \tag{3}$$

**Proč zrovna O**<sub>2</sub>:

- je paramagnetický (tudíž naší metodou detekovatelný)
- je sám o sobě inertní

#### Srovnání síly signálu pro kalibrační a měřený vzorek.

Řekněme třeba, že zjištujeme koncentraci N. Platí

$$\frac{[\mathrm{N}]}{[\mathrm{O}_2]} = Q_{\mathrm{N}} \frac{\int \chi_{\mathrm{N}}'' \mathrm{d}H}{\int \chi_{\mathrm{O}_2}'' \mathrm{d}H}$$
(4)

zde  $\chi''$  je imaginární část magnetické susceptibility. Integrály  $\int \chi'' dH$  jsou úměrné druhým integrálům přes zaznamenané EPR čáry (první integrací získáme skutečnou absorpční čáru z její derivace, druhým integrováním zjistíme plochu pod absorpční křivkou, která je úměrná koncentraci).

Koeficient Q, vztažený k čáře C molekulárního kyslíku, je například pro dusík N(<sup>4</sup>S) (pro jednu ze tří čar – všechny jsou stejně intenzivní)  $Q_N = 5.88 \times 10^{-3}$ , pro atomární kyslík O(<sup>3</sup>P), signál složený ze všech šesti čar by to bylo  $Q_O = 2.02 \times 10^{-3}$ .

#### Přepočet nastavených parametrů přístroje

Zpravidla pro každou čáru je třeba nastavit parametry měření trochu jinak (jinou amplitudu modulace, jinou šířku rozmítání, jiný měřící výkon,...). Pro účely kalibrace na absolutní koncentraci je potřeba je přepočítat na jednotnou hodnotu. Máme-li tedy například určit absolutní koncentraci [N], bude platit

$$\frac{[N]}{[O_2]} = Q_N \times \frac{I_N}{I_{O_2}} \times \frac{M_{O_2}}{M_N} \times \left(\frac{W_N}{W_{O_2}}\right)^2 \times \left(\frac{T_{O_2}}{T_N}\right)^2 \times 10^{\frac{(X_N - X_{O_2})}{20}}$$
(5)

kde

 $I_N\,\ldots$ druhý integrál,

 $M_{\rm N}$  . . . amplituda modulace,

 $W_N \dots$ šířka rozmítání (pro správné jednotky viz. Tabulka  $\ref{eq:spin}$ ),

 $T_N \ \ldots$  čas rozmítání,

 $X_N \dots \text{útlum} (v \text{ decibelech})$ 

Stupně šířky rozmítání nemají lineární charakter a je proto třeba použít převodní tabulku

| (přepínač <i>Sweep width</i> ) |    |    |     |     |     |  |  |
|--------------------------------|----|----|-----|-----|-----|--|--|
|                                | 1  | 2  | 3   | 4   | 5   |  |  |
| $0_2$                          | 35 | 70 | 168 | 339 | 664 |  |  |
| Ν                              | 53 | 91 | 200 | 391 | 764 |  |  |
| 0                              | 55 | 91 | 193 | 365 | 710 |  |  |

Převodní tabulka pro šířky rozmítání. (Uvedené hodnoty jsou v Gauss/12min, byly zjištěny na základě měření indukce magnetického pole při různých šířkách rozmítání).

Například, pokud jsme měřili [O<sub>2</sub>] na čtvrtém stupni šířky rozmítání a N na prvním stupni šířky rozmítání, bude převodní faktor  $\left(\frac{W_N}{W_{O_2}}\right)^2 = \left(\frac{53}{339}\right)^2$ .

### Dohasínající dusíkové plasma



Schéma oblastí dusíkového dohasínání.

# Experimentální uspořádání



#### Dvě možnosti přidávání příměsi:

