## Global analysis. Exercises 7

1) Check if the differential 1-form w is exact in the domain D. If it is exact, find all functions  $\varphi$  such that  $d\varphi = w$ :

- $w = xydx + \frac{x^2}{2}dy, D = \mathbb{R}^2;$
- $w = xdx + xzdy + xydz, D = \mathbb{R}^3;$
- $w = (\frac{1}{x^2} + \frac{1}{y^2})(ydx xdy), D = \{(x, y) \in \mathbb{R}^2 | xy \neq 0\}.$

2) Prove that the differential form  $w = r^{-3}(xdy \wedge dz + ydz \wedge dx + zdx \wedge dy)$ , where  $r = \sqrt{x^2 + y^2 + z^2}$ , is closed in the domain  $\mathbb{R}^3 \setminus \{(0, 0, 0)\}$ , but it is not exact there.

- 3) Find dw,  $g^*w$  and  $g^*(dw)$ , where  $g: \mathbb{R}^2 \to \mathbb{R}^3$ ,  $g(u, v) = (uv, u \cos v, e^v)$ :
  - w = xdy
  - $w = ydz \wedge dx$
  - $w = dx \wedge dy \wedge dz$