
You observe a population decrease in a duck species. You
perform a life-history study with post-breeding census and find
that duck has birth-pulse breeding. You obtain the following data:

�Make simple population projections in POPULUS.
�Create transition matrix in R and find stable class distribution
and reproductive values.
�Perform sensitivity analysis to identify important processes.
�Suggest a conservation plan.

x lx mx morta lity
0 1 0 racoons
1 0.2 2 foxes
2 0.1 3 paras ite
3 0.03 5 virus
4 0.002 1 old age
5 0



A<-matrix(c(0.4,1.5,1.5,0.07,0,
0.2,0,0,0,0,
0,0.5,0,0,0,
0,0,0.3,0,0,
0,0,0,0.07,0),nrow=5,byrow=T);A

L<-eigen(A)
L1<-max(Re(L$values))
w<-Re(L$vectors[,1]);w
scd<-w/sum(w);scd

M<-eigen(t(A));M
v<-Re(M$vectors[,1]);v
RV<-v/v[1];RV

s<-v%*%t(w)
ss<-s/as.numeric(v%*%w);ss

e<-ss*(A/L1);e



A mouse species has spread dramatically. You perform a life-
history study and find that it breeds continuously. So you
distinguish age classes based upon 3-months intervals. You obtain
the following data:

� Estimate R0 and T.
� Predict how the population size would change in another 10
years using initial population structure (2, 30, 10, 5) using
transition matrix from POPULUS.
�How will r change if you subsequently halve each age-specific
survival?
�Suggest a management plan to control mouse population.

x lx mx
0 1 0
1 0.8 5
2 0.5 12
3 0.3 4



x<-c(0,1,2,3)
lx<-c(1,0.8,0.5,0.3)
mx<-c(0,5,12,4)
R0<-sum(lx*mx);R0

T<-sum(x*lx*mx)/R0;T

A<-matrix(c(6.15,6.51,1.8,0,
0.72,0,0,0,
0,0.62,0,0,
0,0,0.37,0),nrow=4,byrow=T);A

L<-eigen(A); r<-log(max(Re(L$values))); r

N0<-c(2,30,10,5)
N1<-A%*%N0;N1

years<-10
Nt<-matrix(0,nrow=nrow(A),ncol=years+1)
Nt[,1]<-N0
for(i in 1:years) Nt[,i+1]<-A%*%Nt[,i]
matplot(0:years,t(Nt),type="l")
legend(2,4e+9,c(1:4),lty=1:4,col=1:4)



A1<-replace(A,c(1,2),c(3.07,0.36))
L1<-eigen(A1); log(max(Re(L1$values)))

A2<-replace(A,c(5,7),c(3.25,0.31))
L2<-eigen(A2); log(max(Re(L2$values)))

A3<-replace(A,c(9,12),c(0.9,0.18))
L3<-eigen(A3); log(max(Re(L3$values)))



Stano Pekár„Populační ekologie živočichů“

�
dN

= Nr
dt



� model is based on the assumption that development rate is a linear
function of temperature

� valid for the region of moderate temperatures (15-25°)

� at low temperatures organisms die due to coldness, and at high
temperatures organisms die due to overheating

T .. development time (days)
v ..  rate of development = 1/ T
tmin .. lower temperature limit
.. temperature at which
development rate = 0
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ET.. effective temperature .. developmental temperature = t - tmin
S .. degree-days .. number of days required to complete development

..  do not depend on temperature = T*ET

 tmin and S can be estimated from the regression line of v = a + b
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� accumulated degree-days (S) are equal to area under
temperature curve restricted to the interval between current
temperature and tmin



� for temperatures between tmin and tmax (upper threshold)

� several different non-linear models (Briere, Lactin, etc.)

� allow to estimate topt (optimum temperature)

� easy to interpret for experiments with constant temperature

� instead of using average temperature, use actual temperature
because below and above ET model is non-linear



Briere et al. (1999)

v .. rate of development (=1/T)
t .. experimental temperature
tmin .. low temperature threshold
tmax .. upper temperature threshold

Optimum temperature:

� parameters are estimated using non-linear regression

tttttav −×−××= maxmin )(

10

1691634 maxmin
2
min

2
maxminmax tttttt

topt

−+++
=



Lactin et al. (1995)

v .. rate of development
t .. experimental temperature
tm, ∆, ρ, λ .. constants

tmax and tmin can be estimated from the formula:

topt can be estimated from the first derivative:
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In the laboratory the development of Diprion pini was studied. Seven
temperatures were used. For each temperature the development time (T)
of the complete development were recorded:

Estimate the minimum development temperature (tmin) and the degree-
days (S) using the linear model.

t (°C) T
5 -
10 200
15 100
20   60
25   40
30   30
35   35



t<-c(5,10,15,20,25,30,35)
T<-c(0,200,100,60,40,30,35)
v<-1/T
m<-lm(v~t,subset=2:6)
m

abline(m)

0.010667/0.001433
1/0.001433



A study on aphids, Myzus persicae, revealed that tmin = 10 and S = 100.
The aphids just laid eggs. Average day temperatures during the
following two weeks were as follows:

15, 18, 25, 23, 24, 18, 17, 15, 18, 15, 22, 25, 26, 21.

Estimate on which day the development of aphids was complete?



t<-c(15, 18, 25, 23, 24, 18, 17, 15, 18, 15, 22, 25, 26, 21)
ET<-t-10
sum(ET)
sum(ET[1:10])
sum(ET[1:11])



Effect of temperature on the development of Nephus includens was
studied in the laboratory using a range of temperatures.

Use Briere‘s and Lactin‘s model to find models of development
against temperature and to estimate optimum temperature.
Plot the estimated models to the data.

t T
18 23.5
20 18.5
22 13
25 7.3
28 5.5
30 5
32 10.9



t<-c(18,20,22,25,28,30,32)
T<-c(23.5,18.5,13,7.3,5.5,5,10.9)
v<-1/T

m1<-nls(v~exp(rho*t)-exp(rho*Tm-(Tm-t)/delta)+lambda,
start=c(rho=0,Tm=30,delta=1,lambda=0))
summary(m1)

library(rootSolve) 
topt1<-uniroot(function(x) 0.01*exp(0.01*x)-
(0.01+1/0.7)*exp(0.01*33.7-(33.7-x)/0.7),lower=0,upper=40); topt1

x<-seq(15,40,0.1)
plot(t,v,xlim=c(10,35),ylim=c(0,0.25))
lines(x,predict(m1,list(t=x)))

m2<-nls(v~a*t*(t-tmin)*sqrt(tmax-t), start=c(a=0.1,tmin=10,tmax=35))
summary(m2)
topt2<-(4*32.6+3*17+sqrt(16*32.6^2+9*17^2-16*32.6*17))/10; topt2
lines(x,predict(m2,list(t=x)),lty=2)


