Global analysis. Exercises 7

1) Check if the differential 1-form w is exact in the domain D. If it is exact, find all functions φ such that $d \varphi=w$:

- $w=x y d x+\frac{x^{2}}{2} d y, D=\mathbb{R}^{2}$;
- $w=x d x+x z d y+x y d z, D=\mathbb{R}^{3} ;$
- $w=\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)(y d x-x d y), D=\left\{(x, y) \in \mathbb{R}^{2} \mid x y \neq 0\right\}$.

2) Prove that the differential form $w=r^{-3}(x d y \wedge d z+y d z \wedge d x+z d x \wedge d y)$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$, is closed in the domain $\mathbb{R}^{3} \backslash\{(0,0,0)\}$, but it is not exact there.
3) Find $d w, g^{*} w$ and $g^{*}(d w)$, where $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, g(u, v)=\left(u v, u \cos v, e^{v}\right)$:

- $w=x d y$
- $w=y d z \wedge d x$
- $w=d x \wedge d y \wedge d z$

