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+ +   .. mutualism (plants and pollinators)

0 +   .. commensalism (saprophytism, parasitism, phoresis)

-  +   .. predation (herbivory, parasitism), Batesian mimicry

- 0    .. amensalism (allelopathy)

-  -    .. competition

Increase Neutral Decrease
Increase + +
Neutral 0 + 0 0

Decrease + - - 0 - -

Effect of species 1 on fitness of species 2
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� based on the logistic model of Lotka (1925) and Volterra (1926)

species 1: N1, K1, r1 

species 2: N2, K2, r2
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�assumptions:
- all parameters are constant
- individuals of the same species are identical
- environment is homogenous, differentiation of niches is not possible
- only exact compensation is present



� total competitive effect (intra + inter-specific)
(N1+ αN2)    where α .. coefficient of competition

α = 0 .. no interspecific competition
α < 1 .. species 2 has lower effect on species 1 than species 1 on itself
α = 0.5 .. one individual of species 1 is equivalent to 0.5 individuals of
species 2)
α = 1 .. both species has equal effect on the other one
α > 1 .. species 2 has greater effect on species 1 than species 1 on itself

species 1:

species 2:

� if competing species use the same resource then interspecific
competition is equal to intraspecific
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� examination of the model behaviour on a phase plane

� used to describe change in any two variables in coupled differential
equations by projecting orthogonal vectors

� identification of isoclines: a set of abundances for which the growth
rate is 0

N1

N2

K1

0=
dt

dN

N1

N2

K2

species 1          species 2

0<
dt

dN
0<

dt

dN

0>
dt

dN

0>
dt

dN



� species 1
r1N1 (1 - [N1 + α12N2] / K1) = 0
r1N1 ([K1 - N1 - α12N2] / K1) = 0

        if r1, N1 , K1 = 0
and  if K1 - N1 - α12N2 = 0
then N1 = K1 - α12N2

if N1 = 0 then N2 = K1/α12
if N2 = 0 then N1 = K1

� species 2
r2N2 (1 - [N2 + α21 N1] / K2) = 0
N2 = K2 - α21N1

if N2 = 0 then N1 = K2/α21
if N1 = 0 then N2 = K2

� above isocline i1 and below i2 competition is weak
� in-between i1 and i2 competition is strong
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1. Species 2 drives species 1 to extinction
� K and α determine the model behaviour
� disregarding initial densities species 2 (stronger competitor) will
outcompete species 1 (weaker competitor)
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2. Species 1 drives species 2 to extinction

� species 1 (stronger competitor) will outcompete species 2 (weaker
competitor)

12

1
2 α

K
K <

21

2
1 α

K
K >

N1

N2

K2

K1

12

1

α
K

21

2

α
K

K1 = K2
α12 < α21

r1 = r2 
N01 = N02

time
0

species 1

species 2

N

K



3. Stable coexistence of species
� disregarding initial densities both species will coexist at stable  
equilibrium (where isoclines cross)
� at at equilibrium population density of both species is reduced
� both species are weak competitors
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�one species will drive other to extinction
depending on the initial conditions
� coexistence for a short time
� both species are strong competitors

4. Competitive exclusion

r1 = r2
K1 = K2
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� when Tribolium and Oryzaephilus were reared separately both species
increased to 420-450 individuals (= K)

� when reared together Tribolium reached K1 = 360, while Oryzaephilus
K2 = 150 individuals

� combination resulted in more efficient conversion of grain (K12 = 510
individuals)

� three combinations of
densities converged to the
same stable equilibrium

� prediction of
Lotka-Volterra model is correct

Tribolium versus Oryzaephilus
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� dynamic regression analysis is used to estimate parameters from
abundances
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� solution of the differential model:



Two species of Tribolium beetles were kept together in a jar with
flour. Their densities were recorded once a week. The following
abundances were observed:

A: 10, 6, 5, 4, 3, 4, 6, 8, 10, 12, 15, 16
B: 20, 18, 16, 11, 6, 6, 5, 3, 2, 2, 1, 1

1. Estimate r1, r2, K1, K2, α12, α21.
2. Simulate the dynamics using estimated parameters and initial densities
of 20 individuals for each species within POPULUS.
3. Find such combinations of r1, r2 and α12, α21 so that the two species
would coexist.



a<-c(10, 6, 5, 4, 3, 4, 6, 8, 10, 12, 15, 16)
b<-c(20, 18, 16, 11, 6, 6, 5, 3, 2, 2, 1, 1)
a1<-a[-1]/a[-12]
b1<-b[-1]/b[-12]

summary(lm(log(a1)~a[-12]+b[-12]))
0.60443/0.02992
20.20154*0.04106/0.60443

summary(lm(log(b1)~b[-12]+a[-12]))
0.399980/0.005052
79.1726*0.011438/0.399980



Two species of spiders, Pardosa and Ero, occur together and were
found to feed on the following prey:

1. Estimate and plot niche breadth for each species.
2. Estimate niche overlap (a12, a21) for each species.
3. Simulate the population dynamic of the two species using
estimated α12, α21 and given r1=0.7, r2=0.8, K1=300, K2=200, N01=20,
N02=20.
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Araneae Collembola Isopoda Hemiptera Ensifera
Pardosa 0.61 0.15 0.12 0.07 0.05
Ero 0.93 0.05 0.01 0 0.01



Par<-c(0.61,0.15,0.12,0.07,0.05)
Ero<-c(0.93,0.05,0.01,0,0.01)
both<-rbind(Par,Ero)
barplot(both,beside=T,legend.text=c("Par","Ero"))

1/sum(Par^2)
1/sum(Ero^2)
a12<-sum(Par*Ero)/sum(Par^2); a12
a21<-sum(Par*Ero)/sum(Ero^2); a21

comp<-function(t,y,param){
N1<-y[1]
N2<-y[2]
with(as.list(param),{
dN1.dt<-r1*N1*(1-(N1+a12*N2)/K1)
dN2.dt<-r2*N2*(1-(N2+a21*N1)/K2)
return(list(c(dN1.dt,dN2.dt)))})}

N1<-20;N2<-20
param<-c(r1=0.7,r2=0.8,a12=1.4,a21=0.7,K1=300,K2=200)
time<-seq(0,50,0.1)
library(deSolve)
out<-data.frame(ode(c(N1,N2),time,comp,param))
matplot(time,out[,-1],type="l",lty=1:2,col=1)
legend("right",c("N1","N2"),lty=1:2)


