Global analysis. Exercises 5

1) Let V be a vector space of dimension $n, A \in \Lambda^2 V, B \in V$. Find the components of the tensor $A \wedge B$.

2)Let V and W be vector spaces of dimensions n and m, and with the bases $e_1, ..., e_n$ and $f_1, ..., f_m$. Let $\mathcal{A} : V \to V$ and $\mathcal{B} : W \to W$ be linear maps. Define the linear map $\mathcal{A} \otimes \mathcal{B} : V \otimes W \to V \otimes W$ by $\mathcal{A} \otimes \mathcal{B}(v \otimes w) = \mathcal{A}(v) \otimes \mathcal{B}(w)$. Prove that the matrix of $\mathcal{A} \otimes \mathcal{B}$ in the basis $e_1 \otimes f_1, e_1 \otimes f_2, ..., e_1 \otimes f_m, e_2 \otimes f_1, e_2 \otimes f_2, ..., e_2 \otimes$ $f_m, ..., e_n \otimes f_1, e_n \otimes f_2, ..., e_n \otimes f_m$ of $V \otimes W$ has the form

$\int d$	$a_{11}B$	$a_{12}B$	•••	$a_{1n}B$
0	$a_{21}B$	$a_{22}B$		$a_{2n}B$
\ a	$a_{n1}B$	$a_{n2}B$		$a_{nn}B$

where $A = (a_{ij})$ and $B = (b_{ij})$ are the matrices of the linear maps \mathcal{A} and \mathcal{B} .

3) Prove that $V \otimes \mathbb{R} \simeq V$.

4) Let V be a vector space, T a tensor of type (1,0) on V and S a tensor of type (0,1) on V. What gives the contraction of the tensor product T and S.

5) Let $A \in \otimes^2 \mathbb{R}^2 \otimes (\mathbb{R}^2)^*$ be the tensor with the components: $A_1^{11} = 3, \quad A_2^{11} = 0, \quad A_1^{12} = 2, \quad A_2^{12} = 1,$ $A_1^{21} = 0, \quad A_2^{21} = 1, \quad A_1^{22} = 0, \quad A_1^{11} = 5.$

Find the contractions of the first and the second upper indices with the down index.

6) Let V be a vector space, $A \in \bigotimes^r V \bigotimes \bigotimes^s V^*$. Let $e_1, ..., e_n$ and $e_{1'}, ..., e_{n'}$ be bases of V and let $d^1, ..., d^n$ and $d^{1'}, ..., d^{n'}$ be the dual bases. Find the relation between the components $A_{j_1,...,j_s}^{i_1...i_r}$ and $A_{j'_1,...,j'_s}^{i'_1...i'_r}$ of the tensor A in these bases.