

Population density of the mite *Acarus siro* was recorded every 3 days during 28 days. The following densities were found:

165, 145, 139, 125, 105, 101, 88, 81, 73, 69

▶ What is the intrinsic rate of increase (*r*) and what was the initial density ?

How long it takes for a population to decrease to half size?

• Project population growth for another 5 weeks using estimated r and $N_0 = 69$.

• What would be the estimated rate if you know the initial and final density?

```
mite<-c(165, 145, 139, 125, 105, 101, 88, 81, 73, 69)
ti<-c(1,4,7,10,13,16,19,22,25,28)
plot(ti,mite,type="b")</pre>
```

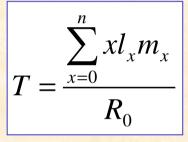
```
lmi<-log(mite)
plot(ti,lmi)
summary(lm(lmi~ti))
exp(5.132735)</pre>
```

log(0.5)/-0.033217

time<-1:35
Nt<-69*exp(-0.033*time)
plot(time,Nt,type="b")</pre>

(log(69) - log(165))/27

Matrix analysis


Net reproductive rate (R_0)

• average number of offspring produced by a female in her lifetime

$$R_0 = \sum_{x=0}^n l_x m_x$$

Average generation time (T)

• average age of females when they give birth

Expectation of life

- age specific expectation of life
- ▶ *o* .. oldest age

$$e_x = \frac{T_x}{l_x} \qquad \qquad L_x = \frac{l_x + l_{x+1}}{2} \qquad \qquad T_x = 2$$

Intrinsic growth rate (r)

• when Leslie model show exponential growth the potential rate of increase can be determined from

$$r \approx \frac{\ln(R_0)}{T}$$
 $\lambda \approx \frac{R_0}{T}$

• Euler (1760) found how to estimate *r* from the life table

$$\sum_{x} l_{x} m_{x} e^{-rx} = 1$$

▶ *r* can be estimated from is the only dominant positive eigenvalue of the transition matrix (λ_1 .. finite growth rate)

$$r = \ln(\lambda_1)$$

Stable age distribution (SCD)

relative abundance of different life history age/stage/size categories
 ▶ population approaches stable age distribution:
 N₀: N₁: N₂: N₃:...:N_s is stable

once population reached SCD it grows exponentially
proportion of individuals (c) in age x

$$c_x = \frac{l_x e^{-rx}}{\sum_x l_x e^{-rx}}$$

w₁.. right eigenvector of the dominant eigenvalue
provides stable age distribution

- scale \mathbf{w}_1 by sum of individuals

$$\mathbf{A}\mathbf{w}_1 = \lambda_1 \mathbf{w}_1$$

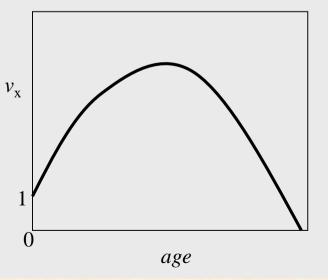
$$SCD = \frac{\mathbf{w}_1}{\sum_{i=1}^{S} \mathbf{w}_1}$$

Reproductive value (RV)

• identifies age class that contributes most to the population growth

• measures relative reproductive potential of an individual of a given age

• when population increases then early offspring contribute more to v_x than older ones


• \mathbf{v}_1 .. left eigenvector of the dominant eigenvalue

 $\mathbf{v}_1 \mathbf{A} = \lambda_1 \mathbf{v}_1$

- provides reproductive values
- \mathbf{v}_1 is proportional to the reproductive values scaled to the first category

$$v_x = \frac{\sum_{x}^{o} l_x m_x e^{-rx}}{l_x e^{-rx}}$$

$$RV = \frac{\mathbf{v}_1}{\sum_{i=1}^{S} \mathbf{v}_1}$$

Sensitivity (s)

• identifies which process (survival or fertility) has largest effect on the population increase (λ_1)

- examines change in λ_1 given small change in processes (a_{ij})

- sensitivity is larger for survival of early, and for fertility of older classes

$$s_{ij} = \frac{\delta \lambda_1}{\delta a_{ij}} = \frac{v_{ij} w_{ij}}{\mathbf{v} \cdot \mathbf{w}} \leftarrow \text{sum of pairwise products}$$

Elasticity (E)

- weighted measure of sensitivity
- measures relative contribution to the population increase
- impossible transitions = 0

$$E_{ij} = \frac{a_{ij}}{\lambda_1} \frac{\delta \lambda_1}{\delta a_{ij}}$$

Excercise 3

Perform demographic study of the common fox using life table menu in POPULUS. The fox breeds in pulses and the data were collected using pre-breeding census.

X	lx	mx
0	1	0.000
1	0.8	0.000
2	0.32	2.000
3	0.12	2.100
4	0.06	2.300
5	0.024	2.400

- Plot standardised survival (l_x) with age.
 Which survival curve type it corresponds to?
- Plot fecundity (m_x) and reproductive value (v_x) with age.

Construct Leslie transition matrix and project
it over a period of another 20 years using initial vector (10, 12, 6, 5, 4, 2). When does the population reach stable age distribution?
What is R₀, T, and r ?

Conservation biology

to adopt means for population promotion or control

Conservation/control procedure

 Construction of a life table
 Estimation of the intrinsic rates
 Sensitivity analysis - helps to decide where conservation/control efforts should be focused
 Development and application of management plan
 Prediction of future

Excercise 4

There is a butterfly species that appears to be rare. You perform a life-history study and gain data on survival and reproduction. You also observe which factors determine stage-specific survival.

stage	рх	mx	morta lity
egg	0.7	0	frost in winter
larva 1	0.6	0	paras itoids
larva 2	0.4	0	paras itoids
larva 3	0.5	0	bird predation
larva 4	0.3	0	paras itoids
pupa	0.2	0	habitat destruction
adult	0	80	

• Estimate λ using POPULUS and find whether the population increases or decreases?

• Perform sensitivity analysis in POPULUS by replacing each stage-specific survival by 1 and identify which factor has most dramatic effect on population increase.

Suggest a conservation plan.

Excercise 5

You observe a population decrease in a duck species. You perform a life-history study with post-breeding census and find that duck has birth-pulse breeding. You obtain the following data:

X	lx	mx	mortality
0	1	0	racoons
1	0.2	2	foxes
2	0.1	3	paras ite
3	0.03	5	virus
4	0.002	1	old age
5	0		

- Make simple population projections in POPULUS.
- Create transition matrix in R and find stable class distribution and reproductive values.
- Perform sensitivity analysis to identify important processes.
- Suggest a conservation plan.