Global analysis. Exercises 10

1) Prove that if the connections with the Christoffel symbols $\Gamma_{i j}^{k}$ and $\tilde{\Gamma}_{i j}^{k}$ have equal geodesics, then the connection with the Christoffel symbols $\alpha \Gamma_{i j}^{k}+\beta \tilde{\Gamma}_{i j}^{k}(\alpha+\beta=1)$ has the same geodesics.
2) Solve the equation of the parallel displacement on the sphere with the metric $(d \theta)^{2}+\sin ^{2} \theta(d \varphi)^{2}$ in the spherical coordinates:

- along a parallel $\left(\theta=\theta_{0}=\right.$ const $)$;
- along a meridian $\left(\varphi=\varphi_{0}=\right.$ const $)$.

3) Find the angle between a tangent vector to the sphere and its image under the parallel displacement along the parallel.
4) Let M be a manifold with a torsion-free affine connection ∇. Prove that if X and Y are parallel vector fields (i.e. $\nabla_{Z} X=\nabla_{Z} Y=0$ for all vector fields Z), then $[X, Y]=0$.
5) Let M be a manifold with a torsion-free affine connection ∇. Prove that any parallel distribution on M is involutive (a distribution is called parallel if $\nabla_{Y} X$ belongs to this distribution for all X from this distribution and all vector fields Y on M).
