Global analysis. Exercises 4

1) Which of the following distributions on $\mathbb{R}^{3} \backslash\{(0,0,0)\}$ are involutive:

- the distribution generated by the vector fields $X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}, Y=\frac{\partial}{\partial x}+\frac{\partial}{\partial y}$;
- the distribution generated by the vector fields

$$
X=x y z \frac{\partial}{\partial x}+y^{2} \frac{\partial}{\partial y}, Y=x \frac{\partial}{\partial x}+(z+y) \frac{\partial}{\partial z} .
$$

2) Prove that any 1-dimensional distribution is involutive.
3) Find the dimensions of the spaces $\bigotimes^{r} V$ and $\bigwedge^{r} V$ if $\operatorname{dim} V=n$.
4) Prove that $\bigotimes^{2} V=S^{2} V \bigoplus \bigwedge^{2} V$
5) Let V be a vector space, $A \in \bigotimes^{r} V, e_{1}, \ldots, e_{n}$ and $e_{1}^{\prime}, \ldots, e_{n}^{\prime}$ bases of V and B the transition matrix from the first basis to the second one. Find the relation between the components $A^{i_{1} \ldots i_{r}}$ and $A^{i_{1}^{\prime} \ldots i_{r}^{\prime}}$ of the tensor A in these bases.
6) Let $A \in \bigotimes^{3} V$. Prove that $\operatorname{Sym}(\operatorname{Sym} A)=\operatorname{Sym} A, \operatorname{Alt}(\operatorname{Alt} A)=\operatorname{Alt} A$, $\operatorname{Sym}(\operatorname{Alt} A)=0, \operatorname{Alt}(\operatorname{Sym} A)=0$.
