Modelové interakce jadernych receptort a
enzymovych systému
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General design of transcription factors in nuclear- )

receptor superfamily. The centrally located DNA- — Nucleus
binding domain exhibits considerable sequence
homology among different receptors and has the
C4 zinc-finger motif. The C-terminal hormone-
binding domain exhibits somewhat less
homology. The N-terminal regions in various
receptors vary in length, have unique sequences,
and may contain one or more activation domains.
This general pattern has been found in the ) PAEEARP AN LN AN LN
estrogen receptor (553 amino acids [aa]), = Transcription
progesterone receptor (946 aa), glucocorticoid

receptor (777 aa), thyroid hormone receptor (408

Receptor

aa), and retinoic acid receptor (432 aa). [See R. M.
Evans, 1988, Science 240:889.]
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Vazba na DNA:

Fig. 2. Thetypes of
DMA-response elements
used by nuclear receptors.
{a) Symmetricrepeats
using the consensus
half-site 5’ -AGAACA-Z’
are used by the
glucocorticoid rece ptor
{GR), progestercne
receptor (PR), androgen
receptor (AR) and
mineralocorticoid receptor
(MR}, each of which is a
hemoedimer. The estrogen
receptor (ER) binds similar
symmetric sites but with
consensus 5-AGGTCA-3
half-sites. (b) A 1-5rule’
specifies the use of direct-
repeats with variable
spacings by RXR and its
many partners (depicted
inred). Some receptors,
such as the vitamin D
receptor (WDR) or RevErb,
can form homodimers as
an alternativeto
heteredimers. The size of
the inter-half-site spacing
(N} can vary from one to
five base-pairs. (c) Sites
containing just one copy
of 5’'-AGGTCA-2 flanked
with specific 5° sequences
[px) are used by the nerve
growth factor induced B
(NGFI-B) receptor, RevErb
and some other crphan
receptors.

(a) Symmetric sites

AGAACA n TGTTCT
n=23 GR-GR
PR-PR
AR-AR
ME-MR
(b) Direct repeats
AGGTCA n AGGTCA
n=1 RXR- RXR
RAR
PPAR
COUP
n=2 RXR- PPAR
RevErb—RevErb
n=3 RXR- VDR
VDR-VDR
n=4 RXR- TR
LXR
CAR
n=>5 RXR- RAR
NGFI-B
(€) Monomeric sites
—_—
¥XX-AGGTCA
xxx =aaa NGFI-B
X% = act RevErb

We can divide the receptors into
subgroups on the basis of their pattern
of dimerization. One group consists of
the steroid receptors, all of which
appear to function as homodimers.
This group includes receptors for
estradiol (ER), progesterone (PR),
androgens (ARs), glucocorticoids
(GRs) and mineralocorticoids (MRs). A
second major group contains receptors
that form heterodimers with retinoid X
receptor (RXR) — the receptor for 9-cis
retinoic acid. Members of this group
include the receptors for all-trans
retinoic acid (RAR),vitamin D3 (VDR)
and thyroid hormone (TR), as well as
liver X receptor (LXR), peroxisome
proliferator activated receptor (PPAR)
and others. A third group consists of
receptors that can bind DNA as
monomers, such as NGFI-B, RevErb,
ROR and SF-1.
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A: Unliganded heterodimerizing
receptors, exemplified here by VDR,
exist as weakly associated heterodime
with RXR, presumably bound
nonspecifically to DNA [Haussler et al.
1998]. Binding of the 1,25(0OH)2D3
ligand to VDR (1) promotes high-affinit
heterodimerization with RXR
accompanied by binding of the
heterodimer to its direct repeat VDRE

(2).

B: Unliganded GR, like other receptors

in group (d) (see Fig. 2), exists as a
complex with heat shock proteins in th
cytoplasm. Upon binding its cortisol
ligand (1), GR dissociates from the
cytoplasmic complex, translocates to t
nucleus and forms a homodimer on its
palindromic GRE (2). Triggered by a
ligand-mediated change in GR
conformation, the AF1 and AF2 domai
then synergize to promote a series of
events (3—6) involving the recruitment
coregulatory complexes similar to thos
described for the VDR-RXR
heterodimer, but with some distinctive
features.



Evoluce jadernych receptoru

B human
B onm
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=7 more than 200
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Many family members have been identified by DNA sequencing only, and their
ligand is not yet known; these proteins are therefore referred to as orphan
nuclear receptors. The importance of such nuclear receptors in some animals
is indicated by the fact that 1-2% of the genes in the nematode C. elegans
code for them, although there are fewer than 50 in humans.



Nizkomolekularni lipofilni slou€eniny jako ligandy = aktivita jadernych receptoru je
do znacné miry zavisla na syntéze a degradaci ligandi a naopak

Toxické latky, farmaka

Transaktivace

Syntéza ligandu % Metabolismus ligandu

Jaderné receptory

Cilové geny
(metabolismus,
kontrola bunééné
proliferace,
diferenciace a
apoptozy)



Uloha jadernych receptorti a enzymu katalyzujicich
degradaci nebo syntézu jejich ligandu:

« endokrinni regulace - steroidni hormony, thyroidni
hormony;

 regulace signalnich drah — eikosanoidy,
metabolismus kyseliny retinové, vitaminu D3;

* metabolismus lipidu;

 metabolismus xenobiotik;



Modelovy priklad 1:
Metamorféza hmyzu
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(B) General pathwe
of insect
metamorphosis.
Ecdysone and
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Alternative splicing
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Formation of the ecdysone receptors. Alternative mRNA splicing of the ecdysone
receptor (EcR) transcript creates three types of ECR mRNAs. These generate
proteins having the same DNA-binding site (blue) and hydroxyecdysone-binding site
(red), but with very different amino termini.



Three isoforms of ECR have been identified in insects, each with a different,
stage-specific role in regulation of molting and development. This allows for one
steroid hormone to induce a variety of different tissue responses. In general,
EcR A is predominant when cells are undergoing a maturation response (from
juvenile to adult) and is predominant in imaginal discs, whereas EcR B1
predominates in juvenile cells during proliferation or regression. Little is known
about the function of the EcR B2 isoform.

DNA and hormone binding are similar in the three isoforms of EcR. Little is
known about the crustacean EcR isoforms and how they change during the molt
cycle. However, the EcR that has been cloned from the crab, Uca pugilator
(U31817, GenBank), shares 85-87% homology with that of Drosophila (M74078,
GenBank). The differences are primarily in the region of the molecule involved
with dimerization. Similar sequence similarities are found between the
heterodimeric partner, USP.

There are several ecdysteroids which bind EcR, including 20-hydroxyecdysone,
turkesterone, makisterone A, ponasterone A, and muristerone A. Some
arthropods may use specific ecdysteroids as their principal molting hormone, but
often several ecdysteroids are found within one group. The primary molting
hormone for a range of organisms, including some insects and crustacea, is 20-
OH ecdysone (20 HE). Among other examples, makisterone A is an important
hormone for some crustacea and hemipteran insects.
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Synthesis of molting hormones

Cholesterol (from diet- a vitamin for insects)

Metabolites
(excretion)

) Conjugates
Prothoracic (storage)

gland

mono-oxygenase
(fat body, epidermis)

Ecdysone 20-Hydroxyecdysone



Syntéza ekdysteroidu a uloha cytochromu P450:

cheme of Ecdysone Biosynthesis
(Part 1)
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5. (Parts 1 and 2). The biosynthesis of 20-hydroxyecdysone from plant sterols. Question marks denote possible involvement of P450 enzymes. Note specifically where the Halloween gene produ

ed). 3-Dehydroecdysone is synthesized in the prothoracic glands of many insects (e.g. Manduca sexta) and converted to ecdysone in the hemolymph (left column of part 2). For Drosophila, ecdysi

nthesized in the prothoracic gland cells of the ring gland (right column of part 2).




Modelovy priklad 2:
Metabolismus xenobiotik



Box 1 | Representative list of XMEs

* Reductases.

+ Aldoketoreductases (AKRs).

*» Flavin-containing monooxygenases (FMOs).
* Lipooxygenases (LOXs).

* Cyclooxygenases.

* Peroxidases.

» Epoxygenases.

* Oxidases.

* Monoamine oxidases (MAOs).

* Dioxygenases.

* NAD-dependent and NADP-dependent alcohol
dehydrogenases (ADHs).

* NAD-dependent and NADP-dependent aldehyde
dehydrogenases (ALDHs).

* NAD-dependent and NADP-dependent steroid
dehydrogenases.

» Carboxylesterases.
» Glycosylases.

* Glucuronidases.

* Hydrolases.

» Esterases.

* Sulphatases.

Phase Il enzymes
* Uridine diphosphate glucuronosyltransferases (UGTs).

* Glutathione 5-transferases (GSTs).
* Sulphotransferases (SULTs).

* Epoxidases.

* Acyltransferases.

* Acetyltransferases.

* Methyltransferases.

* Transaminases.

This classification is not rigid. Some of these classes of
enzymes can arguably be in either the phase | or phase
Il category.

http://drnelson.utmem.edu/CytochromeP450.ht




Table 3| XME receptors that regulate XMEs and/or XRTs

XME receptor
AHR

CAR

FXR
HNF-1ct
HNF3o,B,y

HNF4cr
LXRasB
PPARGL

PPARS
PPARY

PXR (SXR)

RARo B,y
RXRa By
VDR

Ligands

Dioxin, coplanar PAHSs, coplanar
PHAHSs, benzoflavones

Phenaobarbital, TCPOBOP
colupulone, androstanes

Bile acids
Bile acids

Epidermal growth factor, fushi
tarazu factor- 1o, LPS

Long-chain fatty acyl-coA
thioesters, chenodeoxycholic acid

Oxysterols
Fibrates, fatty acids

Fatty acids, carboprostacyclin

Fatty acids, eicosanoids,
thiazolidinediones

Pregnenolone 16a-carbonitrile,
rifampicin, LCA

Retinoic acids

9-cis-retinoic acid

101, 25-dihydroxy-vit D,

XMEs up- or downregulated

CYP1,CYPZA, CYP2C*, CYP251* NQO1,
ALDH3A1, GSTAL, UGT1A6/7

CYP2B, ALDH, esterase, FMO,
methyltransferase, GST, SULT, UGT1A6

CYP7A1, CYP8B1
UGT1A7,GSTAZ, UGT1AL, UGT2B17
CYP2C, CYP3A, CYPTAL

CYP2D6
CYPTA1

CYP4A1, CYP4A3

?

CYP4B1

XRTs up- or downregulated
7

ABCC2

ABCB11
SLC21A6
5LC21A10

Proteins involved in glucose transport
and metabolism

ABCA1,ABCD2, ABCG1,ABCG4,
ABCG5,ABCGS

ABCC3, ABCC4, proteins involved in
glucose transport and metabolism

?

?

CYP1,CYP2A, CYP2B, CYP2C, CYP3A, CYP4F, ABCB1,ABCC2

carboxylesterase, MAO, CAT, FMOs, GSTs,
UGTs, SULTSTZA

CYP26A1
?

CYP24A1,CYP27B1

7
7

?

Further details of xenobiotic-metabolizing enzymes (XMEs) receptors that requlate XMEs and/or xenobiotic-related transporters (XRTs) can be found in several

excellentreports

61,132

5 *Only one (or very few) members of the CYP2A and CYP2C subfamilies are upregulated by the aryl hydrocarbon receptor (AHR). All the

gene products in this table are given their official names according to the HUGO gene nomenclature homepage. “?" denotes that XMEs and XRTs are expected to be
regulated by this XME receptor, but that none have been identified to date. CAR, constitutive androstane receptor; FXR, farnesoid X receptor; HNFs, hepatocyte
nuclear factors; LCA, the toxic bile acid lithocholic acid; LPS, lipopolysaccharide; LXRs, liver X receptors; PAHs, polycyclic aromatic hydrocarbons; PHAHs,
polyhalogenated aromatic hydrocarbons; PPARs, peroxisome proliferator-activated receptors; PXR, pregnane X receptor; RARs, retinoic acid receptors; RXRs,
retinoid X receptors; TCPOBOF, 1,4-bis[2-(3,5-dichloropyridyloxy)lbenzene; VDR, vitamin D, receptor.




Table 2 Precarcinogens metabolized by cytochromes P450

Aktlva ce Enzyme Activation of carcinogens
o
prom Utagen U. CYPIAI Polycyclic aromatic hydrocarbons: benzo(a)pyrene,

dimethylbenz|ajanthracene, PhIP®

CYPIA2 Activation of aryl and heterocyclic amines in
industrial settings and food mutagens: N-nitrosodi-
methylamine, 4-aminobiphenyl, 2-acetyl-amino-
fluorene, N-nitrosodiethylamine, PhIP, 1Q, aflatoxin
Bl

CYPIBI Polycyclic aromatic hydrocarbons: benzo(a)pyrene,
dimethylbenz|alanthracene, benz[ajanthracene,
J-methylcholanthrene, DMBA, oestradiol

CYP2A6H Activation of tobacco-related N-nitrosamines: NNE.
NNAL. NDEA, NNN. NATB. Aflatoxin B,
1.3-butadiene. 2.6-dichlorobenzonitrile

CYP2B6 Aflatoxin Bl and 4-(methylnitrosamino)-
1-(3-pyridyl)}- 1-butanone

CYP2E] Low-molecular-weight toxicants and cancer suspect
agents: benzene, carbon tetrachloride.chloroform,
styrene, vinyl chloride, vinyl bromide, N-nitrosodi-
methylamine, NNK

CYP3A4/5/7 Diverse carcinogens: aflatoxin Bl, aflatoxin G,
benzo(a)pyrene, naphthalene, NINN, [-nitropyrene,
f-amino-chrysene, oestradiol, senecionine, stergma-
to-cystine

‘DMBA, 7.12,-dimethylbenz[alanthracene; 1Q, 2-amino-3-methylimi-
dazo[4,5-flquinoline; NATB, N-nitrosoanatabine; NDEA, N-nitroso-
diethylamine; NNAL, 4-(methylnitrosoamino)-1-(3-pyridyl)-1-
butanol; NNK, 4-(methylnitrosoamino)-1-(3-pyridyl)- I-butanone;
NNN, A9-nitrosonornicotine; PhIP, 2-amino-1-methyl-6-phenylimi-
dazo-[4,5-b]pyridine.
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Metabolismus lécCiv:

Tamoxifen (TAM)

.::IifYF-F;::;BE-. 4 “hydroxylation
ol — ch'\ /"‘\JO
N-desmethyl- CYP3A4l N
TAM 4/5
CYP2Co éHﬂ CHS
CYP1Az
R N
CYP3A4/5
CYP2D6 TN N
cypang CYPIA4/S a-OH-TAM
ovpaDe (SIS TN
CYP3A4S 3-hydroxylation
4-0H N-desmethyl-TAM CYP3A4/5
(Endoxifen) + 4-OH-TAM

Figure 2 Chemical structure of tamoxifen and major biotransformation pathways. CYP3A4/5 are the more efficient enzymes
responsible for the N-demethylation of tamoxifen (TAM). whereas the generations of endoxifen and 4-hydroxytamoxifen (4-OH-
TAM) are predominantly catalysed by CYP2D6. Other CYP isoforms, including CYP2CI19, CYP2C9, CYP2B6 and CYPIAZ2, have
also been shown to participate in the metabolism of tamoxifen. The most abundant compounds in plasma are N-desmethyltamoxifen
and endoxifen, and endoxifen has approximately 100 times greater affinity for the oestrogen receptor than tamoxifen and N-
desmethyltamoxifen. CYP2D6 polymorphisms have been shown to affect the plasma concentrations of endofixen.
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Modelovy priklad 3:
Steroidni hormony
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Pét hlavnich skupin steroidnich hormonu:
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» Cortisol stimulates the release of amino acids from muscle. These are taken
up by the liver and converted to glucose.

*The increased circulating concentration of glucose stimulates insulin release.
Cortisol inhibits the insulin-stimulated uptake of glucose in muscle via the
GLUT4 transporter.

*Cortisol has mild lipolytic effects. These are overpowered by the lipogenic
action of insulin secreted in response to the diabetogenic action of cortisol.
«Cortisol also has varied actions on a wide range of other tissues
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1) Unbound, lipophilic cortisol readily crosses
cell membranes and in target tissues will
combine with the glucorticoid receptor (GR).

2) Like the androgen and progesterone
receptors, unliganded GRs are located in the
cytoplasm attached to heat shock proteins (hsp-
90, hsp-70 and hsp-56).

3) When hormones bind to these receptors hsps
are released and the hormone receptor
complexes translocate to the nucleus.

4) These complexes form homo- or heterodimers
and the zinc fingers of their DNA-binding
domains slot into the glucocorticoid response
elements (GREs) in the DNA helix.

5) Together with other transcription factors, such
as NF-kB or c-jun and c-fos, they initiate RNA
synthesis (activation of RNA polymerase)
downstream of their binding.
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Cholesterol is either obtained from the diet or
synthesized from acetate by a CoA reductase
enzyme. Approximately 300 mg cholesterol is
absorbed from the diet each day and about 600
mg synthesized from acetate. Cholesterol is
insoluble in aqueous solutions and its transport
from the main site of synthesis, the liver, requires
apoproteins to form a lipoprotein complex. In the
adrenal cortex, about 80% of cholesterol required
for steroid synthesis is captured by receptors
which bind low-density lipoproteins (LDL)
although recent evidence has shown that high-
density lipoprotein (HDL) cholesterol may also be
taken up by adrenal cells. The remaining 20% is
synthesized from acetate within the adrenal cells
by the normal biochemical route.
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Modelovy priklad 4:
Metabolismus mastnych kyselin
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FIG. 1. General structure and mechanism of
action of PPARs. PPAR isoforms share a
common domain structure and molecular
mechanism of action.
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Fig. 3. Mechanisms of transactivation. The PPAR /RXR heterodimer binds to a PPRE (PPAR-response elements) located in the promoter of

target genes through the © domain (DNA-binding domain) of PPAR and RXR. Receptor activity is regulated by both phosphorylation of

A /B domain and ligand-binding by E /I domain (ligand-binding domain). The activated PPAR /RXR heterodimer associates with cofactors

containing histone acetyl-transferase activity (HAT), modifying nucleosome structure and contacting general transcription factors.
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1he peroxisome prolirerator-activated receptors (FFAR a, y, 0) are activated by
polyunsaturated fatty acids, eicosanoids, and various synthetic ligands. Consistent with
their distinct expression patterns, gene-knockout experiments have revealed that each
PPAR subtype performs a specific function in fatty acid homeostasis.

PPARa is a global regulator of fatty acid catabolism. PPARa activation up-regulates the
transcription of liver fatty acid—binding protein, which buffers intracellular fatty acids and
delivers PPARa ligands to the nucleus. In addition, expression of two members of the
adrenoleukodystrophy subfamily of ABC transporters, ABCD2 and ABCD3, is similarly up-
regulated to promote transport of fatty acids into peroxisomes where catabolic enzymes
promote (-oxidation. The hepatocyte CYP4A enzymes complete the metabolic cascade
by catalyzing m-oxidation, the final catabolic step in the clearance of PPARa ligands.

PPARYy was identified initially as a key regulator of adipogenesis, but it also plays an
important role in cellular differentiation, insulin sensitization, atherosclerosis, and cancer.
Ligands for PPARY include fatty acids and other arachidonic acid metabolites, antidiabetic
drugs (e.g., thiazolidinediones), and triterpenoids. In contrast to PPARa, PPARy promotes
fat storage by increasing adipocyte differentiation and transcription o a number of
important lipogenic proteins.

Ligands for PPARS include long-chain fatty acids and carboprostacyclin.
Pharmacological activation of PPARS in macrophages and fibroblasts results in up-
regulation of the ABCA1 transporter, and because of its widespread expression, PPARS
may affect lipid metabolism in peripheral tissues can be antagonized by other small
lipophilic agents, including 22(S)-hydroxycholesterol, certain unsaturated fatty acids, and
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