Global analysis. Exercises 8

1) Find $\int_{M} \omega$ for

- $\omega=(x-y) d x+(x+y) d y$ and M is the segment $A B$ with $A=(2,3)$ and $B=(3,5)$;
- $\omega=y d x+x d y$ and M is a quarter of the circle $g(t)=(R \cos t, R \sin t)$, $t \in\left(0, \frac{\pi}{2}\right) ;$
- $\omega=x d x+y d y+(x+y-1) d z$ and M is the segment $A B$ with $A=(1,1,1)$ and $B=(2,3,4)$.

2) Find

$$
\int_{M} d x_{3} \wedge d x_{4}+x_{1} x_{3} d x_{2} \wedge d x_{4}
$$

where $M=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}^{2}+x_{2}^{2}=1, x_{3}^{2}+x_{4}^{2}=1\right\}$ and the orientation is given by the parameterization $g(u, v)=(\cos u, \sin u, \cos v, \sin v),(u, v) \in(0,2 \pi) \times$ $(0,2 \pi)$.
3) Using the Stokes Theorem, find $\int_{M} \omega$, where

- $\omega=\left(x^{2}+y^{2}\right) d x+\left(x^{2}-y^{2}\right) d y$ and M is the circuit of the triangle with the vertexes $A=(0,0), B=(1,0), C=(0,1)$;
- $\omega=\left(x^{2}+y^{2}\right) d x+\left(x^{2}-y^{2}\right) d y$ and M is the graph of the function $y=1-|1-x|$, $x \in(0,2)$, starting at $(0,0)$;
- $\omega=x y d y \wedge d z+y z d z \wedge d x+x z d x \wedge d y$ and M is the surface of the pyramid bounded by the planes $x=0, y=0, z=0, x+y+z=1$.

