Age-dependent life-tables

show organisms' mortality and reproduction as a function of age

Static (vertical) life-tables

 examination of a population during one segment (time interval)
 segment = group of individuals of different cohorts

- designed for long-lived organisms

• ASSUMPTIONS:

- birth-rate and survival-rate are constant over time
- population does not grow

X	Sx	Dx	Ix	рх	qx	mx
1	129	15	1.000	0.884	0.116	0.000
2	114	1	0.884	0.991	0.009	0.000
3	113	32	0.876	0.717	0.283	0.310
4	81	3	0.628	0.963	0.037	0.280
5	78	19	0.605	0.756	0.244	0.300
6	59	-6	0.457	1.102	-0.102	0.400
7	65	10	0.504	0.846	0.154	0.480
8	55	30	0.426	0.455	0.545	0.360
9	25	16	0.194	0.360	0.640	0.450
10	9	1	0.070	0.889	0.111	0.290
11	8	1	0.062	0.875	0.125	0.280
12	7	5	0.054	0.286	0.714	0.290
13	2	1	0.016	0.500	0.500	0.280
14	1	-3	0.008	4.000	-3.000	0.280
15	4	2	0.031	0.500	0.500	0.290
16	2	2	0.016	0.000	1.000	0.280

 S_x - number of survivors of a given age D_x - number of dead l_x - standardised number of survivors q_x - age specific mortality

 $l_x = \frac{S_x}{S_0} \qquad q_x = \frac{D_x}{S_x}$

Lowe (1969)

Cohort (horizontal) life-table

• examination of a population in a cohort = a group of individuals born at the same period

- followed from birth to death
- provide reliable information
- designed for short-lived organisms
- only females are included

X	Sx	Dx	Ix	рх	qx	mx
0	250	50	1.000	0.800	0.200	0.000
1	200	120	0.800	0.400	0.600	0.000
2	80	50	0.320	0.375	0.625	2.000
3	30	15	0.120	0.500	0.500	2.100
4	15	9	0.060	0.400	0.600	2.300
5	6	6	0.024	0.000	1.000	2.400
6	0	0	0.000			

Vulpes vulpes

Stage or size-dependent life-tables

- survival and reproduction depend on stage / size rather than age
- age-distribution is of no interest
- used for invertebrates (insects, invertebrates)
- time spent in a stage / size can differ

X	Sx	Dx	Ix	рх	qx	mx
Egg	450	68	1.000	0.849	0.151	0
Larva I	382	67	0.849	0.825	0.175	0
Larva II	315	158	0.700	0.498	0.502	0
Larva III	157	118	0.349	0.248	0.752	0
Larva IV	39	7	0.087	0.821	0.179	0
Larva V	32	9	0.071	0.719	0.281	0
Larva VI	23	1	0.051	0.957	0.043	0
Pre-pupa	22	4	0.049	0.818	0.182	0
Pupa	18	2	0.040	0.889	0.111	0
Adult	16	16	0.036	0.000	1.000	185

Campbell (1981)

Lymantria dispar

Survivorship curves

- display change in survival by plotting $\ln(l_x)$ against age (x)
- logarithmic transformation allows to compare survival based on different population size
- sheep mortality increases with age
- survivorship of lapwing (Vanellus) is independent of age

Pearls (1928) classified hypothetical age-specific mortality:

- Type I .. mortality is concentrated at the end of life span (humans)
- Type II .. mortality (q_x) is constant over age (seeds),
- Type III .. mortality is highest in the beginning of life (invertebrates, fish, reptiles)

Birth rate curves

- fecundity potential number of offspring
- fertility real number of offspring
- semelparous .. reproducing once a life
- iteroparous .. reproducing several times during life

 birth pulse .. discrete reproduction (seasonal reproduction)

birth flow .. continuous
 reproduction

Matrix (structured) models

model of Leslie (1945) uses parameters (survival and fecundity) from life-tables

• where populations are composed of individuals of different age, stage or size with specific births and deaths

• used for modelling of density-independent processes (exponential growth)

 $N_{x,t}$.. no. of organisms in age x and time t G_x .. probability of persistence in the same size/stage number of individuals in the first age class

$$N_{0,t+1} = \sum_{x=0}^{n} N_{x,t} F_x = N_{0,t} F_0 + N_{1,t} F_1 + \dots$$

number of individuals in the remaining age classes

$$N_{x+1,t+1} = N_{x,t} p_x$$

• combined into one matrix formula:

 $\mathbf{N}_{t+1} = \mathbf{N}_t \mathbf{A}$

 $\begin{bmatrix} F_1 & F_2 & F_3 & F_4 \\ p_{12} & 0 & 0 & 0 \\ 0 & p_{23} & 0 & 0 \\ 0 & 0 & p_{34} & 0 \end{bmatrix} \times \begin{bmatrix} N_{0,t} \\ N_{1,t} \\ N_{2,t} \\ N_{3,t} \end{bmatrix}$ p_{34} transition matrix A age distribution vectors N_t

• each column in A specifies fate of an organism in a specific age: 3rd column: organism in age 2 produces F_2 offspring and goes to age 3 with probability p_{23}

- A is always a square matrix
- \mathbf{N}_t is always one column matrix = a vector

▶ fertilities (F) and survivals (p) depend on whether population has discrete or continuous reproduction

- for populations with discrete pulses post-reproductive survivals and fertilities are

$$p_x = \frac{S_{x+1}}{S_x} \qquad F_x = p_x m_x$$

- for populations with continuous reproduction post-reproductive survivals and fertilities are

$$p_x \approx \left(\frac{S_x + S_{x+1}}{S_{x-1} + S_x}\right)$$
 $F_x = \frac{(1 + S_1)(m_x p_x m_{x+1})}{4}$

Stage-structured

only imagoes reproduce thus m_{1,2,3} = 0
 no imago survives to another reproduction period: p₄ = 0

$$\begin{bmatrix} 0 & 0 & 0 & m_4 \\ p_{12} & 0 & 0 & 0 \\ 0 & p_{23} & 0 & 0 \\ 0 & 0 & p_{34} & 0 \end{bmatrix}$$

 model of Lefkovitch (1965) uses 3 parameters (mortality, fecundity and persistence)

$$\blacktriangleright F_1 = 0$$

$$\begin{bmatrix} G_{11} & F_2 & F_3 & F_4 \\ p_{12} & G_{22} & 0 & 0 \\ 0 & p_{23} & G_{33} & 0 \\ 0 & 0 & p_{34} & G_{44} \end{bmatrix}$$

Matrix operations

addition / subtraction

$$\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 4 \\ 5 & 8 \end{bmatrix} = \begin{bmatrix} 3 & 7 \\ 10 & 15 \end{bmatrix}$$

 $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \times \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \times 4 + 3 \times 5 \\ 5 \times 4 + 7 \times 5 \end{bmatrix} = \begin{bmatrix} 23 \\ 55 \end{bmatrix}$

multiplication

$$\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \times 3 = \begin{bmatrix} 6 & 9 \\ 15 & 21 \end{bmatrix}$$

by a scalar

determinant

$$\begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix} = 2 \times 7 - 4 \times 3 = 2$$

• eigenvalue (λ)

$$\begin{bmatrix} 2 & 4 \\ 0.25 & 0 \end{bmatrix} = \begin{bmatrix} 2-\lambda & 4 \\ 0.25 & 0-\lambda \end{bmatrix} = (2-\lambda) \times (0-\lambda) - (0.25 \times 4) = \lambda^2 - 2\lambda - 1$$

by a vector

$$\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \begin{array}{l} \lambda_1 = 2.41 \\ \lambda_2 = -0.41 \end{array}$$

$$\mathbf{N}_{t2} = \mathbf{N}_{t1}\mathbf{A}$$
$$\mathbf{N}_{t3} = \mathbf{N}_{t2}\mathbf{A}$$
$$\mathbf{N}_{t+2} = \mathbf{N}_{t1}\mathbf{A}\mathbf{A} = \mathbf{A}^{2}\mathbf{N}$$
$$\mathbf{N}_{t} = \mathbf{N}_{0}\mathbf{A}^{t}$$

parameters are constant over
 time and independent of population
 density

 follows constant exponential growth after initial damped oscillations

Population density of the true bugs *Coreus marginatus* was recorded for 10 years. Here are the densities:

```
160, 172, 188, 154, 176, 185, 168, 194, 170, 169
```

Does population increase or decrease?
What is the average population growth (*R*)?
Project population for another 10 years using *R* and N₀ = 90.
Simulate population growth for the next 20 years using observed finite-growth rates.

```
bug<-c(160, 172, 188, 154, 176, 185, 168, 194, 170, 169)
plot(bug,type="b")</pre>
```

```
lambda<-bug[-1]/bug[-10]
lambda
plot(lambda)</pre>
```

```
R<-prod(lambda)^0.1
R
```

```
time<-1:10
Nt<-90*R^time
plot(time,Nt,type="b")</pre>
```

```
sim<-sample(lambda,20,replace=T)
years<-20
N<-numeric(years+1)
N[1]<-100
for(t in 1:years) N[t+1]<-{
N[t]*sim[t]}
plot(0:years,N,type="b")</pre>
```


Population density of the mite *Acarus siro* was recorded every 3 days during 28 days. The following densities were found:

165, 145, 139, 125, 105, 101, 88, 81, 73, 69

▶ What is the intrinsic rate of increase (*r*) and what was the initial density ?

How long it takes for a population to decrease to half size?

• Project population growth for another 5 weeks using estimated r and $N_0 = 69$.

• What would be the estimated rate if you know the initial and final density?