Age-dependent life-tables

- show organisms‘ mortality and reproduction as a function of age

Static (vertical) life-tables

- examination of a population during one segment (time interval)
- segment = group of individuals of different cohorts
- designed for long-lived organisms

- ASSUMPTIONS:

- birth-rate and survival-rate are constant over time

- population does not grow
- DRAWBACKS: confuses age-specific changes in e.g. mortality with temporal variation

\mathbf{x}	$\mathbf{S x}$	$\mathbf{D x}$	$\mathbf{I x}$	$\mathbf{p x}$	$\mathbf{q x}$	$\mathbf{m x}$
1	129	15	1.000	0.884	0.116	0.000
2	114	1	0.884	0.991	0.009	0.000
3	113	32	0.876	0.717	0.283	0.310
4	81	3	0.628	0.963	0.037	0.280
5	78	19	0.605	0.756	0.244	0.300
6	59	-6	0.457	1.102	-0.102	0.400
7	65	10	0.504	0.846	0.154	0.480
8	55	30	0.426	0.455	0.545	0.360
9	25	16	0.194	0.360	0.640	0.450
10	9	1	0.070	0.889	0.111	0.290
11	8	1	0.062	0.875	0.125	0.280
12	7	5	0.054	0.286	0.714	0.290
13	2	1	0.016	0.500	0.500	0.280
14	1	-3	0.008	4.000	-3.000	0.280
15	4	2	0.031	0.500	0.500	0.290
16	2	2	0.016	0.000	1.000	0.280

Lowe (1969)

$$
l_{x}=\frac{S_{x}}{S_{0}} \quad q_{x}=\frac{D_{x}}{S_{x}}
$$

S_{x} - number of survivors of a given age
$\boldsymbol{D}_{\boldsymbol{x}}$ - number of dead
$\boldsymbol{l}_{\boldsymbol{x}}$ - standardised number of survivors
$\boldsymbol{q}_{\boldsymbol{x}}-$ age specific mortality

Cohort (horizontal) life-table

- examination of a population in a cohort = a group of individuals born at the same period
- followed from birth to death
- provide reliable information
- designed for short-lived organisms
- only females are included

\mathbf{x}	$\mathbf{S x}$	$\mathbf{D x}$	$\mathbf{I x}$	px	$\mathbf{q x}$	$\mathbf{m x}$
0	250	50	1.000	0.800	0.200	0.000
1	200	120	0.800	0.400	0.600	0.000
2	80	50	0.320	0.375	0.625	2.000
3	30	15	0.120	0.500	0.500	2.100
4	15	9	0.060	0.400	0.600	2.300
5	6	6	0.024	0.000	1.000	2.400
6	0	0	0.000			

Vulpes vulpes

Stage or size-dependent life-tables

- survival and reproduction depend on stage / size rather than age
- age-distribution is of no interest
- used for invertebrates (insects, invertebrates)
- time spent in a stage / size can differ

Campbell (1981)

x	Sx	Dx	\mathbf{x}	$\mathbf{p x}$	$\mathbf{c} \mathbf{q x}$	$\mathbf{m x}$
Egg	450	68	1.000	0.849	0.151	0
Larva I	382	67	0.849	0.825	0.175	0
Larva II	315	158	0.700	0.498	0.502	0
Larva III	157	118	0.349	0.248	0.752	0
Larva IV	39	7	0.087	0.821	0.179	0
Larva V	32	9	0.071	0.719	0.281	0
Larva VI	23	1	0.051	0.957	0.043	0
Pre-pupa	22	4	0.049	0.818	0.182	0
Pupa	18	2	0.040	0.889	0.111	0
Adult	16	16	0.036	0.000	1.000	185

Survivorship curves

- display change in survival by plotting $\ln \left(\boldsymbol{l}_{\boldsymbol{x}}\right)$ against age (\boldsymbol{x})
- logarithmic transformation allows to compare survival based on different population size
- sheep mortality increases with age
- survivorship of lapwing (Vanellus) is independent of age

Pearls (1928) classified hypothetical age-specific mortality:

- Type I .. mortality is concentrated at the end of life span (humans)
- Type II .. mortality $\left(\boldsymbol{q}_{x}\right)$ is constant over age (seeds),
- Type III .. mortality is highest in the beginning of life (invertebrates, fish, reptiles)

Birth rate curves

- fecundity - potential number of offspring
- fertility - real number of offspring
- semelparous .. reproducing once a life
- iteroparous .. reproducing several times during life
- birth pulse .. discrete reproduction (seasonal reproduction)
- birth flow .. continuous reproduction

Matrix (structured) models

- model of Leslie (1945) uses parameters (survival and fecundity) from life-tables
- where populations are composed of individuals of different age, stage or size with specific births and deaths
- used for modelling of density-independent processes (exponential growth)
$\mathbf{N}_{x, t} .$. no. of organisms in age x and time t
$\boldsymbol{G}_{\mathrm{x}} \cdot$. probability of persistence in the same size/stage
- number of individuals in the first age class

$$
N_{0, t+1}=\sum_{x=0}^{n} N_{x, t} F_{x}=N_{0, t} F_{0}+N_{1, t} F_{1}+\ldots
$$

- number of individuals in the remaining age classes

$$
N_{x+1, t+1}=N_{x, t} p_{x}
$$

- combined into one matrix formula:

$$
\mathbf{N}_{t+1}=\mathbf{N}_{t} \mathbf{A}
$$

Age-structured

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
F_{1} & F_{2} & F_{3} & F_{4} \\
p_{12} & 0 & 0 & 0 \\
0 & p_{23} & 0 & 0 \\
0 & 0 & p_{34} & 0
\end{array}\right] \times\left[\begin{array}{c}
N_{0, t} \\
N_{1, t} \\
N_{2, t} \\
N_{3, t}
\end{array}\right]=\left[\begin{array}{c}
N_{0, t+1} \\
N_{1, t+1} \\
N_{2, t+1} \\
N_{3, t+1}
\end{array}\right]} \\
& \text { transition matrix } \mathbf{A} \\
& \text { age distribution vectors } \mathbf{N}_{\mathbf{t}}
\end{aligned}
$$

- each column in \mathbf{A} specifies fate of an organism in a specific age:

3 rd column: organism in age 2 produces \boldsymbol{F}_{2} offspring and goes to age 3 with probability \boldsymbol{p}_{23}

- A is always a square matrix
- \mathbf{N}_{t} is always one column matrix $=$ a vector
- fertilities (F) and survivals (p) depend on whether population has discrete or continuous reproduction
- for populations with discrete pulses post-reproductive survivals and fertilities are

$$
p_{x}=\frac{S_{x+1}}{S_{x}} \quad F_{x}=p_{x} m_{x}
$$

- for populations with continuous reproduction post-reproductive survivals and fertilities are

$$
p_{x} \approx\left(\frac{S_{x}+S_{x+1}}{S_{x-1}+S_{x}}\right)
$$

$$
F_{x}=\frac{\left(1+S_{1}\right)\left(m_{x} p_{x} m_{x+1}\right)}{4}
$$

Stage-structured

- only imagoes reproduce thus $m_{1,2,3}=0$
- no imago survives to another reproduction period: $p_{4}=0$

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & m_{4} \\
p_{12} & 0 & 0 & 0 \\
0 & p_{23} & 0 & 0 \\
0 & 0 & p_{34} & 0
\end{array}\right]
$$

Size-structured

- model of Lefkovitch (1965) uses 3 parameters (mortality, fecundity and persistence)
- $F_{1}=0$

$$
\left[\begin{array}{cccc}
G_{11} & F_{2} & F_{3} & F_{4} \\
p_{12} & G_{22} & 0 & 0 \\
0 & p_{23} & G_{33} & 0 \\
0 & 0 & p_{34} & G_{44}
\end{array}\right]
$$

Matrix operations

- addition / subtraction $\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]+\left[\begin{array}{ll}1 & 4 \\ 5 & 8\end{array}\right]=\left[\begin{array}{cc}3 & 7 \\ 10 & 15\end{array}\right]$
- multiplication
$\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right] \times 3=\left[\begin{array}{cc}6 & 9 \\ 15 & 21\end{array}\right]$

$$
\begin{aligned}
& \text { by a vector } \\
& {\left[\begin{array}{cc}
2 & 3 \\
5 & 7
\end{array}\right] \times\left[\begin{array}{l}
4 \\
5
\end{array}\right]=\left[\begin{array}{c}
2 \times 4+3 \times 5 \\
5 \times 4+7 \times 5
\end{array}\right]=\left[\begin{array}{c}
23 \\
55
\end{array}\right]}
\end{aligned}
$$

- determinant

$$
\left[\begin{array}{ll}
2 & 3 \\
4 & 7
\end{array}\right]=2 \times 7-4 \times 3=2
$$

- eigenvalue (λ)
$\left[\begin{array}{cc}2 & 4 \\ 0.25 & 0\end{array}\right]=\left[\begin{array}{cc}2-\lambda & 4 \\ 0.25 & 0-\lambda\end{array}\right]=(2-\lambda) \times(0-\lambda)-(0.25 \times 4)=\lambda^{2}-2 \lambda-1$

$$
\lambda_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \begin{aligned}
& \lambda_{1}=2.41 \\
& \lambda_{2}=-0.41
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{N}_{t 2}=\mathbf{N}_{t 1} \mathbf{A} \\
\mathbf{N}_{t 3}=\mathbf{N}_{t 2} \mathbf{A} \\
\mathbf{N}_{t+2}=\mathbf{N}_{t 1} \mathbf{A} \mathbf{A}=\mathbf{A}^{2} \mathbf{N}_{t} \\
\mathbf{N}_{\mathbf{t}}=\mathbf{N}_{\mathbf{0}} \mathbf{A}^{\mathbf{t}}
\end{gathered}
$$

- parameters are constant over time and independent of population density
- follows constant exponential growth after initial damped oscillations

Excercise 1

Population density of the true bugs Coreus marginatus was recorded for 10 years. Here are the densities:
$160,172,188,154,176,185,168,194,170,169$

- Does population increase or decrease?
- What is the average population growth (R) ?
- Project population for another 10 years using R and $\mathrm{N}_{0}=90$.
- Simulate population growth for the next 20 years using observed finite-growth rates.

```
bug<-c(160, 172, 188, 154, 176, 185, 168, 194, 170, 169)
plot (bug,type="b")
lambda<-bug[-1]/bug[-10]
lambda
plot(lambda)
R<-prod(lambda)^0.1
R
time<-1:10
Nt<-90*R^time
plot(time,Nt,type="b")
sim<-sample(lambda,20, replace=T)
years<-20
N<-numeric(years+1)
N[1]<-100
for(t in 1:years) N[t+1]<-{
N[t]*sim[t]}
plot(0:years,N,type="b")
```


Excercise 2

Population density of the mite Acarus siro was recorded every 3 days during 28 days. The following densities were found:
$165,145,139,125,105,101,88,81,73,69$

- What is the intrinsic rate of increase (r) and what was the initial density?
- How long it takes for a population to decrease to half size?
- Project population growth for another 5 weeks using estimated r and $\mathrm{N}_{0}=69$.
- What would be the estimated rate if you know the initial and final density?

