Host-Guest Structures

TOPOTACTIC SOLID-STATE REACTIONS = modifying existing solid state structures while maintaining the integrity of the overall structure

Host dimensionality 3D 2D 1D 0D

GRAPHITE INTERCALATION

 $G(s) + K(melt or vapour) \rightarrow C_8K(bronze)$

$$C_8K$$
 (vacuum, heat) $\rightarrow C_{24}K \rightarrow C_{36}K \rightarrow C_{48}K \rightarrow C_{60}K$

Graphite sp^2 sigma-bonding in-plane $p-\pi$ -bonding out of plane Hexagonal graphite = two-layer ABAB stacking sequence

SALCAOs of the p- π -type create the valence and conduction bands of graphite, very small band gap, metallic conductivity properties in-plane, 104 times that of out-of plane conductivity

C₈K potassium graphite ordered structure
Ordered K guests between the sheets, K to G charge transfer
AAAA stacking sequence, reduction of graphite sheets, electrons enter CB
K nesting between parallel eclipsed hexagonal planar carbon six-rings

ABABAB

Exfoliation

LDH = layered double hydroxides hydrotalcites mineral $Mg_6Al_2(OH)_{16}CO_3.4H_2O$

Brucite layers, Mg²⁺ substituted partially by Al³⁺

Layers have positive charge

Brucite layers, Mg²⁺ substituted partially by Al³⁺ Layers have positive charge

(a) $[Ca_2Al(OH)_6]_2SO_4.6H_2O$ (b) $[LiAl_2(OH)_6]Cl$ (c) $[Mg_{2.25}Al_{0.75}(OH)_6]OH$

LDH = layered double hydroxides hydrotalcites mineral $Mg_6Al_2(OH)_{16}CO_3.4H_2O$

Brucite layers, Mg²⁺ substituted partially by Al³⁺

Layers have positive charge

Intercalate anions $[Cr(C_2O_4)_3]^{3-}$

the intercalation of methylphosphonic acid into Li/Al LDH

- (a) [LiAl₂(OH)₆]Cl.H₂O
- (b) second-stage intermediate, alternate layers occupied by Cl and MPA anions
- (c) first-stage product with all interlayer regions occupied by MPA.

 MPS_3 (M = V, Mn, Fe, Co, Ni, Zn)

TiS₂

 α -Zr(HPO₄)₂.H₂O

$$x Li + TiS_2 \rightarrow Li_x TiS_2$$

3D Intercalation Compounds

Cu₃N and Mn₃N crystallize in the (anti-) ReO₃-type structure

the large cuboctahedral void in the structure can be filled

By Pd to yield (anti-) perovskite-type PdCu₃N

By M = Ga, Ag, Cu leading to MMn_3N

3D Intercalation Compounds

Tungsten trioxide structure

- = WO₆ octahedra joined at their corners
- = the perovskite structure of CaTiO₃ with all the calcium sites vacant

$$Zn + 2 HCl \rightarrow 2 H + ZnCl_2$$

$$WO_3 + x H \rightarrow H_x WO_3$$

17

The color and conductivity changes are due to the intercalation of protons into the cavities in the WO_3 structure, and the donation of their electrons to the conduction band of the WO_3 matrix. The material behaves like a metal, with both its conductivity and color being derived from free electron behavior.

The coloration reaction used in electrochromic displays for sun glasses, rear view mirrors in cars

3D Intercalation Compounds

$$C_{60} = FCC$$

$$K_3C_{60}$$

