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1. Parametric and nonparametric models

Example 1. Model of measurement.

Let X = (X1, . . . , Xn) measurements of some

physical entity µ. If we admit random fluctua-

tions, then we consider the model

Xi = µ + ei, i = 1, . . . , n.

What can we assume about the vector of er-

rors e1, . . . , en? We can assume that

(1) The distribution of vector (e1, . . . , en) is in-

dependent of µ.

(2) Moreover, e1, . . . , en are independent.

(3) Moreover, e1, . . . , en are identically distrib-

uted.

(3) Moreover, the distribution of e1 has a den-

sity, symmetric about 0.

(4) Moreover, the distribution of e1 is normal

N (0, σ2) with unknown σ.

(5) Moreover, σ is even known.

If we assume 1–5, then X̄ = 1
n

∑n
i=1 Xi is an



efficient estimate of µ. But often we are not

sure of the normal distribution, and even the

assumption 3 may be unrealistic, if e.g. µ is

the length of the volume.

Example 2. Comparison of two treatments.

Let X1, . . . , Xm be the blood pressure of m pa-

tients after an application of some medicament

and Y1, . . . , Yn be the blood pressure of the con-

trol group, which received a placebo. Let F

and G be the respective distribution functions

of X and Y.

We wish to test the hypothesis H : F ≡ G (no

effect). But the test depends on the alterna-

tive under consideration:

(1) F and G are absolutely continuous, oth-

erwise unknown, and the medicament has re-

duces the blood pressure, i.e.

K1 : G(z) ≤ F (z) ∀z, G(z0) ≤ F (z0)

(Y is stochastically larger than X).

(2) Moreover, K2 : G(z) = F (z − ∆) ∀z with

some ∆ > 0 (the alternative of shift in loca-

tion).



(3) F ∼ N (µ1, σ2
1), G ∼ N (µ2, σ2

2), where

µ1, µ2, σ1, σ2 are unknown, K3 : µ1 < µ2, where

generally σ1 6= σ2.

(4) F ∼ N (µ1, σ2), G ∼ N (µ2, σ2), where µ1, µ2, σ

are unknown, K4 : µ1 < µ2.

We would use the t-test against K4; testing

H against K3 is known as the Behrens-Fisher

problem. We would use the rank tests for H

against K1 and K2.

2. Practical problems which we can solve

with the aid of rank tests or tests based

on generalized ranks:

(1) Two sample tests of equality of two treat-

ments effects against alternatives of shift in

location or scale.

(Wilcoxon, van der Waerden, median rank tests;

Siegel-Tukey and quartile rank tests). Some of

them tests we shall describe later in detail.

(2) Two sample tests of equality of two treat-

ments effects against general one sided or two

sided alternatives.



(Kolmogorov-Smirnov tests).

(3) Tests of equality of effects of several treat-

ments (Kruskal-Wallis rank test).

(4) Tests of equality of effects of several treat-

ments on observations organized in blocks (Fried-

man rank test).

(5) Tests of equality of effects of several treat-

ments on observations categorized in contin-

gency tables (Kruskal-Wallis test with midranks).

(6) Tests of equality of effects of two treat-

ments based on paired observations (signed-

rank tests: one-sample Wilcoxon, van der Waer-

den, sign test).

(7) Tests of independence in bivariate popu-

lation (Spearman rank correlation coefficient,

Kendall’s tau, quadrant test).

For most of these cases, there exists

also a permutation test, based on the

order statistics.

(8) Tests of hypothesis H : β = 0 or more

generally H : Aβ = b in the linear regression



model Y = Xβ + e.

(9) Tests of hypothesis on some components

of β in the linear regression model, with the

other components nuisance, without a necces-

sity to estimate the nuisance parameter (tests

based on so called regression rank scores).

(10) Tests on the parameters of the linear au-

toregressive time series model. The nuisance

parameters are either estimated (alligned rank

tests) or the tests are based on the autore-

gression rank scores. Especially, tests on the

order of the autoregression.

(11) Tests of independence of two autoregres-

sive time series (based on autoregression rank

scores) - often desired in practice, but there

were no reasonable tests untill recently.

3. Nonparametric hypotheses and tests

Let X = (X1, . . . , Xn) be the vector of observa-

tions. The hypothesis and alternative H and K

are two disjoint sets of probability distributions



of X. The hypothesis is usually the homoge-

neous, symmetric, independent, while the al-

ternative means an inhomogeneity, asymmetry,

dependence etc.

Every rule, which assigns just one of the deci-

sions ”to accept H” or ”to reject H” to any

point x = (x1, . . . , xn), is called the test (non-

randomized) of hypothesis H against alterna-

tive K. Such test partitions the sample space

X into two complementary parts: the critical

region (rejection region) AK and acceptance

region AH. The test rejects H if x ∈ AK and

accepts H if x ∈ AH.

To simplify the structure of the tests, we sup-

plement the family of tests by the randomized

tests. A randomized test rejects H with the

probability Φ(x) and accepts with probability

1 − Φ(x) while observing x, where 0 ≤ Φ(x) ≤
1 ∀x is the test function. The set of random-

ized tests coincides with the set {Φ(x) : 0 ≤
Φ ≤ 1} and hence it is convex.

If we make the test on the basis of observa-

tions x, then either our decision is correct or



we can make either of the following two kinds

of errors:

(1) We reject H even if it is correct (error of

the first kind);

(2) we accept H even if it is incorrect (error

of the second kind).

If X has distribution P , then the test Φ rejects

H with the probability

βΦ(P ) = IEP (Φ(X)) =
∫

X
Φ(x)dP (x).

The probability βΦ(Q) = IEQ(Φ(X)), Q ∈ K, is

called the power of the test Φ against the al-

ternative Q and the function β(Q) : K 7→ [0,1]

is called the power function of the test. The

desirable test maximizes the power function

uniformly over the whole alternative K and has

the small probability (smaller than a prescribed

α) of the error of the first kind for all distrib-

utions from the hypothesis H.



The criterion of optimality for tests:

Select a small number α, 0 < α < 1, called the

significance level, and among all tests satisfy-

ing

βΦ(P ) ≤ α ∀P ∈ H

we look for the test satisfying

βΦ(Q) := max ∀Q ∈ K.

Such test, if it exists, is called the uniformly

most powerful test of size ≤ α, briefly the uni-

formly most powerful α-test of H against K.

Simple hypothesis [alternative] means that H

[K] is one-point set. (Otherwise it is called

composite). The test of a simple hypothesis

against a simple alternative is given by the fun-

damental Neyman-Pearson lemma.

Neyman-Pearson Lemma. Let P and Q be

two probability distributions with densities p

and q with respect to some measure µ (e.g.,

µ = P + Q). Then, for testing the simple hy-

pothesis H : {P} against the simple alternative

K : {Q}, there exists the test Φ and a constant

k such that

IEP (Φ(X)) = α (1)



and

Φ(x) =

{

1 if q(x) > k.p(x)

0 if q(x) < k.p(x).
(2)

This test is the most powerful α-test of H

against K.

4. Invariant tests

Let g be a 1:1 transformation X : X . We say

that the problem of testing of H against K is

invariant with respect to g, if g retains both H

and K, i.e.

X satisfies H iff gX satisfies H

X satisfies K iff gX satisfies K.

If the problem of testing H against K is invari-

ant with respect to the group G of transforma-

tions of X onto X , then we naturally consider

only the invariant tests, which satisfy

Φ(gX) = Φ(X) ∀x ∈ X , ∀g ∈ G.

We shall then look for the most powerful in-

variant α-test. In some cases, there exists a



statistic T (X), called maximal invariant, such

that every invariant test is a function of T (X).

Definition. The statistic T = T (X) is

called maximal invariant with respect

to the group G of transformations, pro-

vided T is invariant, i.e.

T (gx) = T (x) ∀x ∈ X , ∀g ∈ G
and if T (x1) = T (x2) then there exists

g ∈ G such that x2 = gx1.

The test Φ is invariant with respect to G if and

only if it is a function of the maximal invariant.

Examples of maximal invariants

(1) Let G be the set of n! permutations of

x1, . . . , xn. Then the vector ordered components

of x (vector of order statistics)

T (x) = (xn:1 ≤ xn:2 ≤ ... ≤ xn:n)

is the maximal invariant with respect to G.

(2) Let G be the set of transformations x′i =



f(xi), i = 1, . . . , n) such that f : IR1 7→ IR1

is continuous and strictly increasing function.

Consider only the points of the sample space X
with different components. Let Ri be the rank

of xi among x1, . . . , xn, i.e. Ri =
∑n

j=1 I[xj ≤
xi], i = 1, . . . , n. Then T (x) = (R1, . . . , Rn) is

the maximal invariant for G.

Actually, a continuous and increasing function

does not change the ranks of the components

of x, i.e. T is invariant to G. On the other

hand, let two different vectors x and x′ have

the same vector of ranks R1, . . . , Rn. Put f(xi) =

x′i, i = 1, . . . , n and let f be linear on the in-

tervals [xn:1, xn:2], . . . , [xn:n−1, xn:n]; define f in

the rest of the real line so that it is strictly in-

creasing. Such f always exists, hence T is the

maximal invariant.

5. Properties of ranks and of order

statistics

Let X = (X1, . . . , Xn) be the vector of observa-

tions; denote Xn:1 ≤ Xn:2 . . . ≤ Xn:n the com-

ponents of X ordered according to increasing



magnitude. The vector

X(.) = (Xn:1, . . . , Xn:n) is called the vector of

order statistics and Xn:i is called the ith order

statistic.

Assume that the components of X are different

and define the rank of Xi as Ri =
∑n

j=1 I[Xj ≤
Xi]. Then the vector R of ranks of X takes

on the values in the set R of n! permutations

(r1, . . . , rn) of (1,. . . , n).

The distribution of X(.) and of R :

If X has density pn(x1, . . . , xn), then the vector

X(.) of order statistics has the distribution with

the density

p̄(xn:1, . . . , xn:n) =















∑

r∈R p(xn:r1, . . . , xn:rn)
. . . xn:1 ≤ . . . ≤ xn:n

0 otherwise.

We say that the random vector X satisfies the

hypothesis of randomness H0, if it has a

probability distribution with density of the form

p(x) =
n
∏

i=1

f(xi), x ∈ IRn

where f is an arbitrary one-dimensional density.

Otherwise speaking, X satisfies the hypothesis



of randomness provided its components are a

random sample from an absolutely continuous

distribution.

If X satisfies the hypothesis of randomness H0,

then X(.) and R are independent, the vector of

ranks R has the uniform discrete distribution

Pr(R = r) =
1

n!
, r ∈ R (3)

and the distribution of X(.) has the density

p̄(xn:1, . . . , xn:n) =















n!p(xn:1, . . . , xn:n)
. . . xn:1 ≤ . . . ≤ xn:n

0 . . . otherwise.

Marginal distributions of the random vectors

R and X(.) under H0:

(i) Pr(Ri = j) = 1
n ∀i, j = 1, . . . , n.

(ii) Pr(Ri = k, Rj = m) = 1
n(n−1)

for 1 ≤ i, j, k, m ≤ n, i 6= j, k 6= m.

(iii) IERi = n+1
2 , i = 1, . . . , n.



(iv) var Ri = n2−1
12 , i = 1, . . . , n.

(v) cov(Ri, Rj) = −n+1
12 , 1 ≤ i, j ≤ n, i 6= j.

(vi) If X has density p(x1, . . . , xn) =
∏n

i=1 f(xi),
then Xn:k has the distribution with density

f(n)(x)

= n

(

n − 1
k − 1

)

(F (x))k−1(1 − F (x))n−kf(x),

x ∈ IR1

where F (x) is the distribution function of
X1, . . . , Xn.

6. Locally most powerful rank tests

We want to test a hypothesis of randomness
H0 on the distribution of X. The rank test is
characterized by test function Φ(R). The most
powerful rank α−test of H0 against a simple
alternative K : {Q} [that X has the fixed dis-
tribution Q] follows directly from the Neyman-
Pearson Lemma:

Φ(r) =



















1 ...n!Q(R = r) > kα

0 ...n!Q(R = r) < kα

γ ...n!Q(R = r) = kα, r ∈ R



where kα and γ are determined so that

#{r : n!Q(R = r) > kα)} +

γ#{r : n!Q(R = r) = kα} = n!α, 0 < α < 1.

If we want to test against a composite alter-

native and the uniformly most powerful rank

tests do not exist, then we look for a rank

test, most powerful locally in a neighborhood

of the hypothesis.

Definition. Let d(Q) be a measure of

distance of alternative Q ∈ K from the

hypothesis H. The α−test Φ0 is called

the locally most powerful in the class

M of α−tests of H against K if, given

any other Φ ∈ M, there exists ε > 0

such that

βΦ0
(Q) ≥ βΦ(Q) ∀Q satisfying 0 < d(Q) <

ε.



7. The structure of the locally most
powerful rank tests of H0 :

Let A be a class of densities, A = {g(x, θ) : θ ∈
J} such that
J ⊂ IR1 is an open interval, J ∋ 0.
g(x, θ) is absolutely continuous in θ for almost
all x.
For almost all x, there exists the limit

ġ(x,0) = lim
θ→0

1

θ
[g(x, θ) − g(x,0)]

and

lim
θ→0

∫ ∞

−∞
|ġ(x, θ)|dx =

∫ ∞

−∞
|ġ(x,0)|dx.

Consider the alternative K = {q∆ : ∆ > 0},
where

q∆(x1, . . . , xn) =
n
∏

i=1

g(xi,∆ci),

c1, . . . , cn given numbers. Then the test with
the critical region

n
∑

i=1

cian(Ri, g) ≥ k

is the locally most powerful rank test of H0
against K with the significance level

α = P (
n
∑

i=1

cian(Ri, g) ≥ k),



where P is any distribution satisfying H0,

an(i, g) = IE

[

ġ(Xn:i,0)

g(Xn:i,0)

]

, i = 1, . . . , n

and Xn:1, . . . , Xn:n are the order statistics cor-

responding to the random sample of size n

from the population with the density g(x,0).

8. Special cases:

I. Alternative of the shift in location:

K1 : {q∆ : ∆ > 0} where

q∆(x1, . . . , xN) =
m
∏

i=1

f(xi)
N
∏

i=m+1

f(xi − ∆),

where f is a fixed absolute continuous density

such that
∫∞
−∞ |f ′(x)|dx < ∞. Then the locally

most powerful rank α−test of H0 against K

has the critical region

N
∑

i=m+1

aN(Ri, f) ≥ k

where k satisfies the condition

P (
∑N

i=m+1 aN(Ri, f) ≥ k) = α, P ∈ H0 and

aN(i, f) = IE

[

−f ′(XN :i)

f(XN :i)

]

, i = 1, . . . , N



and XN :1 < . . . < XN :N are the order statistics

corresponding to the sample of size N from

the distribution with the density f. The scores

may be also written as

aN(i, f) = IEϕ(UN :i, f), i = 1, . . . , N

where ϕ(u, f) = −f ′(F−1(u))
f(F−1(u))

, 0 < u < 1

and UN :1, . . . , UN :N are the order statistics cor-

responding to the sample of size N from the

uniform R(0,1) distribution. The scores can

be also expressed in the form

aN(i, f) =

N

(

N − 1
i − 1

)

∫∞
−∞ f ′(x)F i−1(x)(1 − F (x))N−idx.

Remark. The computation of the scores is

difficult for some densities; if there are no ta-

bles of the scores at disposal, they are often

replaced by the approximate scores

aN(i, f) = ϕ

(

i

N + 1

)

= ϕ(IEUN :i, f),

i = 1, . . . , N. The asymptotic critical values co-

incide for both types of scores.



II. Alternative of two samples differing by scales:

K2 : {q∆ : ∆ > 0} where

q∆(x1, . . . , xN) =
∏m

i=1 f(xi − µ)
∏N

i=m+1 e−∆f
(

xi−µ
e∆

)

,

∆ > 0

where density f satisfies
∫∞
−∞ |xf ′(x)|dx < ∞

and µ is the nuisance parameter. Then the lo-

cally most powerful test has the critical region

N
∑

i=m+1

a1N(Ri, f) ≥ k,

where k is determined by the condition

P (
∑N

i=m+1 a1N(Ri, f) ≥ k) = α, P ∈ H0

and the scores have the form

a1N(i, g) = IE

{

−1 − XN :i
f ′(XN :i)

f(XN :i)

}

= IEϕ1(UN :i, f), i = 1, . . . , N,

where ϕ1(u, f) = −1 − F−1(u)f ′(F−1(u))
f(F−1(u))

,

0 < u < 1. In this case, too, we can replace the

scores by the approximate scores

a1N(i, f) = ϕ1

(

i
N+1, f

)

, i = 1, . . . , N.



III. Alternative of simple regression:

K3 = {q∆ : ∆ > 0} where

q∆(x1, . . . , xN) =
∏N

i=1 f(xi − ∆ci) with a fixed

absolutely continuous density f and with given

constants c1, . . . , cN ,
∑N

i=1 c2i > 0. Then the lo-

cally most powerful test has the critical region
∑N

i=1 ciaN(Ri, f) ≥ k with the the same scores

as in I. and with k determined by the condition

P (
∑N

i=1 ciaN(Ri, f) ≥ k) = α.

9. Selected two-sample rank tests

Denote (X1, . . . , Xm, Y1, . . . , Yn) = (Z1, . . . , ZN)

with N = m+n, where (X1, . . . , Xm) has distri-

bution function F and (Y1, . . . , Yn) has distrib-

ution function G.

Consider testing H0 : F ≡ G against the alter-

native

K1 : G(x) ≤ F (x) ∀x ∈ IR1, G(x) 6= F (x) at

least for one x.

K1 is a one-sided alternative stating that the

random variable Y is stochastically larger than

X.



The problem of testing H0 against K1 is in-

variant to the group G of transformations z′i =

g(zi), i = 1, . . . , N where g is any continuous

strictly increasing function, with the vector of

ranks R1, . . . , RN of Z1, . . . , ZN as the maximal

invariant. The class of invariant tests thus co-

incides with that of rank tests.

Because both (X1, . . . , Xm) and (Y1, . . . , Yn) are

random samples, the distribution of the vector

of ranks (R1, . . . , Rm, Rm+1, . . . , Rm+n) is sym-

metric in the first m and the last n arguments.

Hence, the vectors of ordered ranks

R′
1 < . . . < R′

m and R′
m+1 < ... < R′

m+n
are sufficient. Because either of these vectors

determines the other, the family of invariant

tests of H0 against K1 reduces to the tests

dependent only on the ordered ranks of one

of the samples, e.g. on the ordered ranks of

Y1, . . . , Yn.

Vector R′
m+1, ..., R′

N runs over

(

N
n

)

combina-

tions. All these combinations are equally prob-

able under H0 and hence the critical region of



each rank test of the size α = k/

(

N
n

)

consists

of just k points s1, . . . , sn, 1 ≤ s1 < . . . < sn ≤ N.

The rank tests mutually differ in the points in-

cluded in the critical regions.

The above alternative K1 is still to rich and

hence there does not exist the uniformly most

powerful rank test of H0 against K1. However,

we are able to find rank tests locally most pow-

erful for H0 against some important subsets of

K1.

11. Two-sample tests of location

Consider the special alternative of K1, namely

that G differ from F by a shift in location, i.e.,

K2 : G(x) = F (x − ∆), ∆ > 0.

If we know that F is normal, we use the two-

sample t-test. Generally, the test statistic of

any rank test is a function of the ordered ranks

of the second sample. The locally most pow-

erful test generally has the critical region of

the form

N
∑

i=m+1

aN(Ri) ≥ k;



hence the test criterion really depends only on

the ordered ranks of Yi’s. The scores aN(i) =

IEϕ(UN :i) (or approximate aN(i) = ϕ
(

i
N+1

)

),

i = 1, . . . , N, are generated by an appropriate

score function ϕ : (0,1) 7→ IR1.

Three basic tests of this type the most

often used in practice:

(i) Wilcoxon / Mann-Whitney test. The

Wilcoxon test has the critical region

W =
N
∑

i=m+1

Ri ≥ kα (4)

i.e., the test function

Φ(x) =











1 ...W > kα

0 ...W < kα

γ ...W = kα

where kα is determined so that

PH0
(W > kα) + γPH0

(W = kα) = α,

(α = 0.05, α = 0.01). This test is the locally

most powerful against K2 with F logistic with

the density

f(x) =
e−x

(1 + e−x)2
, x ∈ IR.



For small m and n, the critical value kα can

be directly determined: For each combination

s1 < . . . < sn of the numbers 1, . . . , N we cal-

culate
∑n

i=1 si and order these values in the

increasing magnitude. The critical region is

formed of the MN largest sums where MN =

α

(

N
n

)

; if there is no integer MN satisfying

this condition, we find the largest integer MN

less than α

(

N
n

)

and randomize the combi-

nation which leads to the (MN +1)−st largest

value. However, this systematic way, though

precise, becomes difficult for large N, where

we should use the tables of critical values.

There exist various tables of the Wilcoxon test,

organized in various ways. Many tables provide

the critical values of the Mann-Whitney’s sta-

tistic

UN =
N
∑

i=m+1

m
∑

j=1

I[Zi ≥ Zj];

we can easily see that UN and WN are in one-

to-one relation WN = UN + n(n+1)
2 .



For an application of the Wilcoxon test, we can

alternatively use the dual form of the Wilcoxon

statistic: Let Z1 < . . . < ZN :N be the order

statistics and define V1, . . . , VN in the following

way:

Vi = 0 if ZN :i belongs to the 1st sample and

Vi = 1 if ZN :i belongs to the second sample.

Then WN =
∑N

i=1 iVi.

For large m and n, where there are no tables,

we use the normal approximation of WN : If

m, n → ∞, then, under H0, WN has asymptoti-

cally normal distribution in the following sense:

lim
m,n→∞PH0

{

WN − IEWN√
var WN

< x

}

= Φ(x), x ∈ IR1,

where Φ is the standard normal distribution

function.

To be able to use the normal approximation,

we must know the expectation and variance of

WN under H0. The following theorem gives the

expectation and the variance of a more general

linear rank statistic, covering the

Wilcoxon as well other rank tests.



Theorem. Let the random vector R1, . . . , RN

have the discrete uniform distribution

on the set R of all permutations of

numbers 1, . . . , N, i.e. Pr(R = r) =
1

N !, r ∈ R; let c1, . . . , cN and a1 = a(1), . . . , aN =

a(N) are arbitrary constants. Then the

expectation and variance of the linear

statistic SN =
∑N

i=1 cia(Ri) are

IESN =
1

N

N
∑

i=1

ci

N
∑

j=1

aj

var SN =
1

N − 1

N
∑

i=1

(ci− c̄)2
N
∑

j=1

(aj−ā)2,

where c̄ = 1
N

∑N
i=1 ci and ā = 1

N

∑N
i=1 ai.

Parameters of the Wilcoxon statistic under H0 :

IEWN =
n(N + 1)

2
, var WN =

mn(N + 1)

12
.

The distribution of WN under H0 is symmetric

around IEWN . If we test the H0 against the left-

sided alternative (∆ < 0, the second sample



shifted to the left with respect the first one),

we reject H0 if WN < 2IEWN − kα.

(ii) van der Waerden test. Consider the ap-

proximate scores corresponding to the score

function ϕ(u) = Φ−1(u), 0 < u < 1, where Φ is

the standard normal distribution function. The

van der Waerden test is convenient for testing

H0 against K1 if the distribution function F has

approximately normal tails. In fact, the test

is asymptotically optimal for H0 against the

normal alternatives and its relative asymptotic

efficiency (Pitman efficiency) with respect to

the t-test is equal to 1 under normal F and ≥ 1

under all nonnormal F. For these good prop-

erties the test can be recommended; for large

m, n, if we do not have the tables at disposal,

we can use the critical values of the test based

on the normal approximation N(IESN , var SN)

where in the van der Waerden case, by Theo-

rem 4.1,

IESN = 0, var SN =
mn

N(N − 1)

N
∑

i=1

[

Φ−1
(

i

N + 1

)]2

.

Moreover, the distribution of SN under H0 is

symmetric around 0.



(iii) Median test. The median test uses the

scores generated by the score function

ϕ(u) =















0 ...0 < u < 1
2

1
2 ...u = 1

2
1 ...12 < u < 1.

The test statistic is equal to the number of

Y −observations situated above µ, increased by
1
2 for odd N.

If N is even, M = N/2 then, under H0, SN has

the hypergeometric probability distribution:

Pr(SN = k|H0) =

=















































(

M
k

)(

M
n − k

)

(

N
n

)

. . .max(0, n − M) ≤ k ≤ min(M, n)

0 . . . otherwise.

Hence, we can use the critical values from the

tables of the hypergeometric distribution. For

large number of observations we use the nor-

mal approximation with the parameters

IESN = n/2, var SN =
mn

4(N − 1)
.



The median test is the most convenient for the

heavy tailed F with the density f such that

while limx→±∞ f(x) = 0, this convergence is

much slower than in the case of the normal or

logistic distributions (e.g., for the Cauchy dis-

tribution).

12. Two-sample rank tests of scale

Let X1, . . . , Xm and Y1, . . . , Yn be two samples

with the respective distribution functions F (x−
µ and G(y−µ), where µ is an unknown nuisance

shift parameter. We wish to test the hypothe-

sis of randomness, i.e. H0 : F ≡ G, against the

two-sample alternative of scale

K4 : G(x − µ) = F

(

x − µ

σ

)

∀x ∈ IR1, σ > 1.

Instead of the tests optimal against some spe-

cial shapes of F with complicated form of the

scores, we shall rather describe tests with sim-

ple scores which are really used in the practice.

The score function ϕ1 for the scale alternatives

is U−shaped and the test statistics are of the

form

SN =
N
∑

i=m+1

ϕ1

(

Ri

N + 1

)

.



(i) The Siegel-Tukey test. This test is based

on reordering the observations, leading to new

ranks, and to the test statistics whose distri-

bution under H0 is the same as that of the

Wilcoxon statistic. Let ZN :1 < ZN :2 < . . . <

ZN :N be the order statistics corresponding to

the pooled sample of N = m + n variables.

Re-order this vector in the following way:

ZN :1, ZN :N , ZN :N−1, ZN :2, ZN :3,

ZN :N−2, ZN :N−3, ZN :4, ZN :5, . . .

and denote R̃i the new rank of Zi with respect

to the new order i = 1, . . . , N . The critical

region of the Siegel-Tukey test has the form

S′
N =

N
∑

i=m+1

R̃i ≤ k′α

where k′α is determined so that PH0
(S′

N < k′α)+

γPH0
(S′

N = k′α) = α. The distribution of S′
N

under H0 coincides with the distribution of the

Wilcoxon statistic, hence we can use the tables

of the Wilcoxon test.

(ii) Quartile test is based on the scoree func-

tion



ϕ1(u) =











0 ...0.25 < u < 0.75
0.5 ...u = 0.25, u = 0.75
1 ...0 < u < 0.25 and 0.75 < u < 1

and we get the test statistic

SN =
1

2

N
∑

i=m+1

[

sign

(
∣

∣

∣

∣

Ri

N + 1
− 1

2

∣

∣

∣

∣

− 1

4

)

+ 1

]

and reject H0 for large values of SN . The value

of SN is, unless N+1 is divisible by 4, the num-

ber of observations of the Y −sample which be-

long either to the first or to the fourth quartile

of the pooled sample.

If N is divisible by 4, then SN has the hyperge-

ometric distribution under H0, analogously as

the median test.

13. Rank tests of H0 against general

two-sample alternatives based on the

empirical distribution functions.

Again, X1, . . . , Xm and Y1, . . . , Yn are two sam-

ples with the respective distribution functions



F and G. We wish to test the hypotheses of

randomness H0 : F ≡ G either against the

one-sided alternative

K
+
5 : G(x) ≤ F (x) ∀x, F 6= G

or against the general alternative

K5 : F 6= G.

Testing against K5 is invariant to all continu-

ous functions and there is no reasonable maxi-

mal invariant under this setup. In this case we

usually use the tests based on the empirical

distribution functions, which are the maximal

likelihood estimators of the theoretical distrib-

ution functions in such nonparametric setup.

We shall describe the Kolmogorov -Smirnov

tests; another known test of this type is the

Cramér - von Mises test.

The empirical distribution function F̂m corre-

sponding to the sample X1, . . . , Xm is defined

as

F̂m(x) =
1

m

m
∑

i=1

I[Xi ≤ x], x ∈ IR1;



analogously is defined the empirical d.f. Ĝn for

the sample Y1, . . . , Yn. Denote

D+
mn = max

x∈IR1
[F̂m(x) − Ĝn(x)]

Dmn = max
x∈IR1

|F̂m(x) − Ĝn(x)|.

The Kolmogorov-Smirnov test against K5 has

the test function Φ(X,Y):

Φ(X,Y) =















1 ...Dmn > Cα

γ ...Dmn = Cα

0 ...Dmn < Cα

The statistic Dmn is the rank statistic, though

not linear. To see this, consider the order sta-

tistics ZN :1 < . . . < ZN :N of the pooled sample

and establish the indicators V1, . . . , VN where

Vj = 0 if ZN :j comes from the X−sample and

ZN :j = 1 otherwise.

Because F̂m and Ĝn are nondecreasing step

functions, the maximum can be attained only

in either of the points ZN :1, . . . , ZN :N ; more-

over

F̂m(ZN :j) − Ĝn(ZN :j)

=
m + n

mn

[

j
mn

m + n
− V1 − . . . − Vj

]

, j = 1, . . . , N



what gives the value of the test criterion

Dmn

=
m + n

mn
. max
1≤j≤N

∣

∣

∣

∣

j
mn

m + n
− V1 − . . . − Vj

∣

∣

∣

∣

.

Notice that this expression depends only on

V1, . . . , VN ; on the other hand, Vi = 1 ⇐⇒ one

of the ranks Rm+1, . . . , RN is equal to i, while

Vi = 0 ⇐⇒ one of the ranks R1, . . . , Rm is equal

to i. Thus V1, . . . , VN are dependent only on the

ranks, and so is also Dmn. This implies that the

distribution of Dmn under H0 is the same for all

F . This expression is also used for the calcu-

lation of Dmn. Analogous consideration holds

for the one-sided Kolmogorov-Smirnov crite-

rion D+
mn which can be expressed in the form

D+
mn =

=
m + n

mn
. max
1≤j≤N

[

j
mn

m + n
− V1 − . . . − Vj

]

.

For large values m, n, we can use the limit crit-

ical values of the tests, but the asymptotic dis-

tributions of the criteria are not normal. More

precisely, it holds

lim
m,n→∞PH0

{

(

mn

m + n

)1/2
D+

mn ≤ x

}

=

= 1 − exp{−2x2}, x > 0.



14. Modification of tests in the presence

of ties

If both distribution functions F and G are con-

tinuous, then all observations are different with

probability 1 and the ranks are well defined.

However, we round the observations to a finite

number of decimal places and thus, in fact,

we express all measurement on a countable

network. In such case, the possibility of ties

cannot be ignored and we should consider the

possible modifications of rank tests for such

situation. Let us first make several general re-

marks:

– If the tied observations belong to the same

sample, then their mutual ordering does not

affect the value of the test criterion. Hence,

we should mainly consider the ties of observa-

tions from different samples.

– A small number of tied observations can be

eventually omitted but this is paid by a loss of

information.

– Some test statistics are well defined even in

the presence of ties; the ties may only change



the probabilities of errors of the 1st and 2nd

kinds. Let us mention the Kolmogorov - Smirnov

test as an example: The definitions of the em-

pirical distribution function and of the test cri-

terion make sense even in the presence of ties.

However, if we use the tabulated critical val-

ues of the Kolmogorov - Smirnov test in this

situation, the size of the critical region will be

less than the prescribed significance level. Ac-

tually, we may then consider our observations

X1, . . . , Xm, Y1, . . . , Yn as the data rounded from

the continuous data

X∗
1, . . . , X∗

m, Y ∗
1 , . . . , Y ∗

n . Then the possible val-

ues of F̂m(x) − Ĝn(x), x ∈ IR1 form a subset

of possible values of F̂ ∗
m(x) − Ĝ∗

n(x), x ∈ IR1

where F̂ ∗
m and Ĝ∗

n are the empirical distribu-

tion functions of X∗
i ’s and Y ∗

j ’s, respectively;

hence

max
x∈IR1

[F̂m(x) − Ĝn(x)] ≤ max
x∈IR1

[F̂ ∗
m(x) − Ĝ∗

n(x)]

and similarly for the maxima of absolute values.

We shall describe two possible modifications of

the rank tests in the presence of ties: random-

ization and method of midranks.



15. Randomization

Let Z1, . . . , ZN be the pooled sample. Take

independent random variables U1, . . . , UN , uni-

formly R(0,1) distributed and independent of

Z1, . . . , ZN . Order the pairs (Z1, U1), . . . , (ZN , UN)

in the following way:

(Zi, Ui) < (Zj, Uj) ⇐⇒
{

either Zi < Zj
or Zi = Zj and Ui < Uj.

Denote R∗
1, . . . , R∗

n the ranks of the pairs

(Z1, U1), . . . , (ZN , UN). We shall say that

Z1, . . . , ZN satisfy the hypothesis H̄ if they are

independent and identically distributed (not nec-

essarily with an absolutely continuous distrib-

ution). Then, under H̄, the vector R∗
1, . . . , R∗

n

is uniformly distributed over the set R of per-

mutations of 1, . . . , N.

16. Method of midranks

The idea behind this method is that the equal

observations should have equal ranks; the joint

value of their rank is then taken as an average



of all ranks of the group. We shall mainly de-

scribe this method on the Wilcoxon test, but

it is applicable also to other tests.

Assume that there are e different values among

N observations; among them, d1 observations

equal to the smallest value, d2 observations

equal to the second smallest value, etc., de ob-

servations equal to the largest value,
∑e

i=1 di =

N. The average ranks of the individual groups

are

v1 = . . . = vd1
=

1

2
(d1 + 1)

vd1+1 = . . . = vd1+d2
= d1 +

1

2
(d2 + 1)

vd1+d2+1 = . . . = vd1+d2+d3

= d1 + d2 +
1

2
(d3 + 1)

...................................................................

vd1+d2+...+de−1+1 = . . .

= d1 + d2 + . . . + de−1 +
1

2
(de + 1).

Let R′
1, . . . , R′

N denote the midranks of the ob-

servations Z1, . . . , ZN . We have the modified

Wilcoxon statistic

W ∗
N =

N
∑

i=1

R′
i.



Because the distribution of (R′
1, . . . , R′

N) under

H̄ is not more uniform on R, (and the val-

ues may not be integer), we cannot use the

standard tables of Wilcoxon critical values. If

the numbers of equal observations are small

comparing with N then we can use the nor-

mal approximation for sufficiently large m, n.

To use this approximation, we must know the

expectation and the variance of W ∗
N under H̄.

These characteristics are conditional given the

values d1, . . . , de and hence the whole test is

conditional. We have

IE(W ∗
N |d1, . . . , de) = n

N + 1

2
= IEWN

The variance of W ∗
N is equal

var W ∗
n =

mn(N + 1)

12
− mn

∑e
i=1(d

3
i − di)

12N(N − 1)
.

The first term is the variance of the standard

Wilcoxon statistic, while the second term is a

correction for the ties which vanishes if there

are no ties among the observations.



17. Comparison of two treatments based

on paired observations

To exclude the effects due to the inhomogene-

ity of the data, we can divide the experimental

units in n homogeneous pairs, and apply the

new treatment to one unit of the pair while

the other unit serves for the control. We can

also apply both treatments successively to the

same unit.

Let Y1, . . . , YN be the measurements of the

effects of the new treatment and X1, . . . , XN

be the control measurements. Then

(X1, Y1), . . . , (XN , YN) is a random sample from

a bivariate distribution with the distribution

function F (x, y); it is generally unknown and

assumed being continuous.

The hypothesis H1 of no effect of the new

treatment is equivalent to the statement that

the distribution function F (x, y) is symmetric

around the straight line y = x, i.e.

H1 : F (x, y) = F (y, x) ∀x, y ∈ IR1.

Under the alternative of a positive effect of

the new treatment, the distribution of the ran-

dom vector (X, Y ) is shifted toward the posi-

tive halfplane y > x.



Rank tests of H1

Transform (Xi, Yi), i = 1, . . . , n in the following

way:

Zi = Yi − Xi, Wi = Xi + Yi, i = 1, . . . , n.

Under H1, the distribution of the vector

(Z1, W1), . . . , (ZN , WN) is symmetric around the

w−axis, while under the alternative it is shifted

in the direction of the positive half-axis z. The

problem is invariant with respect to the trans-

formations z′i = zi, w′
i = g(wi), i = 1, . . . , n,

where g is a 1 : 1 function with finite num-

ber of discontinuities. The invariant tests de-

pend only on (Z1, . . . , ZN), because it is the

maximal invariant. It is a sample from some

one-dimensional distribution with a continuous

distribution function D. The problem of test-

ing H1 is then equivalent to stating that the

distribution D is symmetric around 0,

H ′
1 : D(z) + D(−z) = 1 z ∈ IR1

against the alternative that the distribution is

shifted in the direction of the positive z,

K′
1 : D(z+∆)+D(−z+∆) = 1 ∀z ∈ IR1, ∆ > 0



The distribution D is uniquely determined by

the triple (p, F1, F2) with

p = Pr(Z < 0), F1(z) = Pr(|Z| < z|Z < 0)

and F2(z) = Pr(Z < z|Z > 0). Equivalent ex-

pressions for H′
1 and K′

1 are

H
′′
1 : p = 1/2, F2 = F1, K

′′
1 : p < 1/2, F2 ≤ F1.

This problem is invariant with respect to the

transformations G : z′i = g(zi), i = 1, . . . , n,

where g is continuous, odd and increasing func-

tion. The maximal invariant is

(S1, . . . , Sm, R1, . . . , Rn), where S1, . . . , Sm are the

ranks of the absolute values of negative Z’s

among |Z1|, . . . , |ZN | and R1, . . . , n are the ranks

of positive Z’s among |Z1|, . . . , |ZN |. More-

over, the vectors S′
1 < . . . < S′

m and R′
1 <

. . . < R′
n of ordered ranks are sufficient for

(S1, . . . , Sm, R1, . . . , Rn) and, further, one of them

uniguely determines the other; hence it is fi-

nally consider only, e.g., R′
1 < . . . < R′

n and the

invariant tests of H1 [or of H′
1] depends only

on R′
1 < . . . < R′

n.

Let ν be the number of positive components

of (Z1, . . . , ZN). Then ν is a binomial random



variable B(N, π); π = 1/2 under H1 and, for
any fixed n,

PH1
(R′

1 = r1, . . . , R′
ν = rν, ν = n)

PH1
(R′

1 = r1, . . . , R′
ν = rν|ν = n)PH1

(ν = n)

=
1

(

N
n

)

(

N
n

)

(

1

2

)N
=

(

1

2

)N

for any n−tuple
(r1, . . . , rn), 1 ≤ r1 < . . . < rn ≤ N. The number

of such tuples is
∑N

n=0

(

N
n

)

=
(

1
2

)N
. The

critical region of any rank test of the size α =
1
2N contains just k such points (r1, . . . , rn).
However, there generally is no uniformly most

powerful test for H′′
1 against K′′

1. We usually
consider the alternative of shift in location that
(Z1, . . . , ZN) has the density q∆,∆ > 0 :

q∆(z1, . . . , zN) =
N
∏

i=1

f(zi − ∆) : ∆ > 0 (5)

where f is a one-dimensional symmetric den-
sity, f(−x) = f(x), x ∈ IR1. ∆ = 0 under H1
[or H′′

1.] The locally most powerful rank test
of H1 has the critical region

N
∑

i=1

a+
N(R+

i , f)sign Zi ≥ kα (6)



where R+
i is the rank of |Zi| among |Z1|, . . . , |ZN |

and the scores a+
N(i, f) have the form

a+
N(i, f) = IEϕ+(U(i), f), i = 1, . . . , N

ϕ+(u, f) = ϕ(
u + 1

2
, f), 0 < u < 1

and where ϕ(u, f) = −f ′(F−1(u))
f(F−1(u))

, 0 < u < 1.

We shall describe two main tests of this type:

the one sample Wilcoxon test and the sign test.

One-sample Wilcoxon test

The one-sample Wilcoxon test is based on the

criterion

W+
N =

n
∑

i=1

sign Zi.R
+
i (7)

where R+
i is the rank of |Zi| among |Z1|, . . . , |ZN |,

or in the equivalent form

W++
N =

ν
∑

i=1

Ri (8)

where Ri is the rank of Zi > 0 among |Z1|, . . . , |ZN |,
ν is the number of positive components. Ob-

viously W+
N = 2W++

N − 1
2N(N + 1).



We reject H1 if W+
N > Cα, i.e.if the test cri-

terion exceeds the critical value. For large N,

when the tables of critical values are not avail-

able, we may use the normal approximation:

PH1







W+
N − IEW+

N

var W+
N

≤ x







→ ∞ as N → ∞

(9)

where

IEW+
N = 0, var W+

N =
1

6
N(N +1)(2N +1)

(10)

The parameters follow from the following propo-

sition:

Theorem. Let Z be a random variable with

continuous distribution function symmetric around

0, i.e. F (z) + F (−z) = 1, z ∈ IR1. Then Z and

sign Z are independent.

The one-sample Wilcoxon test is convenient

for the densities of logistic type.

Sign test

In a more general situation, Z1, . . . , ZN are in-

dependent random variables, Zi distributed ac-

cording to the distribution function Di, but not



all D1, . . . , DN are equal. This situation occurs

when we compare two treatments under differ-

ent experimental conditions or using different

methods.

We want to test the hypothesis of symmetry

of all distributions around 0, against the alter-

native that all distributions are shifted toward

the positive values:

H∗
1 : Di(z)+Di(−z) = 1, z ∈ IR1, i = 1, . . . , N

The problem is invariant with respect to all

transformations z′i = fi(zi), i = 1, . . . , N, where

fi’s are continuous, increasing and odd func-

tions. The maximal invariant is the number

n of positive components. The invariant tests

depend only on n, and the uniformly most pow-

erful among them has the form

Φ(n) =











1 ...n > Cα

γ ...n = Cα

0 ...n < Cα

(11)

where Cα and γ are determined by the equation

∑

n>Cα

(

N
n

)

(

1

2

)N
+ γ

(

N
Cα

)

(

1

2

)N
= α. (12)

The criterion of the sign test is simply the

number of positive components among Z1, . . . , ZN



and its distribution under H1 is binomial b(N,1/2).

For large N we can again use the normal ap-

proximation.

If all distribution functions D1, . . . , DN coin-

cide, the sign test is the locally most powerful

rank test of H1 for double-exponential D with

density d(z) = 1
2e

−|z−∆|, z ∈ IR1. For using

the rank test we need not to know the exact

values Xi, Yi, i = 1, . . . , N ; it is sufficient to

know the signs of the differences Yi − Xi. This

is a very convenient property: we can use this

test even for the qualitative observations of

the type: ”drogue A gives a better pain relief

than drogue B”. As a matter of fact, we do

not have any better test under such conditions.

18. Tests of independence in bivariate

population

Let (X1, Y1), . . . , (Xn, Yn) be a random sample

from a bivariate distribution with a continuous

distribution function F (x, y). We want to test

the hypothesis of independence

H2 : F (x, y) = F1(x)F2(y) (13)



where F1 and F2 are arbitrary distribution func-

tions. The most natural alternative for H2 is

the positive [or negative] dependence, but it is

too wide and there is no uniformly most pow-

erful test. We rather consider the alternative

Xi = X0
i + ∆Zi

Yi = Y 0
i + ∆Zi

∆ > 0, i = 1, . . . , n, (14)

where X0
i , Y 0

i , Zi, i = 1, . . . , n are indepen-

dent and their distributions are independent of

i. The independence then means that ∆ = 0.

Let R1, . . . , Rn be the ranks of X1, . . . , Xn

and let S1, . . . , Sn be the ranks of Y1, . . . , Yn,

respectively. Under the hypothesis of indepen-

dence, the vectors (R1, . . . , Rn) and (S1, . . . , Sn)

are independent and both have the uniform

distribution on the set R of permutations of

1, . . . , n. The locally most rank powerful test

of H2 against the alternative K2 in which X0
i

has the density f1 and Y 0
i the density f2, has

the critical region

n
∑

i=1

an(Ri, f1)an(Ri, f2) > Cα (15)

where the scores an(i, f) are usually replaced

be approximate scores.



Two the most well-known rank tests of inde-

pendence.

Spearman test

The Spearman test is based on the correlation

coefficient of (R1, . . . , Rn) and (S1, . . . , Sn):

rS =
1
n

∑n
i=1 RiSi − R̄S̄

[1n
∑n

i=1(Ri − R̄)2[1n
∑n

i=1(Si − S̄)2]1/2

where

R̄ = S̄ =
n + 1

2
,

1

n

n
∑

i=1

(Ri − R̄)2 =
1

n

n
∑

i=1

(Si − S̄)2

=
1

n

n
∑

i=1

i2 −
(

n + 1

2

)2

=
n2 − 1

12
.

Then we can express the criterion in a simpler

form

rS =
12

n(n2 − 1)

n
∑

i=1

RiSi −
3(n + 1)

n − 1
.



The test rejects H2 if rS > Cα, or, equivalently,

if S =
∑n

i=1 RiSi > C∗
α. In some tables we find

the critical values for the statistic

S ′ =
n
∑

i=1

(Ri − Si)
2 (16)

for which rS = 1 − 6
n3−n

S ′. The test based on

S ′ rejects H2 if S ′ < C′
α.

For large n we use the normal approximation

with

IES =
n(n + 1)2

4
, var S =

n2(n + 1)2(n − 1)

144
.

The Spearman test is the locally most power-

ful against the alternatives of the logistic type.

Quadrant test

This test is based on the criterion

Q =
1

4

n
∑

i=1

[sign(Ri−
n + 1

2
)+1][sign(Si−

n + 1

2
)+1]

and rejects H2 for large values of Q. For even

n is Q equal to the number of pairs (Xi, Yi), for

which Xi lies above the X−median and Yi lies

above the Y −median. Statistic Q then has,



under the hypothesis H2, the hypergeometric

distribution

Pr(Q = q) =

(

m
q

)(

m
m − q

)

(

n
m

) (17)

for q = 0,1, . . . , m, m = n/2. For large n we

use the normal approximation with the para-

meters

IEQ = n/4, var Q =
n2

16(n − 1)
. (18)

19. Rank tests for comparison of several

treatments

One-way classification

We want to compare the effects of p treat-

ments; the experiment is organized in such

a way that the i-th treatment is applied on

ni subjects with the results xi1, . . . , xini
, i =

1, . . . , p,
∑p

i=1 ni = n. Then xi1, . . . , xini
is a ran-

dom sample from a distribution with a distrib-

ution function Fi, i = 1, . . . , p. The hypothesis

of no difference between the treatments can be



then expressed as the hypothesis of equality of

p distribution functions, namely

H2 : F1 ≡ F2 ≡ . . . ≡ Fp (19)

and we can consider this hypothesis either against

the general alternative

K2 : Fi(x) 6= Fj(x) (20)

at least for one pair i, j at least for some x =

x0,

or against a more special alternative

K
′
2 : Fi(x) = F (x − ∆i), i = 1, . . . , p (21)

and ∆i 6= ∆j at least for one pair i, j.

The alternative claims that the effects of

treatments on the values of observations are-

linear and that at least two treatments differ

in their effects.

The classical test for this situation is the F -

test of the variance analysis; this test works

well under the normality, Fi ∼ N (µ+αi, σ
2), i =

1, . . . , p. We obtain the usual model of variance

analysis

Xij = µ + αi + eij, j = 1, . . . , ni; i = 1, . . . , p

(22)



where eij are independent random variables with

the normal distribution N (0, σ2). The hypoth-

esis H2 can be then reformulated as

H
′
2 : α1 = α2 = . . . = αp = 0.

The F -test rejects the hypothesis H′
2 provided

F =
n − p

p − 1

∑p
i=1 ni(X̄i· − X̄··)2

∑p
i=1

∑ni
j=1(Xij − X̄i·)2

≥ Cα (23)

where

X̄i· =
1

ni

ni
∑

j=1

Xij and X̄·· =
1

n

p
∑

i=1

ni
∑

j=1

Xij,

i = 1, . . . , p and where the critical value Cα

is found in the tables of F -distribution with

(p − 1, n − p) degrees of freedom.

Kruskal-Wallis rank test

Consider the vector of all observations and their

ranks

R11, . . . , R1n1
;R21, . . . , R2n2

; . . . ;Rp1, . . . , Rpnp.

Let R′
i1 < . . . < R′

ini
be the ordered ranks of

the i-th sample, i = 1, . . . , p. Then, under H,

it holds for any permutation {r11, . . . , rpnp} of



1, . . . , N such that ri1 < . . . < rini
, i = 1, . . . , p,

that

P

(

R′
11 = r11, . . . , R′

pnp
= rpnp

)

=
n1! . . . np!

N !
.

The Kruskal-Wallis rank test rejects H pro-

vided

KN =
12

N(N + 1)

p
∑

i=1

ni(Ri· −
N + 1

2
)2

=
12

N(N + 1)

p
∑

i=1

niR
2
i· − 3(N + 1) > Kα

where

Ri· =
1

ni

ni
∑

j=1

Rij, i = 1, . . . , p.

It can be formally obtained from the F -test, if

we insert Ri· for X̄i· and R·· = N+1
2 for X̄··

If ni → ∞, i = 1, . . . , p and p > 3, then KN

has asymptotically χ2(p−1) distribution under

H2. In practice we can use the χ2 approxima-

tion for p > 3 and ni > 5, i = 1, . . . , p.

In the special case p = 2, the Kruskal-Wallis

reduces to the two-sided (two-sample) Wilcoxon

test.

Modification in presence of tied observations:



Assume that there are e different values among

the components X11, . . . , Xpnp, and d1 are equal

to the smallest, . . . , de are equal to the largest

one. Let (R∗
11, . . . , R∗

pnp
) be the midranks of

X11, . . . , Xpnp. Then the modified Kruskal-Wallis

statistic has the form

K∗
N =

12
N(N+1)

∑p
i=1 ni

(

R∗
i· − N+1

2

)2

1 − 1
N3−N

∑e
k=1(d

3
k − dk)

.

The distribution of K∗
N conditioned by given

d1, . . . , de is approximately χ2(p−1) under H for

large n1 . . . , np. In the special case p = 2, the

Kruskal-Wallis reduces to the two-sided (two-

sample) Wilcoxon test.

Two-way classification (random blocks)

We want to compare p treatments and simulta-

neously to reduce the effect of non-homoheneity

of the sample units. We divide the subjects in

n homogeneous groups, so called blocks, and

compare the effects of treatments within each

block separately. The subjects in the block are

usually assigned the treatments in a random

way. The simplest model has n independent



blocks, each containing p elements, and each

treatment is applied just once in each block.

The observations can be formally described

by the following table:

Treatm. 1 2 3 . . . p
Block

1 x11 x12 x13 . . . x1p

2 x21 x22 x23 . . . x2p
... ... ... ... ...

n xn1 xn2 xn3 . . . xnp

The observation xij is the measured effect of

the j-th treatment applied in the i-th block.

Xij are independent, Xij has a continuous dis-

tribution function Fij, j = 1, . . . , n; i = 1, . . . , p.

We test the hypothesis that there is no signif-

icant difference among the treaments, hence

H3 : Fi1 ≡ Fi2 ≡ . . . ≡ Fip ∀i = 1, . . . , n (24)

against the alternative

K3 : Fij 6= Fik (25)



at least for one i and at least for one pair j, k,

or against a more special alternative

K
′
3 : Fij(x) = Fi(x − ∆j),

j = 1, . . . , n; i = 1, . . . , p

∆j 6= ∆k at least for one pair j, k.

The classical test of H3 is the F -test in the

model

Xij = µ+αi+βj+Eij, j = 1, . . . , n; i = 1, . . . , p,

(26)

where Eij are independent with the normal

distribution N (0, σ2), µ is the main additive

effect, αi is the effect if the i-th block and

βj is the effect of the j-th treatment, j =

1, . . . , n; i = 1, . . . , p. The hypothesis H3 then

reduces to the form

β1 = β2 = . . . = βp.

critical regionThe F -test of H3 has the critical

region

F =
(n − 1)

∑p
j=1(X̄·j − X̄··)2

∑p
j=1

∑n
i=1(Xij − X̄i· − X̄·j + X̄··)2

> Cα

(27)

where Cα is the critical value of F -distribution

with p−1 and (p−1)(n−1) degrees of freedom.



Friedman rank test

Order the observations within each block and

denote the corresponding ranks Ri1, . . . , Rip; i =

1, . . . , n. The ranks we arrange in the following

table:

Treatm. 1 2 3 . . . p Row
Block average

1 R11 R12 R13 . . . R1p
p+1
2

2 R21 R22 R23 . . . R2p
p+1
2

... ... ... ... ... ...

n Rn1 Rn2 Rn3 . . . Rnp
p+1
2

Column R·1 R·2 R·3 . . . IR·p Average

average R·· = p+1
2

where R·j = 1
n

∑n
i=1 Rij and R·· = 1

np

∑n
i=1

∑p
j=1 Rij.

The Friedman test is based on the following



criterion:

Qn =
12n

p(p + 1)

p
∑

j=1

(R·j −
p + 1

n
)2

=
12n

p(p + 1)

p
∑

j=1

R
p
·j − 3n(p + 1)

and the large value of the criterion are signifi-

cant. As n → ∞, then the distribution of Qn is

approximately χ2 with p−1 degrees of freedom.

In case p = 2, the Friedman test is reduced to

the two-sided sign test. The Friedman test is

applicable even in the situation that we observe

only the ranks rather than exact values of the

treatment effects.

PERMUTATION TESTS

Permutation tests are conditional tests under

given vector of order stagtistics. We shall il-

lustrate them on the test of hypothesis of ran-

domness against a two-sample alternative.

Let X1, . . . , Xm and Y1, . . . , Yn be two indepen-

dent samples with the distribution functions F

and G. We want to test

H0 : F ≡ G against K : G(x) = F (x−∆), ∆ > 0.



The distribution function F is unknown, but

we expect that it is normal. On the other

hand, we wish to have a test good under the

normality, but at least unbiased for all F with a

continuous density. Such are the permutation

tests.

For simplicity, denote

(X1, . . . , Xm, Y1, . . . , Yn) = (Z1, . . . , ZN),

N = m + n and let

Z(1) ≤ Z(2) ≤ . . . ≤ Z(N) be the corresponding

order statistics. The permutation test is based

only on Z(1), Z(2), . . . , Z(N) and it should satisfy

1

N !

∑

r∈R
Φ(Z(r1)

, . . . , Z(rN))) = α, (28)

where R is the set of N ! permutations of 1,2, . . . , N.

The test is conditional, under given vector of

order statistics Z(1), Z(2), . . . , Z(N), variable are

only the permutations (r1, . . . , rN).

Generally, the test rejecting the alternative

that (Z1, . . . , ZN) has density q(z1, . . . , zN) has

the form



Φ(zr1, . . . , zrN) = Φ
(

r1, . . . , rN |Z(·)
)

=



















1 . . . q(zr1, . . . , zrN) > C(z(·))

γ . . . q(zr1, . . . , zrN) = C(z(·))

0 . . . q(zr1, . . . , zrN) < C(z(·))

where C(z(·)) is determined so that (28) is sat-

isfied.

It means that we reject H0 for k permutations

r1, . . . , rN of z(1), . . . , z(N) leading to the largest

values of q(z(r1), . . . , z(rN)), where k+γ = αN !.

Special case: Two normal samples differing

by a shift in location

Here

q(z1, . . . , zN) = f(x1) . . . f(xm)f(y1−∆) . . . f(yn−∆)

where f is the density of N (µ, σ2), i.e.

q(z1, . . . , zN)

1

(σ
√

2π)N
exp







− 1

2σ2





m
∑

i=1

(xi − µ)2

+
n
∑

j=1

(yj − µ − ∆)2













and this is large iff
∑n

j=1 yj is large.

Hence, the test rejects if

n
∑

j=1

yj =
N
∑

i=m+1

zi > C1(z(·)).

The vectors zm+1, . . . , zN run over

(

N
n

)

com-

binations of z1, . . . , zN . We reject the hypothe-

sis for k largest values of
∑N

i=m+1 zi, where

k + γ = α

(

N
n

)

. (29)

Practical procedure:

(i) Observe (x1, . . . , xm, y1, . . . , yn) = (z1, . . . , zN).

(ii) Determine integer k and fraction γ ≥ 0 sat-

isfying (29).

(iii) Calculate the values
∑n

j=1 zℓj
for all com-

binations ℓ1, . . . , ℓn. Find the
[(

N
n

)

− k + 1

]

-st largest sum, say a∗.

(iv) Reject H0, if
∑n

j=1 yj > a∗ and reject with

probability γ if
∑n

j=1 yj = a∗.
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