Global analysis. Exercises 5

1) Let V be a vector space of dimension $n, A \in \Lambda^{2} V, B \in V$. Find the components of the tensor $A \wedge B$.
2)Let V and W be vector spaces of dimensions n and m, and with the bases e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{m}. Let $\mathcal{A}: V \rightarrow V$ and $\mathcal{B}: W \rightarrow W$ be linear maps. Define the linear map $\mathcal{A} \otimes \mathcal{B}: V \otimes W \rightarrow V \otimes W$ by $\mathcal{A} \otimes \mathcal{B}(v \otimes w)=\mathcal{A}(v) \otimes \mathcal{B}(w)$. Prove that the matrix of $\mathcal{A} \otimes \mathcal{B}$ in the basis $e_{1} \otimes f_{1}, e_{1} \otimes f_{2}, \ldots, e_{1} \otimes f_{m}, e_{2} \otimes f_{1}, e_{2} \otimes f_{2}, \ldots, e_{2} \otimes$ $f_{m}, \ldots, e_{n} \otimes f_{1}, e_{n} \otimes f_{2}, \ldots, e_{n} \otimes f_{m}$ of $V \otimes W$ has the form

$$
\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \ldots & a_{1 n} B \\
a_{21} B & a_{22} B & \ldots & a_{2 n} B \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} B & a_{n 2} B & \ldots & a_{n n} B
\end{array}\right)
$$

where $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ are the matrices of the linear maps \mathcal{A} and \mathcal{B}.
3) Prove that $V \otimes \mathbb{R} \simeq V$.
4) Let V be a vector space, T a tensor of type $(1,0)$ on V and S a tensor of type $(0,1)$ on V. What gives the contraction of the tensor product T and S.
5) Let $A \in \otimes^{2} \mathbb{R}^{2} \otimes\left(\mathbb{R}^{2}\right)^{*}$ be the tensor with the components:
$A_{1}^{11}=3, \quad A_{2}^{11}=0, \quad A_{1}^{12}=2, \quad A_{2}^{12}=1$,
$A_{1}^{21}=0, \quad A_{2}^{21}=1, \quad A_{1}^{22}=0, \quad A_{1}^{11}=5$.
Find the contractions of the first and the second upper indices with the down index.
6) Let V be a vector space, $A \in \otimes^{r} V \otimes \otimes^{s} V^{*}$. Let e_{1}, \ldots, e_{n} and $e_{1^{\prime}}, \ldots, e_{n^{\prime}}$ be bases of V and let d^{1}, \ldots, d^{n} and $d^{1^{\prime}}, \ldots, d^{n^{\prime}}$ be the dual bases. Find the relation between the components $A_{j_{1}, \ldots, j_{s}}^{i_{1} \ldots i_{r}}$ and $A_{j_{1}^{\prime}, \ldots, j_{s}^{\prime}}^{i_{1}^{\prime} \ldots i_{r}^{\prime}}$, of the tensor A in these bases.

