# Akvatická ekotoxikologie

Ekosystémová ekotoxikologie

| Druh                   | С           |                                          |
|------------------------|-------------|------------------------------------------|
| Asplanchna priodonta   | 0,5         |                                          |
| Brachionus rubens      | 1,5         | Konzumace látek a energie v potravě (C)  |
| Linmodrilus neuneruis  | 0,01-0,04   | Nevyužitá část (D) Hrubý příjem (B)      |
| Daphnia pulex          | 0,21-0,45   | Nevyužitá část (D) Hrubý příjem (B)      |
| Daphnia longispina     | 0,12        | Odpad fekáliemi (F) Stravitelná část (S) |
| Moina brachiata        | 0,25        |                                          |
| Bosmina longirosrris   | 0,15        | Odpad močí (U) Metabolizovaná část (A)   |
| Cyclops sp.            | 0,12        | Respirace (R) Produkce biomasy (P)       |
| Unio tumidus           | 0,00035     |                                          |
| Sphaerium corneum      | 0,0044      | Růst tělesné hmoty (Pg) Reprodukce (Pr)  |
| Chironomus phanasus    | 0,007-0,024 |                                          |
| Chaoborus crystallinus | 0,033       |                                          |

#### Produkce/ hrubý příjem jako ekologický parametr toku energie

Průměrné hodnoty a rozpětí P/B koeficientů v různých trofických skupinách organismů sladkovodních ekosystémů (podle různých autorů sestavil Wetzel, 1963)

|                                      | Průměmá hodnota | Rozpětí hodnot |  |
|--------------------------------------|-----------------|----------------|--|
| baktérie                             | 141,0           | 73 -237        |  |
| fytoplankton                         | 113,0           | 9 -359         |  |
| herbivorní<br>zooplankton            | 15,9            | 0,5- 44,0      |  |
| karnivomí<br>zooplankton             | 11,6            | 1,5- 30,4      |  |
| herbivorní<br>bentičtí<br>bezobratlí | 3,7             | 0,6- 12,6      |  |
| karnivorní<br>bentičtí<br>bezobratlí | 4,6             | 1,0- 25,0      |  |



Schematic presence of the major characteristics of the three main types of toxicity tests; the arrows indicate the extrapolation/validation steps



Predicting receiving system impacts from effluent discharge (adapted from Cairns *et al.* 1978)

|                                                                  | Aquatic mesocosms, guidance<br>document (Touart 1988)                                                                                                                                     | Aquatic microcosms, guidance<br>document (SETAC 1991)                                                                                      | Freshwater mesocosms, guidance<br>document (SETAC-Europe 1991)                                                                           |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Phytoplankton<br>sample frequency<br>parameters                  | biweekly<br>• chlorophyll-a/phaeophytin<br>• identification dom. taxa                                                                                                                     | biweekly<br>• chlorophyll-a<br>• total density<br>• density dom. taxa<br>• taxonomic composition                                           | logarithmic time series (6-10 times<br>post-treatment)<br>• chlorophyll-a<br>• taxonomic composition<br>• abundance (at least dom. taxa) |
| Periphyton (art.<br>substrate)<br>sample frequency<br>parameters | biweekly<br>• chlorophyll-a<br>• ash free weight                                                                                                                                          | biweekly<br>• chlorophyll-a<br>• ash free dry weight<br>• total periphyton density<br>• density dom. taxa<br>• taxonomic composition       | logarithmic time series (6–10 times<br>post-treatment)<br>• chlorophyll-a<br>• biomass                                                   |
| Macrophytes<br>sample frequency<br>parameters                    | at least at end of test<br>• species composition<br>• % cover<br>• dry weight                                                                                                             | at least at end of test<br>• species composition<br>• % cover<br>• wet and dry weight                                                      | logarithmic time series (6-10 times<br>post-treatment), at least at end of test<br>• % cover<br>• biomass                                |
| Zooplankton<br>sample frequency<br>parameters                    | weekly collection, biweekly<br>counts<br>• abundance of dom. taxa<br>(species/genus level)<br>• length of muon of cladocerans                                                             | weekly<br>• total density<br>• densities of Cladocera, Rotifera<br>and Copepoda<br>• density of dominant genera<br>• taxonomic composition | logarithmic time series (6-10 times<br>post-treatment)<br>• abundance (at least of dom.<br>taxa)<br>• taxonomic composition              |
| Macro-invertebrates<br>sample frequency<br>parameters            | <ul> <li>biweekly</li> <li>abundance of emergent insects<br/>(lowest practical taxon)</li> <li>abundance of epifauna on<br/>artificial substrates (lowest<br/>practical taxon)</li> </ul> | weekly                                                                                                                                     | logarithmic time series (6-10 times<br>post-treatment)<br>• abundance (at least of dom.<br>taxa)<br>• taxonomic composition              |
| Fish (caged fish excl.)<br>sample frequency<br>parameters        | beginning and end of test<br>• abundance (per taxon)<br>• 'ength<br>• wet weight<br>• pathologic cor.~ition                                                                               | beginning and end of test<br>• abundance (per taxon)<br>• length<br>• weight                                                               | logarithmic time series (6-10 times<br>post-treatment)<br>• abundance (per taxon)<br>• length<br>• weight<br>• sex                       |

| Table 4. | List of recommended structural | parameters in pesticide | testing in lentic systems, | after three guidance documents. |
|----------|--------------------------------|-------------------------|----------------------------|---------------------------------|
|          |                                |                         |                            |                                 |







Relative frequency of the use of specific structural parameters to characterize the responses of phytoplankton, periphyton, and macrophytes, respectively (Co=Composition of lowest practical taxon; Ch=Chlorophylla; Bi=Biomass; Ab=Abundance; Si=Similarity index; Div=Diversity index; Sd=Spatial distribution.





Relative frequency of the use of specific structural parameters to characterize the responses of zooplankton, macro-invertebrates and fish, respectively (Co=Composition at lowest practical taxon; Bi=Biomass; Ab=Abundance; Flg=Functional feeding groups, food choice and diet; Si=Similarity index; Di=Diversity index; Ds=Demographic characteristics; Sd=Spatial distribution).





Numbers of experiments in which structural aspects of different (sub)communities have been studied, in the three types of aquatic (model) ecosystem discerned. (Mo=Microorganisms; Ph=Phytoplankton; Pe=Perinhyton; M=Macrophytos; Zo=Zooplankton; Mi=Macro-invertebrates, Fi=fish)





Design experimentu ovlivní spektrum sledovaných organismů

Komponenty standardního akvatického mikrokosmu

Taxa, volumes and endpoints appropriate for tests of circa three to six month duration in aquatic experimental ecosystem used in testing the fate and effects of agricultural chemicals. Taxa richness may be supplemented by indices or diversity, dominance and similarity. Chl a is chlorophyll a. From SETAC•Europe, "Testing Procedures tor Pesticides in Freshwater Static Mesocosms," Monks Wood Experimental Station, July 1991.

| Taxon              | System size          | Endpoint                              |  |  |
|--------------------|----------------------|---------------------------------------|--|--|
| Fish               | ≥25 m <sup>3</sup>   | Growth; condition                     |  |  |
| Zooplankton        | ≥25 m <sup>3</sup>   | Taxa richness; recovery               |  |  |
| Macroinvertebrates | ≥25 m <sup>3</sup>   | Taxa richness; recovery               |  |  |
| Phytoplankton      | 1 - 5 m <sup>3</sup> | Chl a; taxa richness; recovery        |  |  |
| Periphyton         | 1 - 5 m <sup>3</sup> | Chl a; taxa richness; recovery; bioma |  |  |
| Macrophytes        | ≥25 m <sup>3</sup>   | Biomass; % cover                      |  |  |

Taxa, volume and endpoints appropriate for tests of circa one-month duration in aquatic experimental ecosystems used in testing the fate and effects of agricultural chemical. LC50 is the lethal concentration for a 50% reduction in test organisms. EC50 is an effective concentration, typically used for behavioral endpoint

| Taxon                              | System size           | Endpoint                |  |
|------------------------------------|-----------------------|-------------------------|--|
| Fish                               | 1 - 5 m <sup>3</sup>  | LC50; EC50; % Mortality |  |
| Zooplankton                        | 1 - 5 m <sup>3</sup>  | Taxa abundance          |  |
| Macroinvertebrates                 | 1 - 25 m <sup>3</sup> | Taxa abundance          |  |
| Phytoplankton 1 - 5 m <sup>3</sup> |                       | Chlorophyll a           |  |



Increase in fish biomass (g/m3) during microcosm and mesocosm studies. A, B, C and D represent the four compounds tested. Data are averages for control microcosms and mesocosms. There were two or three replicates in each study.





Comparison of the NOEC's of SS tests with microalgae, protozoans, rotifers, crustaceans and insect larvae and the NOEC's of lotic and lentic outdoor microcosm tests (CEC project, 1988-1992)



Comparison of the LOEC's and NOEC's obtained in SS laboratory and MS field tests for 10 pesticide. A: atrazine, B: azinphosmethyl: C cyflurin, D: cypermethrin, E: diquat, F: endosulfan, G: lambda-cyhalothrin, H: matamitron, I: parathion, J: tralomethrin



Fathead minnow survival and growth (A) and *Ceriodaphnia dubia* survival and reproduction (B) (mean and 95% confidence intervals) during the dechlorination period

В

A

|                                                                                                                                                                                                                                                                 | 2 m <sup>2</sup> microcosm                          |                                                             |                                              |               | 480 m <sup>2</sup> mesocosr |        |         | osm    |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|---------------|-----------------------------|--------|---------|--------|--------|
| Organism                                                                                                                                                                                                                                                        | Lb                                                  | M                                                           | н                                            | VH            |                             | L      | М       | Н      | VH     |
| Zooplankton<br>Rotifera                                                                                                                                                                                                                                         | -                                                   | _                                                           | -                                            | 820           |                             | _      | _       | -      | -      |
| Copepoda                                                                                                                                                                                                                                                        |                                                     |                                                             | 30                                           | 17. A         |                             |        | П       |        |        |
|                                                                                                                                                                                                                                                                 |                                                     |                                                             |                                              | +             |                             |        |         |        |        |
| Macroinvertebrates<br>Oligochaeta                                                                                                                                                                                                                               | П                                                   | П                                                           |                                              | П             |                             | -      |         | _      | _      |
|                                                                                                                                                                                                                                                                 | -                                                   | -                                                           |                                              | U             |                             |        | Ц       |        | Ц      |
| Ephemeroptera - Baetidae<br>- Caenidae                                                                                                                                                                                                                          |                                                     |                                                             |                                              |               |                             | +      | +       | +      | +      |
| 040111040                                                                                                                                                                                                                                                       |                                                     |                                                             |                                              | +             |                             |        |         |        |        |
| Odonata                                                                                                                                                                                                                                                         |                                                     |                                                             |                                              |               |                             |        |         |        |        |
| Diptera - Chaoboridae                                                                                                                                                                                                                                           |                                                     |                                                             |                                              |               |                             |        |         |        |        |
| <ul> <li>Chironominae</li> <li>Tanypodinae</li> </ul>                                                                                                                                                                                                           |                                                     | П                                                           |                                              |               |                             |        |         | П      |        |
| - Tanypoonae                                                                                                                                                                                                                                                    |                                                     | -                                                           | _                                            | _             |                             | _      | _       | -      |        |
|                                                                                                                                                                                                                                                                 |                                                     |                                                             |                                              |               |                             |        |         |        |        |
| ish - survival <sup>c</sup><br>- growth <sup>d</sup>                                                                                                                                                                                                            |                                                     |                                                             |                                              |               |                             |        |         |        |        |
| - reproduction                                                                                                                                                                                                                                                  |                                                     |                                                             |                                              |               |                             |        |         |        |        |
|                                                                                                                                                                                                                                                                 |                                                     |                                                             |                                              |               |                             | П      | П       | П      | П      |
| □ = no effect (quantitative or qu<br>quantitative decrease □ = <50%<br>quantitative increase □ = <50%<br>qualitative data ■ = decrease<br>Treated with 10 drift (D) and 5 run-<br>label cotton rate:<br>microcosm<br>Low D 0.7% + R 4.2%<br>Mid D 1.8% + R 4.2% | 50%,<br>, 1<br>off (R)<br><u>meso</u><br>D 0<br>D 2 | = 50-<br>= incr<br>applic<br><u>0cosm</u><br>.8% +<br>.1% + | -95%,<br>ease.<br>ations<br>R 5.19<br>R 5.19 | ; each :<br>% | >95;                        |        | % of l  | JSA m  | aximu  |
| High D 3.5% + R 4.2%<br>Very High D 3.5% + R 21% D                                                                                                                                                                                                              | 4.2%                                                | 2% +<br>+ P 2                                               | 5%                                           |               |                             |        |         |        |        |
| Survival of juveniles (microcosms ments.                                                                                                                                                                                                                        | ) and                                               | adults                                                      | (meso                                        | ocosms        | s) adde                     | d prio | r to py | rethro | id tre |
| Biomass of juveniles (microcosms                                                                                                                                                                                                                                |                                                     |                                                             |                                              |               |                             |        |         |        |        |





Schéma koloběhu fosforu ve vodním ekosystému v interakci se železem a sírou. Vlevo situace za aerobních podmínek u dna, vpravo za anaerobních podmínek a za vzniku  $H_2S$  v hypolimnionu. Znázorněn je rovněž koloběh fosforu v epilimnionu. Bakteriální a chemické uvolňování  $PO_4$  v hypolimnionu nádrže za přítomnosti  $H_2S$  může pokračovat po podzimní cirkulaci a zrušení termální stratifikace rovněž ve svrchních vrstvách vodního sloupce (čárkované šipky) (podle Barthelmesa, 1981)



Survival of organisms after 96 hours of exposure in in situ testing. The arrow signifies the point of effluent discharge into the river.



Artificial stream system of the Water, Soil and Air Hygiene Office, Marienfelde, Germany. Facility has been used to study the effects ot sewage, nutrients, and detergents on stream ecosystem. Large building in the center is a pilot sewage treatment plant which contains automated sampling equipment. (Photo by P. D. Hansen.)



Photograph of recirculation artificial system developed by Shell Research (England)





Chlorpyritos, as a percentage of the dose applied, in the water, sediment and vegetation compartments of microcosms with (a) and without (b) macrophytes and macrophyte dominated ditches (c). During the first week postapplication sediment and macrophytes were not sampled in the microcosms.



Schematic diagram of the lentic mesocosm ponds at the Water Research Field Station of the University of North Texas. Smaller circles represent the location of fiberglass microcosm test systems









#### Flow-through exposure chamber for flow-through tests with polychaetes.

The exposure chamber is a glass crystallizing ditch with an inflow of water over the sediment surface. Arrows show flow of water into the test tube (b) through silicone tubing (a), which has a piece of glass tubing (c) attached at the bottom then through an elliptical opening; (d) cut in the side of the test tube and into the dish just above the sediment surface. Water circulates around the dish and leaves through a siphon and catch cup. (Reprinted with permission from Pesch, C. E., Munns, W. R. Jr., Gutjahr-Gobell R.: Effects of a contaminated sediment on life history traits and population growth rate of Nennthes arenoceodénmra (Polychaeta: Nereidae) in the laboratory. Environmental Toxicology and Chemistry 70(6):805-875. Copyright 1991. SETAC)



Model-II regression of NOECMS-experiment on NOECSS-experiment for similar or related species, corresponding effects parameters and similar exposure concentrations, based on 17 data pairs:

log NOECMS-experiment =  $0.750 * \log \text{NOECSS-experiment} + 0.263$ , r = 0.935.



Conceptual application of WET testing to aquatic hazard assessment; portrays the issues of laboratory-to-field scaling and exposure, surrogate species and sensitivity•, variability and false positives



Relationship between structure and functions in macrophyte-dominated ecosystems. Arrows indicate main communities of litoral ecosystem and for each terrestrial and aquatic communities, structural and functional parameters are represented by relative levels of activity: production and decomposition are functions of the system and complexity and biomass to water ratio are structural parameters.



Example demonstrating the value of ecoregional reference conditions for assessing effluent effects on either fish (IBI) or macroinvertebrate (ICI) community integrity (Karr et al. 1986). As an example, the downstream site would not be judged as impaired based on the ecoregional reference condition or an average-scoring upstream site (diamond). However, the downstream site would be incorrectly judged as either impaired (based on the single upstream site [circle] that was unusually species rich) or of extremely high ecological integrity (based on the single low-scoring upstream site [triangle]).

| System Size and<br>Morphology                                                                                                                                                                                                        | Water Source                                 | Colonization<br>Method                                                                                                                                  | Acclimation<br>Penod      | Compound              | Experimental<br>Design and<br>Replication                                                   | Exposure Length                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 12 J. Microcosms of<br>high density<br>polyethylene<br>(35 x 28 x 15<br>cm)<br>1) 18 rep. micro-<br>cosms had 7 I<br>diluent H <sub>2</sub> O<br>2) 18 rep micro<br>with 1 I sedi-<br>ment from KY<br>Lake + 6 I<br>H <sub>2</sub> O | From an embay-<br>ment of Ken-<br>tucky Lake | Natural microbial<br>community col-<br>lected on poly-<br>urethane foam<br>substrata place<br>in the Kentucky<br>Lake embay-<br>ment (14-d<br>exposure) | 1 week before<br>exposure | _ Diquat <sup>®</sup> | 3 microcosms<br>dosed at 0, 0.3,<br>1, 3, 10, & 30<br>mg/l; Substrate<br>replaced<br>weekly | Single application<br>substrata ex-<br>posed for 1<br>week |

#### Table 7.1 A Review of Study Designs and Results Obtained in Selected

| Outdoor Mesocosms                                                                                                                                                                                                                |                            |                                                                                                                    |                        |                             |                                                                                                                                                                      |                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 13 Three 5 m <sup>3</sup> vol-<br>ume ponds (ar-<br>tificial); stainless<br>steel cyfinders,<br>interconnected<br>by locks; Three<br>by locks; Three<br>53 ("natural" ponds<br>75 m <sup>2</sup> × 80 cm<br>deep used as<br>well | Well water; brook<br>water | Organisms intro-<br>duced with nat-<br>ural take<br>sediment; sup-<br>plemented with<br>stocked rain-<br>bow trout | Weeks<br>(unspecified) | Cyfluthrin as<br>Baythroid® | Artificial ponds:<br>untreated con-<br>trol and 2 dose<br>levels; "natural"<br>ponds: un-<br>treated control<br>and 2 dose lev-<br>sls; no treat-<br>ment replicates | One initial appli-<br>cation monitor<br>ing for ~112 of |

...

|    | System Size and<br>Morphology                                                                                                                                                                                      | Water Source                                                                                | Colonization<br>Method                                                                                   | Acclimation<br>Period | Compound                                                                                                   | Experimental<br>Design and<br>Replication                                                                                          | Exposure Length                                                                                                           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 14 | Six, 520 m out-<br>door exp.<br>stream chan-<br>nels with alt.<br>pool/riffle<br>zones; con-<br>trolled flow<br>rates                                                                                              | Mississippi River<br>H <sub>2</sub> O or a mix-<br>ture of river &<br>well H <sub>2</sub> O | Natural coloniza-<br>tion over time<br>plants & inver-<br>tebrates;<br>stocked<br>bluegills              | (15 years)            | Selenium as so-<br>dium selenite in<br>softened well<br>water                                              | Two dose levels<br>& controls (2<br>reps); random<br>assignment                                                                    | Dosing period:<br>~ 25 weeks<br>356-d study<br>duration                                                                   |
| 45 | Six, 3.96 m length<br>× 0.58 m width<br>× 0.27 m<br>depth stream<br>(for upper &<br>lower stream<br>sections); vol-<br>ume: ~ 0.62<br>m <sup>3</sup> ; Upper<br>"reservoir" func-<br>tion; lower<br>stream channel | Spring-led wood-<br>land stream<br>(Cheny Creek,<br>MI)                                     | Biota introduced<br>along with nat-<br>ural substrate<br>used to line ar-<br>tificial channel<br>bottoms | 1 year                | Hexachlorobi-<br>phenyl (HCBP)<br>with acetone<br>carrier; atrazine<br>with dimethyl-<br>sulloxide carrier | Two streams with<br>0.10 µg/l of<br>HCBP; 2 w/225<br>µg/l atrazine; 1<br>acetone con-<br>trol; 1 dimethyl-<br>suffoxide<br>control | Continues 30-d<br>exposure for<br>each (sea-<br>sonal) exp. (4<br>different sets of<br>experiments<br>done<br>seasonally) |

## Table 7.1 A Review of Study Designs and Results Obtained in Selected Studies Using Microcosms or Mesocosms in Ecotoxicological Research (Continued)

| Microcosms (continued)                                                                                                                                       |                                                                                                   |                                                                                          |                                                       |      |                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Responses/Endpoints                                                                                                                                          |                                                                                                   | Statistical Test                                                                         |                                                       |      |                                                                                                                                                                                                                                                                                                                                      |
| Measured                                                                                                                                                     | Sampling Frequency                                                                                | Compared                                                                                 | Туре                                                  | Ref. | Commeni:                                                                                                                                                                                                                                                                                                                             |
| Microbial community<br>structure and function                                                                                                                | 1) 1, 2, 3 weeks after<br>dosing                                                                  | Microbial community<br>responses;                                                        | ANOVA                                                 | 89   | Discussion statist : ally<br>oriented found micro-                                                                                                                                                                                                                                                                                   |
| (protozoan species<br>richness used as an in-<br>dicator of community<br>complexity)                                                                         | 2) 1, 2 weeks after<br>dosing                                                                     | for multi. comparisons<br>when treatment is sig-<br>nificantly different from<br>control | Dunnett's procedure                                   |      | bial communities to be<br>sensitive to diquat in<br>absence of secoment;<br>micro with sediment re<br>covered from diquat<br>within 2 weeks after in<br>itial disruption (adsorp-<br>tion occurred); when<br>compared to other ex-<br>periments, four d differ<br>ent systems reuch<br>differently to diquat;<br>over estimation may |
|                                                                                                                                                              |                                                                                                   |                                                                                          |                                                       |      | occur with sim; listic<br>exp. design                                                                                                                                                                                                                                                                                                |
| Outdoor Mesocosms (cont                                                                                                                                      | inued)                                                                                            |                                                                                          |                                                       |      |                                                                                                                                                                                                                                                                                                                                      |
| Baythroid <sup>e</sup> fate; pesticide<br>absorption on plants &<br>sediment; changes in<br>phyto-, zooplankton &<br>benthic communities;<br>growth of trout | Weekly sampling for all<br>parameters prior to<br>treatment; post-treat-<br>ment: variable levels | Biotic composition prior<br>to application of<br>Baythroid®                              | Similarity index; no stat.<br>treatment of other data | 51   | 2 dose levels + non-<br>treated controlno<br>treatment repl in eithe<br>pond; artil, por d re-<br>sults compared to<br>larger, natural konds                                                                                                                                                                                         |

### Table 7.1 A Review of Study Designs and Results Obtained in Selected Studies Using Microcosms or Mesocosms in Ecotoxicological Research (Continued)

| Deserves / Endosinte                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            | Statistical Test                                                                                                       |                                                                         |      | 방송의 동안 등 일험                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Responses/Endpoints<br>Measured                                                                                                                                                                                                                           | Sampling Frequency                                                                                                                                                                                                                         | Compared                                                                                                               | Туре                                                                    | Ref. | Comments                                                                                                                                                                                                                                                   |
| Endpoint: survival,<br>growth, & reproduction<br>of bluegill<br>Response: selenium on<br>adult survival & growth;<br>spawning activity &<br>emb, & larval survivor-<br>ship selenium residues<br>in fish tissue & whole<br>bodies                         | <ul> <li>Selenium con. measured 2 times weekly;</li> <li>Most pc. parameters measured biweekly;</li> <li>Beginning in late May, bluegill nests checked daily;</li> <li>Selenium residues in tissue May 11-Aug 22 (end of study)</li> </ul> | Adult growth & survival;<br>emb. & larv. prod. &<br>mortality; etc.<br>Single treatment to<br>control                  | One-way ANOVA;<br>protected least-signifi-<br>cant differences          | 200  | Examines effects of both<br>waterborne aris dietany<br>selenium                                                                                                                                                                                            |
| Chemical residues in wa-<br>ter, sediments inverte-<br>brates. lish, and plants;<br>benthic macroinvt. spe-<br>cies composition, abun-<br>dance, & drift.;<br>Periphyton growth<br>(product.); primary pro-<br>duction & respiration<br>(community level) | Not stated<br>45-d intervals (pretreat-<br>ment year) 30-d inter-<br>vals (treatment year)<br>4-d intervals various no<br>equal intervals                                                                                                  | Toxicant effects on com-<br>munity-level variables;<br>mean annual values<br>between pretreatment<br>& treatment years | 2 × ANOVA & Duncan's<br>MRT (4 seasons ana-<br>lyzed sep.); Student's ( | 98   | Does the fact it at these<br>were indoor a nificial<br>streams pre-lude then<br>from being m asocosm<br>(i.e., no contribuity with<br>natural environment?)<br>based on siz - alone,<br>they are nilosocosms;<br>Wide variety of sam-<br>pling frequencies |

## Table 7.1 A Review of Study Designs and Results Obtained in Selected Studies Using Microcosms or Mesocosms in Ecotoxicological Research (Continued)

### Naididae (Oligochaeta) from artificial substrates



Average number (+-1 standard deviation) of Naididae (Oligochaeta) collected in experimental ponds by artificial substrates. Triangles represent application of a pyrethroid insecticide.

### Naididae (Oligochaeta) from artificial substrates



Average number (+-1 standard deviation) of Naididae (Oligochaeta) collected in experimental ponds by Ekman Grab. Triangles represent application times of a pyrethroid insecticide.



PCA-ordination "species" plot of the 1990 SC macroinvertebrate data set. For explanation see text and figure 7 PCA-adination 'sites' plot of the 1990 SC macroinvertebrate data set. The 'sites' of test units treated with the same concentralion at different sampling times (days 6, +7, +14, +28, and +56 p.a.) have been connected by a line. For explanation see text and Figure 6.