ROBUST AND NONPARAMETRIC METHODS

Jana Jurečková

Contents

1	Rar	nk tests in linear regression model 5						
	1.1	Properties of ranks and order statistics						
		1.1.1 The distribution of $\mathbf{X}_{(.)}$ and of \mathbf{R} :						
		1.1.2 Marginal distributions of the random vectors \mathbf{R} and $\mathbf{X}_{(.)}$ under \mathbf{H}_0 : 6						
	1.2	Locally most powerful rank tests						
	1.3	Structure of the locally most powerful rank tests of \mathbf{H}_0 : 8						
		1.3.1 Special cases						
	1.4	Rank tests for simple regression model						
		with nonrandom regressors						
		1.4.1 Rank tests for $\mathbf{H}_0^{(1)}$						
		1.4.2 Rank tests for $\mathbf{H}_0^{(2)}$						
		1.4.3 Example \ldots $\dot{16}$						
	1.5	Rank tests for some multiple						
		linear regression models						
		1.5.1 Rank tests for $\mathbf{H}_0^{(1)}$						
		1.5.2 Rank tests for $\mathbf{H}_{0}^{(2)}$						
	1.6	Rank estimation						
		in simple linear regression models						
		1.6.1 Estimation of the slope β of the regression line						
		1.6.2 Estimation in multiple regression model						
	1.7	Aligned rank tests about the intercept						
		1.7.1 Regression line $\ldots \ldots 22$						
		1.7.2 Multiple regression model						
		· ~						

Chapter 1

Rank tests in linear regression model

1.1 Properties of ranks and order statistics

Let $\mathbf{X} = (X_1, \dots, X_n)$ be the vector of observations; denote $X_{n:1} \leq X_{n:2} \dots \leq X_{n:n}$ the components of \mathbf{X} ordered according to increasing magnitude. The vector $\mathbf{X}_{n} = (X_{n}, X_{n})$ is called the vector of order statistics and X_{n} is called the *i*th

 $\mathbf{X}_{(.)} = (X_{n:1}, \ldots, X_{n:n})$ is called the vector of order statistics and $X_{n:i}$ is called the *i*th order statistic.

Assume that the components of **X** are different and define the rank of X_i as $R_i = \sum_{j=1}^{n} I[X_j \leq X_i]$. Then the vector **R** of ranks of **X** takes on the values in the set \mathcal{R} of n! permutations (r_1, \ldots, r_n) of $(1, \ldots, n)$.

1.1.1 The distribution of $X_{(.)}$ and of R:

Lemma 1.1.1 If **X** has density $p_n(x_1, \ldots, x_n)$, then the vector $\mathbf{X}_{(.)}$ of order statistics has the distribution with the density

$$\bar{p}(x_{n:1},\ldots,x_{n:n}) = \begin{cases} \sum_{r \in \mathcal{R}} p(x_{n:r_1},\ldots,x_{n:r_n}) & \ldots & x_{n:1} \leq \ldots \leq x_{n:n} \\ 0 & otherwise. \end{cases}$$

(ii) The conditional distribution of R given $\mathbf{X}_{(.)} = \mathbf{x}_{(.)}$ has the form

$$I\!\!P(R=r|\mathbf{X}_{(.)}=\mathbf{x}_{(.)}) = \frac{p(x_{n:r_1},\dots,x_{n:r_n})}{\bar{p}(x_{n:1},\dots,x_{n:n})}$$

for any $r \in \mathcal{R}$ and any $x_{n:1} \leq \ldots \leq x_{n:n}$.

Proof. For any Borel set $B \in \mathcal{X}_{(.)}$ should hold

$$\mathbb{P}(\mathbf{X}_{(.)} \in B) = \sum_{r \in \mathcal{R}} \mathbb{P}(\mathbf{X}_{(.)} \in B, R = r) = \sum_{r \in \mathcal{R}} \int_{\mathbf{x}_{(.)} \in B, R = r} \dots \int p(x_1, \dots, x_n) dx_1, \dots, dx_n$$
$$= \sum_{r \in \mathcal{R}} \int_B \dots \int p(x_{n:r_1}, \dots, x_{n:r_n}) dx_{n:1}, \dots, x_{n:n} = \int_B \dots \int \bar{p}(x_{n:1}, \dots, x_{n:n}) dx_{n:1}, \dots, x_{n:n}$$

what proves (i). Similarly,

$$\mathbb{P}(\mathbf{X}_{(.)} \in B, R = r) = \int_{B} \dots \int p(x_{n:r_{1}}, \dots, x_{n:r_{n}}) dx_{n:1}, \dots, dx_{n:n} \\
= \int_{B} \dots \int \frac{p(x_{n:r_{1}}, \dots, x_{n:r_{n}})}{\bar{p}(x_{n:1}, \dots, x_{n:n})} \bar{p}(x_{n:1}, \dots, x_{n:n}) dx_{n:1}, \dots, dx_{n:n} \\
= \int_{B} \dots \int \mathbb{P}(R = r | \mathbf{X}_{(.)} = \mathbf{x}_{(.)}) \bar{p}(x_{n:1}, \dots, x_{n:n}) dx_{n:1}, \dots, dx_{n:n},$$

what proves (ii).

We say that the random vector \mathbf{X} satisfies the hypothesis of randomness \mathbf{H}_0 , if it has a probability distribution with density of the form

$$p(\mathbf{x}) = \prod_{i=1}^{n} f(x_i), \ \mathbf{x} \in I\!\!R^n$$

where f is an arbitrary one-dimensional density. Otherwise speaking, **X** satisfies the hypothesis of randomness provided its components are a random sample from an absolutely continuous distribution. We say that the random vector **X** satisfies the hypothesis of exchangeability \mathbf{H}_* , if

$$p(x_1,\ldots,x_n)=p(x_{r_1},\ldots,x_{r_n})$$

for every permutation (r_1, \ldots, r_n) of $1, \ldots, n$. If **X** satisfies \mathbf{H}_0 , then it obviously satisfies \mathbf{H}_* . The following Lemma follows from Lemma 1.1.1.

Lemma 1.1.2 If **X** satisfies \mathbf{H}_0 or \mathbf{H}_* , then $\mathbf{X}_{(.)}$ and \mathbf{R} are independent, the vector of ranks \mathbf{R} has the uniform discrete distribution

$$I\!\!P(\mathbf{R}=r) = \frac{1}{n!}, \ r \in \mathcal{R}$$

and the distribution of $\mathbf{X}_{(.)}$ has the density

$$\bar{p}(x_{n:1},\ldots,x_{n:n}) = \begin{cases} n! p(x_{n:1},\ldots,x_{n:n}) & \ldots & x_{n:1} \leq \ldots \leq x_{n:n} \\ 0 & \ldots & otherwise. \end{cases}$$

1.1.2 Marginal distributions of the random vectors R and $X_{(.)}$ under H_0 :

Lemma 1.1.3 Let \mathbf{X} satisfy the hypothesis \mathbf{H}_0 . Then

(i) $\Pr(R_i = j) = \frac{1}{n} \ \forall i, j = 1, \dots, n.$ (ii) $\Pr(R_i = k, R_j = m) = \frac{1}{n(n-1)}$ for $1 \le i, j, k, m \le n, i \ne j, \ k \ne m.$

(*iii*)
$$I\!\!ER_i = \frac{n+1}{2}, \ i = 1, \dots, n.$$

- (iv) var $R_i = \frac{n^2 1}{12}, \ i = 1, \dots, n.$ (v) $cov(R_i, R_j) = -\frac{n+1}{12}, \ 1 \le i, j \le n, \ i \ne j.$
- (vi) If **X** has density $p(x_1, \ldots, x_n) = \prod_{i=1}^n f(x_i)$, then $X_{n:k}$ has the distribution with density

$$f_{(n)}(x) = n \left(\begin{array}{c} n-1\\ k-1 \end{array} \right) (F(x))^{k-1} (1-F(x))^{n-k} f(x), \quad x \in \mathbb{R}^1$$

where F(x) is the distribution function of X_1, \ldots, X_n .

(vii) If **X** has uniform R[0,1] distribution, then $X_{n:i}$ has beta B(i, n-i+1) distribution with the expectation and variance

$$I\!\!E X_{n:i} = \frac{i}{n+1}$$
, Var $X_{n:i} = \frac{i(n-i+1)}{(n+1)^2(n+2)}$.

Proof. Lemma follows immediately from Lemma 1.1.2.

1.2 Locally most powerful rank tests

We want to test a hypothesis of randomness \mathbf{H}_0 on the distribution of \mathbf{X} . The rank test is characterized by test function $\Phi(\mathbf{R})$. The most powerful rank α -test of \mathbf{H}_0 against a simple alternative $\mathbf{K} : \{Q\}$ [that \mathbf{X} has the fixed distribution Q] follows directly from the Neyman-Pearson Lemma:

$$\Phi(r) = \begin{cases} 1 & \dots n! \ Q(R = r) > k_{\alpha} \\ 0 & \dots n! \ Q(R = r) < k_{\alpha} \\ \gamma & \dots n! \ Q(R = r) = k_{\alpha}, \ r \in \mathcal{R} \end{cases}$$

where k_{α} and γ are determined so that

$$\#\{r: n! \ Q(R=r) > k_{\alpha}\} + \gamma \#\{r: n! \ Q(R=r) = k_{\alpha}\} = n!\alpha, \ 0 < \alpha < 1.$$

If we want to test against a composite alternative and the uniformly most powerful rank tests do not exist, then we look for a rank test, *most powerful locally* in a neighborhood of the hypothesis.

Definition 1.2.1 Let d(Q) be a measure of distance of alternative $Q \in K$ from the hypothesis **H**. The α -test Φ_0 is called the locally most powerful in the class \mathcal{M} of α -tests of **H** against **K** if, given any other test $\Phi \in \mathcal{M}$, there exists $\varepsilon > 0$ such that the power-functions of Φ_0 and Φ satisfy the inequality

$$\beta_{\Phi_0}(Q) \ge \beta_{\Phi}(Q) \quad \forall Q \quad satisfying \quad 0 < d(Q) < \varepsilon.$$

1.3 Structure of the locally most powerful rank tests of H_0 :

Theorem 1.3.1 Let A be a class of densities, $A = \{g(x, \theta) : \theta \in \mathcal{J}\}$ such that

 $\mathcal{J} \subset \mathbb{R}^1$ is an open interval, $\mathcal{J} \ni 0$. $g(x, \theta)$ is absolutely continuous in θ for almost all x.

Moreover, let for almost all x there exist the limit

$$\dot{g}(x,0) = \lim_{\theta \to 0} \frac{1}{\theta} [g(x,\theta) - g(x,0)]$$

and
$$\lim_{\theta \to 0} \int_{-\infty}^{\infty} |\dot{g}(x,\theta)| dx = \int_{-\infty}^{\infty} |\dot{g}(x,0)| dx$$

Consider the alternative $\mathbf{K} = \{q_{\Delta} : \Delta > 0\}$, where

$$q_{\Delta}(x_1,\ldots,x_n) = \prod_{i=1}^n g(x_i,\Delta c_i),$$

 c_1, \ldots, c_n given numbers. Then the test with the critical region

$$\sum_{i=1}^{n} c_i a_n(R_i, g) \ge k$$

is the locally most powerful rank test of \mathbf{H}_0 against \mathbf{K} on the significance level $\alpha = P(\sum_{i=1}^n c_i a_n(R_i, g) \geq k)$, where P is any distribution satisfying \mathbf{H}_0 ,

$$a_n(i,g) = \mathbb{I}\!\!E\left[\frac{\dot{g}(X_{n:i},0)}{g(X_{n:i},0)}\right], \ i = 1,\ldots,n \quad are \ the \ scores$$

where $X_{n:1}, \ldots, X_{n:n}$ are the order statistics corresponding to the random sample of size n from the population with the density g(x, 0).

Proof. Of Q_{Δ} is the probability distribution with the density q_{Δ} , then, for any permutation $\mathbf{r} \in \mathcal{R}$,

$$\lim_{\Delta \to 0} \frac{1}{\Delta} \left[n! \ Q_{\Delta}(\mathbf{R} = \mathbf{r}) - 1 \right] = \sum_{i=1}^{n} c_i \ a_n(r_i, g).$$
(1.3.1)

If (1.3.1) is true, then there exists an $\varepsilon > 0$ such that

$$\sum_{i=1}^{n} c_i \ a_n(r_i, g) > \sum_{i=1}^{n} c_i \ a_n(r'_i, g) \implies Q_{\Delta}(\mathbf{R} = \mathbf{r}) > Q_{\Delta}(\mathbf{R} = \mathbf{r}')$$

for all $\Delta \in (0, \varepsilon)$ and for different $\mathbf{r}, \mathbf{r}' \in \mathcal{R}$; then we reject Q_{Δ} for $\mathbf{r} \in \mathcal{R}$ such that $\sum_{i=1}^{n} c_i a_n(r_i, g) > k$ for a suitable k. So we must prove (1.3.1), what we shall do as

follows: We can write

$$\frac{1}{\Delta} \left[Q_{\Delta}(\mathbf{R} = \mathbf{r}) - Q_{0}(\mathbf{R} = \mathbf{r}) \right] = \int_{\mathbf{R} = \mathbf{r}} \dots \int \frac{1}{\Delta} \left[\prod_{i=1}^{n} g(x_{i}, \Delta c_{i}) - \prod_{i=1}^{n} g(x_{i}, 0) \right] dx_{1}, \dots, dx_{n}$$
$$= \sum_{i=1}^{n} \int_{\mathbf{R} = \mathbf{r}} \dots \int \frac{1}{\Delta} \left(g(x_{i}, \Delta c_{i}) - g(x_{i}, 0) \right) \prod_{j=1}^{i-1} g(x_{j}, \Delta c_{j}) \prod_{k=i+1}^{n} g(x_{k}, 0) dx_{1}, \dots, dx_{n}$$

where we used the identity

$$\prod_{i=1}^{n} A_i - \prod_{j=1}^{n} B_j = \sum_{i=1}^{n} (A_i - B_i) \prod_{j=1}^{i-1} A_j \prod_{k=i+1}^{n} B_k$$

If $c_i > 0$, then

$$\begin{split} \limsup_{\Delta \to 0} \int_{\mathbf{R}=\mathbf{r}} \dots \int \frac{1}{\Delta} \left(g(x_i, \Delta c_i) - g(x_i, 0) \right) \prod_{j=1}^{i-1} g(x_j, \Delta c_j) \prod_{k=i+1}^n g(x_k, 0) dx_1, \dots, dx_n \\ \leq c_i \int_{\mathbf{R}=\mathbf{r}} \dots \int |\dot{g}(x_i, 0)| \prod_{j \neq i} g(x_j, 0) dx_1, \dots, dx_n, \end{split}$$

analogously for $c_i < 0$. This, combining with the Fatou lemma, leads to

$$\begin{split} \lim_{\Delta \to 0} \sum_{i=1}^{n} \int_{\mathbf{R}=\mathbf{r}} \dots \int \frac{1}{\Delta} \left(g(x_{i}, \Delta c_{i}) - g(x_{i}, 0) \right) \prod_{j=1}^{i-1} g(x_{j}, \Delta c_{j}) \prod_{k=i+1}^{n} g(x_{k}, 0) dx_{1}, \dots, dx_{n} \\ &= \sum_{i=1}^{n} \int_{\mathbf{R}=\mathbf{r}} \dots \int c_{i} \dot{g}(x_{i}, 0) \prod_{j \neq i} g(x_{j}, 0) dx_{1}, \dots, dx_{n} \\ &\sum_{i=1}^{n} c_{i} \int_{\mathbf{R}=\mathbf{r}} \dots \int \frac{\dot{g}(x_{i}, 0)}{g(x_{i}, 0)} \prod_{j=1}^{n} g(x_{j}, 0) dx_{1}, \dots, dx_{n} = \frac{1}{n!} \sum_{i=1}^{n} c_{i} \mathbb{E} \left[\frac{\dot{g}(X_{i}, 0)}{g(X_{i}, 0)} \Big| \mathbf{R} = \mathbf{r} \right] \\ &= \frac{1}{n!} \sum_{i=1}^{n} c_{i} a_{n}(r_{i}, g). \end{split}$$

regarding that g(x,0) = 0 and $\dot{g}(x,0) \neq 0$ can happen simultaneously only on the set of measure 0. This implies (1.3.1).

1.3.1 Special cases

I. Two-sample alternative of the shift in location: $\mathbf{K}_1 : \{q_\Delta : \Delta > 0\}$ where

$$q_{\Delta}(x_1,\ldots,x_N) = \prod_{i=1}^m f(x_i) \prod_{i=m+1}^N f(x_i - \Delta)$$

$$\sum_{i=m+1}^{N} a_N(R_i, f) \ge k$$

where k satisfies the condition $P(\sum_{i=m+1}^{N} a_N(R_i, f) \ge k) = \alpha, \ P \in \mathbf{H}_0$ and

$$a_N(i, f) = I\!\!E\left[-\frac{f'(X_{N:i})}{f(X_{N:i})}\right], \ i = 1, \dots, N$$

where $X_{N:1} < \ldots < X_{N:N}$ are the order statistics corresponding to the sample of size N from the distribution with the density f. The scores may be also written as

$$a_N(i,f) = I\!\!E\varphi(U_{N:i},f), \ i = 1,\ldots,N$$

where $\varphi(u, f) = -\frac{f'(F^{-1}(u))}{f(F^{-1}(u))}$, 0 < u < 1 and $U_{N:1}, \ldots, U_{N:N}$ are the order statistics corresponding to the sample of size N from the uniform R(0, 1) distribution. Another form of the scores is

$$a_N(i,f) = N\left(\begin{array}{c} N-1\\ i-1 \end{array}\right) \int_{-\infty}^{\infty} f'(x) F^{i-1}(x) (1-F(x))^{N-i} dx.$$

Remark 1.3.1 The computation of the scores is difficult for some densities; if there are no tables of the scores at disposal, they are often replaced by the approximate scores

$$a_N(i,f) = \varphi\left(\frac{i}{N+1}\right) = \varphi(I\!\!E U_{N:i},f), i = 1,\ldots,N, \quad i = 1,\ldots,N.$$

The asymptotic critical values coincide for both types of scores.

II. Alternative of simple linear regression: $\mathbf{K}_2 = \{q_\Delta : \Delta > 0\}$ where $q_\Delta(x_1, \ldots, x_n) = \prod_{i=1}^n f(x_i - \Delta c_i)$ with a fixed absolutely continuous density f and with given constants $c_1, \ldots, c_n, \sum_{i=1}^n c_i^2 > 0$. Then the locally most powerful rank α -test has the critical region

$$\sum_{i=1}^{n} c_i \ a_n(R_i, f) \ge k \tag{1.3.2}$$

with the the same scores as in case I, and with k determined by the condition

$$\mathbb{I}\left(\sum_{i=1}^{n} c_i \ a_n(R_i, f) > k\right) + \gamma \mathbb{I}\left(\sum_{i=1}^{n} c_i \ a_n(R_i, f) > k\right) = \alpha.$$

In the practice we most often use the test with the Wilcoxon scores: Put $\varphi(u) = u - \frac{1}{2}$ and reject \mathbf{H}_0 provided

$$W_n = \sum_{i=1}^n c_i R_i > k$$
, where k is such that

$$P\left(\sum_{i=1}^{n} c_i \ R_i > k \Big| \mathbf{H}_0\right) + \gamma P\left(\sum_{i=1}^{n} c_i \ R_i = k \Big| \mathbf{H}_0\right) = \alpha, \ 0 \le \gamma < 1$$

This test is the locally most powerful against \mathbf{K}_2 with F logistic with the density

$$f(x) = \frac{\mathrm{e}^{-x}}{(1 + \mathrm{e}^{-x})^2}, \ x \in \mathbb{R}$$

but is rather efficient also for other alternatives. For large n we use the normal approximation of W_n : If $n \to \infty$, then W_n has asymptotically normal distribution under \mathbf{H}_0 in the following sense:

$$\lim_{n \to \infty} P_{H_0} \left\{ \frac{W_n - I\!\!\!E W_n}{\sqrt{\operatorname{var} W_n}} < x \right\} = \Phi(x), \ x \in I\!\!\!R^1,$$

where Φ is the standard normal distribution function.

To be able to use the normal approximation, we must know the expectation and variance of W_n under \mathbf{H}_0 . The following Lemma gives the expectation and the variance of a more general linear rank statistic, covering the Wilcoxon as well other rank tests.

Lemma 1.3.1 Let the random vector (R_1, \ldots, R_n) have the discrete uniform distribution on the set \mathcal{R} of all permutations of numbers $1, \ldots, n$, i.e. $\mathbb{P}(\mathbf{R} = \mathbf{r}) = \frac{1}{n!}$, $\mathbf{r} \in \mathcal{R}$; let c_1, \ldots, c_N and $a_1 = a(1), \ldots, a_n = a(n)$ are arbitrary constants. Then the expectation and variance of the linear statistic $S_n = \sum_{i=1}^n c_i a(R_i)$ are

$$\mathbb{E}S_N = \frac{1}{n} \sum_{i=1}^n c_i \sum_{j=1}^n a_j$$

var $S_n = \frac{1}{n-1} \sum_{i=1}^n (c_i - \bar{c})^2 \sum_{j=1}^n (a_j - \bar{a})^2,$

where $\bar{c} = \frac{1}{n} \sum_{i=1}^{n} c_i$, $\bar{a} = \frac{1}{n} \sum_{i=1}^{n} a_i$.

Proof. The proposition follows from the distribution of \mathbf{R} under \mathbf{H}_0 .

1.4 Rank tests for simple regression model with nonrandom regressors

Let X_1, \ldots, X_N be independent random variables with continuous distribution functions F_1, \ldots, F_N , where

$$F_i(x) = F(x - \beta_0 - \beta c_i), \quad i = 1, \dots, N, \ x \in \mathbb{R},$$

F is continuous, $\mathbf{c}_N = (c_1, \ldots, c_n)'$ is a vector of (known) regression constants (not all equal), and (β_0, β) are unknown parameters; we call β_0 an *intercept* of the regression line and β is called the *regression coefficient*. Our first hypothesis is that there is no regression,

$$\mathbf{H}_{0}^{(1)}: \ \beta = 0 \ \text{against} \ \mathbf{K}^{(1)}: \ \beta \neq 0 \ \text{or} \ \mathbf{K}_{+}^{(1)}: \ \beta > 0,$$
(1.4.1)

where β_0 is considered as a nuisance parameter. We may be also interested in the joint hypothesis

$$\mathbf{H}_{0}^{(2)}: \ (\beta_{0},\beta) = \mathbf{0} \text{ against } \mathbf{K}^{(2)}: \ (\beta_{0},\beta) \neq \mathbf{0}.$$
 (1.4.2)

The third hypothesis is

 $\mathbf{H}_{0}^{(3)}: \ \beta_{0} = 0 \ \text{against} \ \mathbf{K}^{(3)}: \ \beta_{0} \neq 0 \ \text{or} \ \mathbf{K}_{+}^{(3)}: \ \beta_{0} > 0,$ (1.4.3)

where β is treated as a nuisance parameter.

In either case there exists a *distribution-free* rank test, whose critical values do not depend on F. We can also consider $\beta = \beta^*$ or $(\beta_0, \beta) = (\beta_0^*, \beta^*)$; then we work with $X_i^* = X_i - \beta_0^* - \beta^* c_i, i = 1, ..., N$.

1.4.1 Rank tests for $\mathbf{H}_0^{(1)}$

Let $\mathbf{R}_N = (R_{N1}, \ldots, R_{NN})$ be the ranks of X_1, \ldots, X_N . Choose some nondecreasing score function $\varphi : (0, 1) \mapsto \mathbb{R}$ and put

$$S_N = \sum_{i=1}^N (c_i - \bar{c}_N) a_N(R_{Ni}), \quad \bar{c}_N = \frac{1}{N} \sum_{i=1}^N c_i$$
(1.4.4)

where the scores have the form

$$a_N(i) = I\!\!E \varphi(U_{N:i}) \quad \text{or} \quad \varphi\left(\frac{i}{N+1}\right), \quad 1 \le i \le N,$$
 (1.4.5)

where $U_{N:1} \leq \ldots U_{N:N}$ are the order statistics corresponding to the sample U_1, \ldots, U_N from the uniform R(0,1) distribution. Under $\mathbf{H}_0^{(1)}$, it holds $F_1(x) = \ldots = F_N(x) =$ $F(x - \beta_0) = F_0(x)$ (say), where F_0 is continuous. Because the ties between X_1, \ldots, X_N can happen with probability 0, we have

$$\mathbb{P}\left\{\mathbf{R}_{N}=\mathbf{r}_{N}\middle|\mathbf{H}_{0}^{(1)}\right\}=\frac{1}{N!}\quad\forall\mathbf{r}_{N}\in\mathcal{R}_{N}\quad(\text{permutations}),$$

hence

$$\mathbb{P}\{R_{Ni} = k | \mathbf{H}_{0}^{(1)}\} = \frac{1}{N} \quad \forall i, k, \ 1 \le i, k \le N$$

$$\mathbb{P}\{R_{Ni} = k, R_{Nj} = \ell | \mathbf{H}_{0}^{(1)}\} = \frac{1}{N(N-1)} \quad \forall i, j, k, \ell, \ 1 \le i \ne j, k \ne \ell \le N.$$

Hence,

$$\mathbb{E}\{S_N \mid \mathbf{H}_0^{(1)}\} = \sum_{i=1}^N (c_i - \bar{c}_N) \mathbb{E}\{a_N(R_{Ni}) \mid \mathbf{H}_0^{(1)}\} = \frac{1}{N} \sum_{i=1}^N (c_i - \bar{c}_N) \sum_{j=1}^N a_N(i) = 0,$$

Var $\{S_N \mid \mathbf{H}_0^{(1)}\} = \frac{1}{N-1} \sum_{i=1}^N (c_i - \bar{c}_N)^2 \sum_{j=1}^N (a_N(i) - \bar{a}_N)^2$

The distribution of S_N under $\mathbf{H}_0^{(1)}$ does not depend on F and on β_0 , hence we reject $\mathbf{H}_0^{(1)}$ in favor of $\{\mathbf{K}_+^{(1)}: \beta > 0\}$ when $S_N > k_{\alpha}^+$ and reject with probability γ when $S_N = k_{\alpha}^+$, where k_{α}^+ is determined so that

$$\mathbb{I}\!\!P\{S_N > k_{\alpha}^+ | \mathbf{H}_0^{(1)}\} + \gamma \mathbb{I}\!\!P\{S_N = k_{\alpha}^+ | \mathbf{H}_0^{(1)}\} = \alpha$$

and $\alpha = 0.05$ or 0.01, for instance. Similarly, we reject $\mathbf{H}_0^{(1)}$ in favor of $\{\mathbf{K}^{(1)}: \beta \neq 0\}$ when $|S_N| > k_{\alpha}$ and reject with probability $\gamma \in [0, 1)$ when $|S_N| = k_{\alpha}$, where k_{α} is determined so that

$$\mathbb{I}\!\!P\{|S_N| > k_{\alpha} | \mathbf{H}_0^{(1)}\} + \gamma \mathbb{I}\!\!P\{|S_N| = k_{\alpha} | \mathbf{H}_0^{(1)}\} = \alpha.$$

For small N we can calculate the critical values k_{α}^+ and k_{α} ; but for large N we must use an asymptotic approximation. The asymptotic distribution of S_N under $\mathbf{H}_0^{(1)}$ is based on the following theorems, proved by Hájek (1961):

Theorem 1.4.1 Let $\mathbf{R}_N = (R_{N1}, \ldots, R_{NN})$ be a random vector such that

$$\mathbb{P}\{\mathbf{R}=\mathbf{r}\}=\frac{1}{N!}\quad\forall\mathbf{r}\in\mathcal{R}$$

and let $\{a_N(i), 1 \leq i \leq N\}$ and $\{c_N(i), 1 \leq i \leq N\}$ be two sequences of real numbers such that, as $N \to \infty$,

$$\max_{1 \le i \le N} \frac{(a_N(i) - \bar{a}_N)^2}{\sum_{j=1}^N (a_N(j) - \bar{a}_N)^2} \to 0, \quad \max_{1 \le i \le N} \frac{(c_N(i) - \bar{c}_N)^2}{\sum_{j=1}^N (c_N(j) - \bar{c}_N)^2} \to 0 \quad (Noether \ condition).$$
(1.4.6)

Then

$$\mathbb{I}\!\!P\left\{\frac{S_N - \mathbb{I}\!\!E S_N}{\sqrt{\operatorname{Var} S_N}} \le x\right\} \to \Phi(x) \quad as \quad N \to \infty \quad \forall x \in \mathbb{R}$$

where Φ is the standard normal distribution function, if and only if, for every $\varepsilon > 0$,

$$\lim_{N \to \infty} \left\{ \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \kappa_{N,ij}^2 I[|\kappa_{N,ij}| > \varepsilon] \right\} = 0 \quad (Lindeberg \ condition) \tag{1.4.7}$$

and

$$\kappa_{N, ij} = \frac{(a_N(i) - \bar{a}_N)(c_N(j) - \bar{c}_N)}{\left\{N^{-1}\sum_{k=1}^N (a_N(k) - \bar{a}_N)^2 \sum_{\ell=1}^N (c_N(\ell) - \bar{c}_N)^2\right\}^{1/2}}, \quad i, j = 1, \dots, N.$$

Theorem 1.4.2 (Projection theorem). If $a_N(1) \leq \ldots \leq a_N(N)$ and

$$\max_{1 \le i \le N} \frac{(a_N(i) - \bar{a}_N)^2}{\sum_{j=1}^N (a_N(j) - \bar{a}_N)^2} \to 0 \quad as \quad N \to \infty,$$

then S_N is asymptotically equivalent in the quadratic mean to the statistic

$$T_N = \sum_{i=1}^{N} (c_N(i) - \bar{c}_N) a_N^0(U_i) + N \bar{c}_N \bar{a}_N$$

14

in the sense that

$$\lim_{N \to \infty} I\!\!E \left[\frac{(S_N - T_N)^2}{\operatorname{Var} S_N} \right] = 0.$$

Here

$$a_N^0(i) = a_N(i)$$
 for $\frac{i-1}{N} < u \le \frac{i}{N}$, $i = 1, ..., N$

and U_1, \ldots, U_N is a random sample from the uniform R(0,1) distribution.

Corollary 1.4.1 Let

$$\kappa_{N, ij} = \frac{(a_N(i) - \bar{a}_N)(c_i - \bar{c}_N)}{A_N C_N}, \quad i, j = 1, \dots, N,$$
$$A_N^2 = (N - 1)^{-1} \sum_{k=1}^N (a_k - \bar{a}_N)^2, \quad C_N^2 = \sum_{\ell=1}^N (c_\ell - \bar{c}_N)^2,$$

and let the sequences $\{a_N(1), \ldots, a_N(N)\}$ and $\{c_1, \ldots, c_N\}$ satisfy the Noether condition (1.4.6). Then

$$\lim_{N \to \infty} \mathbb{I}\left\{\frac{S_N}{A_N C_N} \le x \middle| \mathbf{H}_0^{(1)}\right\} = \Phi(x) \quad \forall x \in \mathbb{R}.$$

The asymptotic rank test rejects $\mathbf{H}_{0}^{(1)}$ in favor of $\mathbf{K}_{+}^{(1)}$ on the significance level α if

$$\frac{S_N}{A_N C_N} \ge \Phi^{-1} (1 - \alpha)$$

and in favor of $\mathbf{K}^{(1)}$ if

$$\frac{|S_N|}{A_N C_N} \ge \Phi^{-1} \left(1 - \frac{\alpha}{2} \right),$$

respectively.

1.4.2 Rank tests for $\mathbf{H}_0^{(2)}$

The hypothesis

$$\mathbf{H}_0^{(2)}:\ (\beta_0,\beta)=\mathbf{0}$$

we shall test under the condition of symmetry on F, i.e.

$$F(x) + F(-x) = 1$$
 for $x \in \mathbb{R}$.

Because the ranks are invariant to the shift in location, the test should also involve the signs of observations. Let R_{Ni}^+ be the rank of $|X|_{Ni}$ among $|X|_{N1}, \ldots, |X|_{NN}$, $i = 1, \ldots, N$. Choose a score-generating function $\varphi^* : (0, 1) \mapsto [0, \infty)$ and the scores $a_N^*(1), \ldots, a_N^*(N)$ generated by φ^* in the same manner as in (1.4.5). Under the hypothesis $\mathbf{H}_0^{(2)}$, the observations are independent and identically distributed with a continuous distribution function F, symmetric about 0. Consider two statistics

$$S_{N,1}^{+} = \sum_{i=1}^{N} a_{N}^{*}(R_{Ni}^{+}) \text{sign } X_{i}, \quad S_{N,2}^{+} = \sum_{i=1}^{N} c_{i} a_{N}^{*}(R_{Ni}^{+}) \text{sign } X_{i}, \quad \mathbf{S}_{N} = (S_{N,1}^{+}, S_{N,2}^{+})'$$

and denote

$$\lambda_{11}^{(N)} = N, \quad \lambda_{12}^{(N)} = \sum_{i=1}^{N} c_i, \quad \lambda_{22}^{(N)} = \sum_{i=1}^{N} c_i^2, \quad \mathbf{\Lambda}^{(N)} = \left\| \lambda_{ij}^{(N)} \right\|_{i,j=1,2}.$$

Under $\mathbf{H}_{0}^{(2)}$ and under symmetry of F, the vector (sign $X_{1} \cdot R_{N1}^{+}, \ldots$, sign $X_{N} \cdot R_{NN}^{+}$) can take on $N!2^{N}$ values, each with probability $1/(N!2^{N})$, and sign X_{i} is independent of R_{Ni}^{+} , $i = 1, \ldots, N$. Hence,

$$\mathbb{E}(\mathbf{S}_{N}^{+}|\mathbf{H}_{0}^{(2)}) = \mathbf{0},$$

$$\mathbb{E}(\mathbf{S}_{N}^{+}\mathbf{S}_{N}^{+\prime}|\mathbf{H}_{0}^{(2)}) = A_{N}^{*2}\mathbf{\Lambda}^{(N)},$$

$$A_{N}^{*2} = \frac{1}{N}\sum_{i=1}^{N} (a_{N}^{*}(i))^{2}.$$

Consider the following test criterion

$$W_{N}^{+} = \mathbf{S}_{N}^{+\prime} \left(I\!\!E_{\mathbf{H}_{0}^{(2)}} \mathbf{S}_{N}^{+} \mathbf{S}_{N}^{+\prime} \right)^{-1} \mathbf{S}_{N}^{+} = \left(\mathbf{S}_{N}^{+\prime} \mathbf{\Lambda}_{N}^{-1} \mathbf{S}_{N} \right) / A_{N}^{*2}.$$
(1.4.8)

Under $\mathbf{H}_{0}^{(2)}$ and under symmetry of F, the distribution of W_{N}^{+} does not depend on the unknown F. However, the exact distribution of W_{N}^{+} is very laborious to calculate, hence we should again use the asymptotic approximation. The asymptotic behavior is described in the following theorem:

Theorem 1.4.3 Assume that the sequences $\{a_N(i), 1 \leq i \leq N\}$ and $\{c_{Ni}, 1 \leq i \leq N\}$ satisfy, as $N \to \infty$,

$$\frac{\max_{1 \le i \le N} a_N^2(i)}{\sum_{j=1}^N a_N^2(j)} \to 0, \quad \frac{\max_{1 \le i \le N} c_{Ni}^2}{\sum_{j=1}^N c_{Nj}^2} \to 0.$$

Denote

$$\kappa_{N,ij} = \frac{a_N(i)c_{Nj}}{\left[N^{-1}\sum_{k=1}^N a_N^2(k)\sum_{\ell=1}^N c_{N\ell}^2\right]^{1/2}}, \quad i, j = 1, \dots, N.$$

Then, under $\mathbf{H}_{0}^{(2)}$ and under symmetry of F, the sequence $(S_{N2}^{+} - \mathbb{E}S_{N2}^{+})/\sqrt{\operatorname{Var}S_{N2}^{+}}$ is asymptotically normally distributed N(0,1) if and only if, for every $\varepsilon > 0$,

$$\lim_{N \to \infty} \left\{ \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \kappa_{N,ij}^2 I[|\kappa_{N,ij}| > \varepsilon] \right\} = 0 \quad (Lindeberg \ condition).$$

If we further apply Theorem 1.4.3 to $c_{ni} = 1, i = 1, \ldots, N$, we conclude that the random vector \mathbf{S}_N^+ has asymptotically a bivariate normal distribution $\mathcal{N}_2\left(\mathbf{0}, A_N^*\mathbf{\Lambda}^{(N)}\right)$. This implies that under $\mathbf{H}_0^{(2)}$ and under symmetry of F, W_N^+ has asymptotically χ^2 distribution with 2 degrees of freedom. Hence, the asymptotic test rejects $\mathbf{H}_0^{(2)}$ in favor $\mathbf{K}^{(2)}$ if $W_N^+ \geq \chi_{2,\alpha}^2$.

1.4.3 Example

A group of students, boys and girls, graduated in a summer language course. They passed two tests, before and after the course. The responses in the table are differences in the tests scores for each individual; $c_i = 1$ for a boy and $c_i = -1$ for a girl.

				D+		· v p+
#	response	c_i	R_{Ni}	R_{Ni}^+	$c_i R_{Ni}$	sign $X_i R_{Ni}^+$
1	5.2	1	19	19	19	19
2	-0.7	1	6	63	6	-6
3	-2.3	1	2	13	2	-13
4	3.2	1	16	15	16	15
5	-1.5	1	4	9	4	-9
6	4.7	1	18	18	18	18
7	1.8	1	14	12	14	12
8	-0.4	1	8	3	8	-3
9	0.6	1	11	5	11	5
10	6.6	1	20	20	20	20
11	-0.9	-1	5	8	-5	-8
12	1.7	-1	13	11	-13	11
13	-0.3	-1	9	2	-9	-2
14	2.4	-1	15	14	-15	146
15	4.2	-1	17	16	-17	16
16	-1.6	-1	3	10	-3	-10
17	-4.3	-1	1	17	-1	-17
18	0.8	-1	12	7	-12	7
19	-0.5	-1	7	4	-7	-4
20	-0.2	-1	10	1	-10	-1

We want to test whether the course had an effect and whether there is a difference between the performance of boys and girls. We take the Wilcoxon scores, $a_N(i) = a_N^*(i) = \frac{i}{21}$, $i = 1, \ldots, 20$ and get

$$\frac{S_N}{A_N C_N} = 0.9826 < 1.96 = \Phi^{-1}(0.95),$$
$$W_N^+ = 2.368 < 5.99 = \chi_2^2(0.95).$$

Hence, we cannot reject either of the hypotheses.

Rank tests for some multiple linear regression models

Consider the linear regression model

$$Y_i = \beta_0 + \mathbf{x}'_i \boldsymbol{\beta} + e_i, \quad i = 1, \dots, N$$
(1.5.1)

where $\beta_0 \in \mathbb{R}_1$, $\beta \in \mathbb{R}_p$ are unknown parameters and e_i, \ldots, e_N are independent errors, identically distributed according to a continuous d.f. F and $\mathbf{x}_i \in \mathbb{R}_p$ are given regressors, $i = 1, \ldots, N$. Denote

$$\mathbf{X}_N = \left[egin{array}{c} \mathbf{x}_1' \ dots \ \mathbf{x}_N' \end{array}
ight]$$

the regression matrix. We shall first consider the hypotheses

$$\mathbf{H}_{0}^{(1)}: \ \boldsymbol{\beta} = \mathbf{0} \ \text{versus} \ \mathbf{K}^{(1)}: \ \boldsymbol{\beta} \neq \mathbf{0}$$

and

1.5

$$\mathbf{H}_{0}^{(2)}: \boldsymbol{eta}^{*}=(eta_{0}, \boldsymbol{eta}')'=\mathbf{0} \ \ ext{versus} \ \ \mathbf{K}^{(2)}: \ \boldsymbol{eta}^{*}
eq \mathbf{0}.$$

The hypotheses and tests are extensions of those for the regression line.

1.5.1 Rank tests for $\mathbf{H}_0^{(1)}$

Let R_{N1}, \ldots, R_{NN} be the ranks of Y_1, \ldots, Y_N and let $a_N(1), \ldots, a_N(N)$ be the scores generated by a nondecreasing, square-integrable score function φ : $(0,1) \mapsto \mathbb{R}_1$ so that $a_N(i) = \varphi\left(\frac{i}{N+1}\right), i = 1, \ldots, N.$

Consider the linear rank statistics

$$S_{Nj} = \sum_{i=1}^{N} (x_{ij} - \bar{x}_{Nj}) a_N(R_{Ni}), \quad \bar{x}_{Nj} = \frac{1}{N} \sum_{i=1}^{N} x_{ij}, \quad j = 1, \dots, N$$

and the vector

$$\mathbf{S}_N = \sum_{i=1}^N (\mathbf{x}_i - \bar{\mathbf{x}}_N) a_N(R_{Ni}) = (S_{N1}, \dots, S_{Np})'.$$

The distribution function of observation Y_i under $\mathbf{H}_0^{(1)}$ is $F(y - \beta_0)$, i = 1, ..., N. Hence, (R_{N1}, \ldots, R_{NN}) assumes all possible permutations of $(1, 2, \ldots, N)$ with equal probability $\frac{1}{N!}$. Hence, the expectation and covariance matrix of \mathbf{S}_N under $\mathbf{H}_0^{(1)}$ are

$$\mathbb{E}(\mathbf{S}_N | \mathbf{H}_0^{(1)}) = \mathbf{0} \quad \text{and} \quad \mathbb{E}(\mathbf{S}_N \mathbf{S}'_N | \mathbf{H}_0^{(1)}) = A_N^2 \mathbf{Q}_N,$$

where

$$A_N^2 = \frac{1}{N-1} \sum_{i=1}^N (a_N(i) - \bar{a}_N)^2, \quad \mathbf{Q}_N = \sum_{i=1}^N (\mathbf{x}_i - \bar{\mathbf{x}}_N) (\mathbf{x}_i - \bar{\mathbf{x}}_N)'.$$

Our test for $\mathbf{H}_{0}^{(1)}$ is based on the quadratic form

$$\mathcal{S}_N = A_N^{-2} \left(\mathbf{S}'_N \mathbf{Q}_N^{-1} \mathbf{S}_N \right), \qquad (1.5.2)$$

where \mathbf{Q}_N^{-1} is replaced by the generalized inverse \mathbf{Q}_N^- if \mathbf{Q}_N is singular. We reject $\mathbf{H}_0^{(1)}$ if $\mathcal{S}_N > k_{\alpha}$ where k_{α} is a suitable critical value.

Notice that \mathbf{S}_N depends only on $\mathbf{x}_1, \ldots, \mathbf{x}_N$, on the scores $a_N(1), \ldots, a_N(N)$ and on the ranks R_{N1}, \ldots, R_{NN} . Hence, the distribution of \mathbf{S}_N and thus also that of \mathcal{S}_N under the hypothesis $\mathbf{H}_0^{(1)}$ does not depend on the distribution function F of the errors. For small N, the critical value can be calculated numerically, but it would become laborious with increasing N. Hence, again, we should use the large-sample approximation. This can be derived under some conditions on the matrix \mathbf{X}_N , and on the scores:

Theorem 1.5.1 Assume that

(i) the matrix \mathbf{Q}_N is regular for $N > N_0$ and

$$\max_{1 \le i \le N} (\mathbf{x}_i - \bar{\mathbf{x}}_N)' \mathbf{Q}_N^{-1} (\mathbf{x}_i - \bar{\mathbf{x}}_N) \to 0 \quad as \quad N \to \infty,$$

(ii) the scores satisfy the Noether condition, i.e.

$$\max_{1 \le i \le N} \frac{(a_N(i) - \bar{a}_N)^2}{\sum_{j=1}^N (a_N(j) - \bar{a}_N)^2} \to 0 \quad as \quad N \to \infty,$$

(iii)

$$\lim_{N \to \infty} \left[\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \delta_{N,ijk}^{2} I[|\delta_{N,ijk}| > \varepsilon] \right] = 0 \quad for \; every \; \varepsilon > 0, \; \forall k = 1, \dots, p,$$

where

$$\delta_{N,ijk} = \frac{(a_N(i) - \bar{a}_N)(x_{jk} - \bar{x}_k)}{\left[N^{-1}\sum_{i=1}^N (a_N(i) - \bar{a}_N)^2 \sum_{j=1}^N (x_{jk} - \bar{x}_k)^2\right]^{1/2}}, \quad k = 1, \dots, p, \ i, j = 1, \dots, N.$$

Then, under $\mathbf{H}_{0}^{(1)}$, the criterion \mathcal{S}_{N} in (1.5.2) has asymptotically χ^{2} distribution with p degrees of freedom.

Remark 1.5.1 We reject hypothesis $\mathbf{H}_{0}^{(1)}$ on the significance level α if

$$\mathcal{S}_N > \chi_p^2 (1 - \alpha),$$

where $\chi_p^2(1-\alpha)$ is the $(1-\alpha)$ quantile of the χ^2 distribution with p degrees of freedom.

Sketch of the proof. It suffices to show that under $\mathbf{H}_{0}^{(1)}$ the asymptotic distribution of \mathbf{S}_{N} is *p*-dimensional normal with expectation equal to **0** and dispersion matrix $A_{N}^{2}\mathbf{Q}_{N}$. Then the quadratic form \mathcal{S}_{N} will have asymptotically the $\chi^{2}(p)$. To prove the asymptotic normality of \mathbf{S}_{N} , we must prove that, for any vector $\boldsymbol{\lambda} \in \mathbb{R}_{p}$, $\boldsymbol{\lambda} \neq \mathbf{0}$, the scalar product $\boldsymbol{\lambda}'\mathbf{S}_{N}$ has asymptotically normal distribution $\mathcal{N}(0, \boldsymbol{\lambda}'A_{N}^{2}\mathbf{Q}_{N}\boldsymbol{\lambda})$. But

$$\boldsymbol{\lambda}' \mathbf{S}_N = \sum_{i=1}^N [\boldsymbol{\lambda}'(\mathbf{x}_i - \bar{\mathbf{x}}_N)] a_N(R_{Ni})$$

and its coefficients $\lambda'(\mathbf{x}_i - \bar{\mathbf{x}}_N)$ satisfy the Noether condition (1.4.6), because

$$\max_{1 \le i \le N} \frac{[\boldsymbol{\lambda}'(\mathbf{x}_i - \bar{\mathbf{x}}_N)]^2}{\sum_{j=1}^N [\boldsymbol{\lambda}'(\mathbf{x}_j - \bar{\mathbf{x}}_N)]^2} = \max_{1 \le i \le N} \frac{\boldsymbol{\lambda}'(\mathbf{x}_i - \bar{\mathbf{x}}_N)(\mathbf{x}_i - \bar{\mathbf{x}}_N)'\boldsymbol{\lambda}}{\boldsymbol{\lambda}'\mathbf{Q}_N\boldsymbol{\lambda}}$$
$$\leq \max_{1 \le i \le N} \|\mathbf{x}_i - \bar{\mathbf{x}}\|^2 \cdot \kappa_{max}(\mathbf{Q}_N^{-1}) = \max_{1 \le i \le N} \kappa_{max}\{(\mathbf{x}_i - \bar{\mathbf{x}})'\mathbf{Q}^{-1}(\mathbf{x}_i - \bar{\mathbf{x}})\} \to 0.$$

Moreover, we can show by some arithmetics that the entities

$$\delta_{N,ij}(\boldsymbol{\lambda}) = \frac{\boldsymbol{\lambda}'(\mathbf{x}_i - \bar{\mathbf{x}})(a_N(j) - \bar{a}_N)}{N^{-1} \sum_{i=1}^N [\boldsymbol{\lambda}'(\mathbf{x}_i - \bar{\mathbf{x}})]^2 \sum_{j=1}^N (a_N(j) - \bar{a}_N)^2}$$

satisfy the Lindeberg condition (1.4.7). Then the asymptotic normality of the scalar product will follow from Theorem 1.4.3 for every $\lambda \neq 0$.

1.5.2 Rank tests for $\mathbf{H}_0^{(2)}$

Consider again the model $Y_i = \beta_0 + \mathbf{x}'_i \boldsymbol{\beta} + e_i$, i = 1, ..., N, and assume that the errors e_i have a symmetric distribution function, $F(x) + F(-x) = 1 \quad \forall x$. Let $R_{N1}^+, \ldots, R_{NN}^+$ be the ranks of $|Y_1|, \ldots, |Y_N|$. Choose a score-generating function $\varphi^* : (0, 1) \mapsto [0, \infty)$ and the scores $a_N^*(1), \ldots, a_N^*(N)$ generated by φ^* . Put $x_{i0} = 1, i = 1, \ldots, N$, and for $j = 0, 1, \ldots, p$ consider the signed-rank statistics

$$S_{N,j}^{+} = \sum_{i=1}^{N} x_{ij} \operatorname{sign} Y_i a_N^*(R_{Ni}^+)$$

and the vector

$$\mathbf{S}_{N}^{+} = (S_{N,0}^{+}, S_{N,1}^{+}, \dots, S_{N,p}^{+})'.$$

Then, under $\mathbf{H}_{0}^{(2)}$,

$$\mathbb{E}\left(\mathbf{S}_{N}^{+}|\mathbf{H}_{0}^{(2)}\right) = \mathbf{0} \quad \text{and} \quad \mathbb{E}\left(\mathbf{S}_{N}^{+}\mathbf{S}_{N}^{+\prime}|\mathbf{H}_{0}^{(2)}\right) = A_{N}^{*2}\mathbf{Q}_{N}^{*},$$

where $A_N^{*2} = \frac{1}{N} \sum_{i=1}^{N} [a_N^*(i)]^2$ and

$$\mathbf{Q}_{N}^{*} = \sum_{i=1}^{N} \mathbf{x}_{i}^{*} \mathbf{x}_{i}^{*\prime} = \left[\sum_{i=1}^{N} x_{ij} x_{ij'}\right]_{j,j'=0,1,\dots,p}$$

and $\mathbf{x}_{i}^{*} = (x_{i0,}, x_{i1}, \dots, x_{ip})'$.

The test criterion will be the quadratic form

$$\mathcal{S}_N^+ = A_N^{*-2} \left(\mathbf{S}_N^{+\prime} (\mathbf{Q}_N^*)^{-1} \mathbf{S}_N^+ \right).$$

The distribution of \mathbf{S}_N^+ (and hence of \mathcal{S}_N^+) is generated by $N!2^N$ equally probable realizations of (sign $Y_1, \ldots, \text{sign } Y_N$) and $(R_{N1}^+, \ldots, R_{NN}^+)$.

The asymptotic distribution of \mathcal{S}_N^+ under $\mathbf{H}_0^{(2)}$ will be $\chi^2(p+1)$, provided

$$\max_{1 \le i \le N} \mathbf{x}_i^{*\prime} (\mathbf{Q}_N^*)^{-1} \mathbf{x}_i^* \to 0 \quad \text{as} \quad N \to \infty,$$

 $(a_N^*(1), \ldots, a_N^*(N))$ satisfy the Noether condition (1.4.6), and under the Lindeberg condition (1.4.7) on some mixed terms corresponding to \mathbf{x}_i^* and $a_N^*(i)$, analogously as under the regression line.

1.6 Rank estimation in simple linear regression models

1.6.1 Estimation of the slope β of the regression line

Let Y_1, \ldots, Y_N be independent random variables, Y_i have a distribution function

$$F_i(y) = F(y - \beta_0 - \beta(x_i - \bar{x}_N)), \quad i = 1, \dots, N$$

where F is continuous. We want to estimate the parameter β with the aid of ranks. Denote

$$Y_i(b) = Y_i - (x_i - \bar{x}_N)b, \quad 1 \le i \le N, \quad b \in \mathbb{R}_1.$$

Let $T_N(Y_1, \ldots, Y_N)$ be a test statistics for testing \mathbf{H}_0 : $\beta = 0$ and assume that under \mathbf{H}_0 the distribution of T_N is symmetric about μ_N or that $\mathbb{I}_{\mathbf{H}_0}T_N = \mu_N$.

If $T_N(Y_1(b), \ldots, Y_N(b))$ is nonincreasing in $b \in \mathbb{R}_1$, then we can define the estimate of β as

$$\widehat{\beta}_{N} = \frac{1}{2} (\widehat{\beta}_{N}^{-} + \widehat{\beta}_{N}^{+}), \qquad (1.6.1)$$
$$\widehat{\beta}_{N}^{-} = \sup\{b: T_{N}(b) > \mu_{N}\}, \quad \widehat{\beta}_{N}^{+} = \inf\{b: T_{N}(b) < \mu_{N}\}.$$

If $T_N = \sum_{i=1}^N (x_i - \bar{x}_N)(Y_i - \bar{Y}_N)$, then $\mu_N = 0$ and $T_N(b)$ is linear in b; the estimator is the least-squares estimator of β .

Lemma 1.6.1 Let $T_N = S_N = \sum_{i=1}^N (x_i - \bar{x}_N) a_N(R_{Ni})$ where $a_N(1) \leq \ldots \leq a_N(N)$ (not all equal) and R_{Ni} is the rank of Y_i , $i = 1, \ldots, N$. Then $S_N(b)$ is nonincreasing in b.

Proof. See Puri and Sen (1985).

The following Lemma shows that S_N is symmetrically distributed under some conditions.

Lemma 1.6.2 Let either

$$x_i - \bar{x}_N = \bar{x}_N - x_{N-i+1}, \quad i = 1, \dots, N$$
 (1.6.2)

or

$$a_i - \bar{a}_N = \bar{a}_N - a_{N-i+1}, \quad i = 1, \dots, N.$$
 (1.6.3)

Then, if $\beta = 0$, the distribution of S_N is symmetric about 0.

Proof. Let (1.6.2) hold. Because (R_{N1}, \ldots, R_{NN}) have the same distribution as (R_{NN}, \ldots, R_{N1}) , then S_N has the same distribution as $\bar{S}_N = \sum_{i=1}^N (x_i - \bar{x}_N) a_N (R_{N,N-i+1}) = -S_N$.

Similarly we proceed under (1.6.2).

Properties of $\widehat{\beta}_N$:

1. $\widehat{\beta}_N(Y_1 + x_1b, \dots, Y_N + x_Nb) = \widehat{\beta}_N(Y_1, \dots, Y_N) + b \quad \forall b \in \mathbb{R}_1.$ 2. $\widehat{\beta}_N(cY_1, \dots, cY_N) = c\widehat{\beta}_N(Y_1, \dots, Y_N) \quad \forall c > 0.$ 3. $\mathbb{P}(\widehat{\beta}_N < a) \leq \mathbb{P}(S_N(a) < \mu_n) \leq \mathbb{P}(S_N(a) \leq \mu_N) \leq \mathbb{P}(\widehat{\beta}_N \leq a)$

Asymptotic normality of $\widehat{\beta}_N$:

Theorem 1.6.1 Assume that $\{x_{N1}, \ldots, x_{NN}\}$ satisfy the conditions

$$0 < \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} (x_{Ni} - \bar{x}_N)^2 = C_0^2 < \infty,$$

$$\max_{1 \le i \le N} \frac{1}{N} (x_{Ni} - \bar{x}_N)^2 \to 0 \quad as \quad N \to \infty.$$
(1.6.4)

Let $a_N(i) = \mathbb{E}\varphi(U_{N:i})$ or $= \varphi\left(\frac{i}{N+1}\right)$, $i = 1, \dots, N$, where φ is nondecreasing on (0, 1)and ζ^1

$$A_{\varphi}^{2} = \int_{0}^{1} \varphi^{2}(u) du < \infty, \ \int_{0}^{1} \varphi(u) du = 0$$

Let F have finite Fisher's information, i.e.

$$A_{\psi}^{2} = \int_{0}^{1} \psi^{2}(u) du, \quad \text{where} \quad \psi(u) = -\frac{f'(F^{-1}(u))}{f(F^{-1}(u))}, \ 0 < u < 1.$$

Then $\left\{N^{1/2}(\widehat{\beta}_N - \beta)\right\}_{N=1}^{\infty}$ is asymptotically normally distributed

$$\mathcal{N}\left(0, \ \frac{A_{\varphi}^2}{C_0^2 \gamma^2(\varphi, F)}\right), \quad \gamma(\varphi, F) = \int_0^1 \varphi(u) \psi(u) du.$$

1.6.2 Estimation in multiple regression model

Let Y_1, \ldots, Y_N be independent observations, Y_i have distribution function

$$F_i(y) = F(y - \beta_0 - (\mathbf{x}_i - \bar{\mathbf{x}}_N)'\boldsymbol{\beta}), \quad \mathbf{x}_i \in \mathbb{R}_p, \quad 1 \le i \le N.$$

Consider the (vector) linear rank statistic

$$\mathbf{S}_N(\mathbf{b}) = \sum_{i=1}^N (\mathbf{x}_i - \bar{\mathbf{x}}_N) a_N(R_{Ni}(\mathbf{b})) = (S_{N1}(\mathbf{b}), \dots, S_{NN}(\mathbf{b}))',$$

where $R_{Ni}(\mathbf{b})$ is the rank of $Y_i - \mathbf{x}'\mathbf{b}$, i = 1, ..., N, and the scores are nondecreasing. Obviously $\mathbb{E}\mathbf{S}_N(\mathbf{0}) = \mathbf{0}$. Define

$$\mathcal{D}_N = \left\{ \mathbf{b} : \| \mathbf{S}_N(\mathbf{b}) \| = \min, \ \mathbf{b} \in \mathbb{R}_p \right\}$$

where $\|\cdot\|$ is either L_1 or the L_2 -norm. If \mathcal{D}_N is a convex set, then we can define the center of gravity of \mathcal{D}_N as an estimator $\widehat{\boldsymbol{\beta}}_N$ of $\boldsymbol{\beta}$.

Assume that \mathbf{x}_{Ni} satisfy the (Noether) condition

$$\max_{1 \le i \le N} (\mathbf{x}_{Ni} - \bar{x}_N)' \mathbf{Q}_N^{-1} (\mathbf{x}_{Ni} - \bar{x}_N) \to 0 \quad \text{as} \quad N \to \infty,$$

where $\mathbf{Q}_N = \sum_{i=1}^{N} (\mathbf{x}_{Ni} - \bar{x}_N) (\mathbf{x}_{Ni} - \bar{x}_N)'$. If *F* has the finite Fisher's information, then $\left\{ N^{1/2} (\widehat{\boldsymbol{\beta}}_N - \boldsymbol{\beta}) \right\}$ is asymptotically normally distributed

$$\mathcal{N}_p\left(\mathbf{0}, \ \frac{A_{\varphi}^2}{\gamma^2(\varphi, F)} \left(\frac{1}{N} \mathbf{Q}_N\right)^{-1}\right).$$

1.7 Aligned rank tests about the intercept

1.7.1 Regression line

Let Y_1, \ldots, Y_N are independent, Y_i has distribution function

$$F_i(y) = \mathbb{P}(Y_i \le y) = F(y - \beta_0 - (x_i - \bar{x}_N)\beta), \ 1 \le i \le N, \ y \in \mathbb{R}.$$

Consider the hypothesis

$$\mathbf{H}_0: \ \beta_0 = 0 \quad \text{versus} \quad \mathbf{K}^+: \ \beta_0 > 0 \quad or \quad \mathbf{K}: \ \beta_0 \neq 0$$

where β is treated as a nuisance parameter. If $\beta \neq 0$, then Y_1, \ldots, Y_N are not identically distributed, and we cannot use their ranks. If we have an estimate $\hat{\beta}_N$ of β , we can consider the ranks of the residuals $|Y_i - (x_i - \bar{x}_N)\hat{\beta}_N|$, $i = 1, \ldots, N$ (aligned ranks) and an (aligned) signed rank statistics based on them. Under some conditions, such statistic is asymptotically distribution-free, i.e. under the hypothesis \mathbf{H}_0 : $\beta_0 = 0$, its asymptotic distribution does not depend on F. Let $\widehat{\beta}_N$ be the rank estimate (1.6.1) based on the linear rank statistic

$$\sum_{i=1}^{N} (x_i - \bar{x}_N) a_N(R_{Ni}(b)), \ b \in \mathbb{R}_1.$$

 $\widehat{Y}_i = Y_i - (x_i - \overline{x}_N)\widehat{\beta}_N, \ i = 1, \dots, N$ and the aligned signed rank statistic

$$\widehat{S}_N = \sum_{i=1}^N \operatorname{sign} \widehat{Y}_i \ a_N^*(R_{Ni}^+),$$

where R_{Ni}^+ is the rank of $|Y_i - (x_i - \bar{x}_N)\hat{\beta}_N|$, i = 1, ..., N. The test criterion for \mathbf{H}_0 will be

$$T_N = \frac{N^{-1/2}\widehat{S}_N}{A_N^*}, \quad (A_N^*)^2 = \frac{1}{N}\sum_{i=1}^N (a_N^*(i))^2.$$

We reject \mathbf{H}_0 in favor of \mathbf{K}^+ if $T_N > k_{\alpha}^+$, and reject \mathbf{H}_0 in favor of \mathbf{K} if $|T_N| > k_{\alpha}$. The critical values k_{α}^+ and k_{α} are determined from the asymptotic normal distribution of T_N .

Theorem 1.7.1 Assume that

(i) F is symmetric about 0 and has an absolutely continuous density f and finite and positive Fisher information, $0 < I(f) = \int \left(\frac{f'(z)}{f(z)}\right)^2 dF(z) < \infty$.

(*ii*)
$$\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x}_N)^2 \to C^2$$
, $0 < C < \infty$, and $\frac{1}{N} [\max_{1 \le i \le N} (x_i - \bar{x}_N)^2] \to 0$ as $N \to \infty$.

(iii)
$$\varphi(t)$$
 is nondecreasing, $\varphi(1-t) = -\varphi(t)$, $t \in (0,1)$, and
 $0 < A^2(\varphi) = \int_0^1 \varphi^2(t) dt < \infty$. Put $\varphi^*(u) = \varphi\left(\frac{u+1}{2}\right)$, $0 < u < 1$ and
 $a_N^*(i) = \mathbb{E}\varphi^*(U_{N:i})$ or $a_N^*(i) = \varphi^*\left(\frac{i}{N+1}\right)$, $i = 1, \dots, N$.

Then, under \mathbf{H}_0 : $\beta_0 = 0$, the criterion T_N has asymptotically normal distribution with mean 0 and variance 1.

Sketch of he proof. Because $\lim_{N\to\infty} A_N^* = A^2(\varphi)$ and $N^{1/2}(\widehat{\beta}_N - \beta) = O_p(1)$, it can be proved (not elementary) that under \mathbf{H}_0

$$N^{-1/2}[\widehat{S}_N - S_N(\beta)] \xrightarrow{p} 0 \text{ as } N \to \infty, \qquad (1.7.5)$$

where

$$S_N(\beta) = \sum_{i=1}^N \operatorname{sign}(Y_i(\beta)) \ a_N^*(R_{Ni}^+(\beta)),$$

where $Y_i(\beta) = Y_i - (x_i - \bar{x}_N)\beta$ and $R_{Ni}^+(\beta)$ is the rank of $Y_i(\beta) = Y_i - (x_i - \bar{x}_N)\beta$, $1 \le i \le N$. Under \mathbf{H}_0 are $Y_i(\beta) = Y_i - (x_i - \bar{x}_N)\beta$ independent and identically distributed with d.f. F symmetric about 0. It was shown earlier that

$$N^{-1/2}S_N(\beta) \xrightarrow{d} \mathcal{N}(0, A^2(\varphi))$$

hence, regarding (1.7.5), also $N^{-1/2}\widehat{S}_N \xrightarrow{d} \mathcal{N}(0, A^2(\varphi)).$

Remark 1.7.1 We reject \mathbf{H}_0 in favor of \mathbf{K}^+ on the asymptotic significance level α , provided $T_N \geq \Phi^{-1}(1-\alpha)$, and we reject \mathbf{H}_0 in favor of \mathbf{K} provided $|T_N| \geq \Phi\left(1-\frac{\alpha}{2}\right)$.

Powers of the tests against local alternatives:

The tests are consistent in the sense that their powers tend to 1 as $\beta_0 \to \infty$ (or $|\beta_0| \to \infty$). However, important is the power for alternatives close the hypothesis, namely

$$\mathbf{K}_{1N}$$
: $\beta_0 = N^{-1/2}\lambda$, $\lambda \neq 0$ fixed.

Such alternative is *contiguous* in the sense of LeCam/Hájek, and it can be shown that the approximation (1.7.5) holds not only under the hypothesis, but also under \mathbf{K}_{1N} . Hence, $N^{-1/2}\widehat{S}_N$ has the same asymptotic distribution as $S_N(\beta)$ also under \mathbf{K}_{1N} .

Denote $\tau_{\alpha} = \Phi^{-1}(1-\alpha)$, $0 < \alpha < 1$. The asymptotic power of the aligned rank test is

$$\mathbb{I}\!\!P\{T_N \ge \tau_\alpha | \mathbf{K}_{1N}\} \to 1 - \Phi\left(\tau_\alpha - \frac{\lambda}{A_\varphi} \int_0^1 \varphi(u)\varphi_f(u)du\right) \text{ one-sided test}$$

Comparison: Classical test of H₀

The least-squares estimator of β_0 is

$$\tilde{\beta}_{0N} = \bar{Y}_N = \frac{1}{N} \sum_{i=1}^N Y_i$$

and the likelihood ratio statistic is

$$L_{N} = \sqrt{N} \frac{Y_{N}}{s_{N}}, \text{ where}$$

$$s_{N}^{2} = \frac{1}{N-2} \sum_{i=1}^{N} [Y_{i} - \bar{Y}_{N} - (x_{i} - \bar{x}_{N})\tilde{\beta}_{N}]^{2},$$

$$\tilde{\beta}_{N} = \frac{\sum_{i=1}^{N} (x_{i} - \bar{x}_{N})(Y_{i} - \bar{Y}_{N})}{\sum_{i=1}^{N} (x_{i} - \bar{x}_{N})^{2}}.$$

If $\sigma^2 = \int z^2 dF(z) < \infty$, then

$$s_N^2 \xrightarrow{p} \sigma^2$$
, $\bar{Y}_N \xrightarrow{p} \beta_0$, $\tilde{\beta}_N \xrightarrow{p} \beta$ as $N \to \infty$.

Under \mathbf{H}_0 : $\beta_0 = 0$, the likelihood ratio is asymptotically $\mathcal{N}(0, 1)$. The asymptotic relative efficiency of the aligned signed rank test with respect to the likelihood ratio test is

$$\sigma^2 \frac{\left(\int_0^1 \varphi(u)\varphi_f(u)du\right)^2}{\int_0^1 \varphi^2(u)du} \le \sigma^2 \mathcal{I}(f).$$

1.7.2 Multiple regression model

Let Y_1, \ldots, Y_N be independent with distribution functions F_1, \ldots, F_N such that

$$F_i(y) = \mathbb{P}(Y_i \le y) = F(y - \beta_0 - (\mathbf{x}_i - \bar{\mathbf{x}}_N)'\boldsymbol{\beta}), \ 1 \le i \le N, \ y \in \mathbb{R}_1, \ \boldsymbol{\beta} \in \mathbb{R}_p.$$

We want to test the hypothesis

$$\mathbf{H}_1: \ \beta_0 = 0 \quad \text{versus} \quad \mathbf{K}_1^+: \ \beta_0 > 0 \quad \text{or} \quad \mathbf{K}_1: \ \beta_0 \neq 0,$$

where $\boldsymbol{\beta}$ is unspecified. We may also partition $\boldsymbol{\beta}$ as

$$oldsymbol{eta} = \left(egin{array}{c} oldsymbol{eta}_1 \ oldsymbol{eta}_2 \end{array}
ight)$$

where $\beta_1 \in \mathbb{R}_{p_1}$, $\beta_2 \in \mathbb{R}_{p_2}$, $p_1 + p_2 = p$. We want to test the hypothesis

$$\mathbf{H}_2: oldsymbol{eta}_2 = \mathbf{0} \ \ ext{versus} \ \ oldsymbol{eta}_2
eq \mathbf{0}$$

where β_0 , β_1 are unspecified.

Test of H_1

Let $\hat{\boldsymbol{\beta}}_N$ be the estimator of $\boldsymbol{\beta}$. Consider the residuals $\hat{Y}_i = Y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}}, \ i = 1, \dots, N$ and the (aligned) ranks $\hat{R}^+_{N1}, \dots, \hat{R}^+_{NN}$ of $|\hat{Y}_i|, \ i = 1, \dots, N$. Similarly as in the case of the regression line, the test is based on the aligned sign rank statistic

$$\widehat{S}_N = \sum_{i=1}^N \operatorname{sign}(\widehat{Y}_i) \ a_N^*(R_{Ni}^+)$$

and the test criterion is

$$T_N^2 = \frac{\widehat{S}_N^2}{NA_N^{*2}}, \quad (A_N^*)^2 = \frac{1}{N} \sum_{i=1}^N (a_N^*(i))^2$$

 T_N^2 has asymptotically χ^2 distribution with 1 d.f.

References

- J. Hájek and Z. Šidák (1967): Theory of Rank Tests. Academia, Prague & Academic Press, New York.
- J. Hájek, Z. Šidák and P. K. Sen (2000): *Theory of Rank Tests* (2nd edition). Academic Press, New York.
- M. L. Puri and P. K. Sen (1985): Nonparametric Methods in General Linear Models. J. Wiley, New York.