Global analysis. Exercises 6

1) Let T be a tensor field of type (r, s) on \mathbb{R}^{n}. Let x^{1}, \ldots, x^{n} and $x^{1^{\prime}}, \ldots, x^{n^{\prime}}$ be two coordinate systems. Find the relation between the components of the tensor field T in these coordinates.
2) Let x^{1}, x^{2} and $x^{1^{\prime}}, x^{2^{\prime}}$ be two coordinate systems related by

$$
x^{1^{\prime}}=\frac{r x^{1}}{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}}, \quad x^{2^{\prime}}=\frac{r x^{2}}{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}},
$$

where $r>0$ is a fixed number. Knowing the components of the following tensors in the first coordinate system, find the components of these tensors in the second coordinate system.

- $a_{11}=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}, \quad a_{12}=x^{1}, \quad a_{21}=x^{2}, \quad a_{22}=\frac{1}{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}} ;$
- $a_{1}^{1}=x^{1}, \quad a_{1}^{2}=x^{1}+x^{2}, \quad a_{2}^{1}=x^{1}-x^{2}, \quad a_{2}^{2}=x^{2}$.

3) For $w=\left(x^{2}+y^{2}\right) d x+x z d z$ and $\theta=z d y \wedge d x+x d z \wedge d x$ find $d w, d \theta, w \wedge w$, $\theta \wedge \theta, w \wedge \theta, d(w \wedge w), d(\theta \wedge \theta), d(w \wedge \theta)$.
4) Find $d w$ for

- $w=x^{2} y d y-x y^{2} d x$;
- $w=x d y+y d x ;$
- $w=f(x) d x+g(y) d y$;
- $w=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y$.

