Host-Guest Structures **TOPOTACTIC SOLID-STATE REACTIONS** = modifying existing solid state structures while maintaining the integrity of the overall structure # Host dimensionality 3D 2D 1D 0D #### **GRAPHITE INTERCALATION** $G(s) + K(melt or vapour) \rightarrow C_8K(bronze)$ $$C_8K$$ (vacuum, heat) $\rightarrow C_{24}K \rightarrow C_{36}K \rightarrow C_{48}K \rightarrow C_{60}K$ Graphite sp^2 sigma-bonding in-plane $p-\pi$ -bonding out of plane Hexagonal graphite = two-layer ABAB stacking sequence SALCAOs of the p- π -type create the valence and conduction bands of graphite, very small band gap, metallic conductivity properties in-plane, 104 times that of out-of plane conductivity C₈K potassium graphite ordered structure Ordered K guests between the sheets, K to G charge transfer AAAA stacking sequence, reduction of graphite sheets, electrons enter CB K nesting between parallel eclipsed hexagonal planar carbon six-rings **ABABAB** ## **Exfoliation** LDH = layered double hydroxides hydrotalcites mineral $Mg_6Al_2(OH)_{16}CO_3.4H_2O$ Brucite layers, Mg²⁺ substituted partially by Al³⁺ #### Layers have positive charge Brucite layers, Mg²⁺ substituted partially by Al³⁺ Layers have positive charge (a) $[Ca_2Al(OH)_6]_2SO_4.6H_2O$ (b) $[LiAl_2(OH)_6]Cl$ (c) $[Mg_{2.25}Al_{0.75}(OH)_6]OH$ LDH = layered double hydroxides hydrotalcites mineral $Mg_6Al_2(OH)_{16}CO_3.4H_2O$ Brucite layers, Mg²⁺ substituted partially by Al³⁺ Layers have positive charge Intercalate anions $[Cr(C_2O_4)_3]^{3-}$ #### the intercalation of methylphosphonic acid into Li/Al LDH - (a) [LiAl₂(OH)₆]Cl.H₂O - (b) second-stage intermediate, alternate layers occupied by Cl and MPA anions - (c) first-stage product with all interlayer regions occupied by MPA. MPS_3 (M = V, Mn, Fe, Co, Ni, Zn) TiS₂ α -Zr(HPO₄)₂.H₂O $$x Li + TiS_2 \rightarrow Li_x TiS_2$$ ## **3D Intercalation Compounds** Cu₃N and Mn₃N crystallize in the (anti-) ReO₃-type structure the large cuboctahedral void in the structure can be filled By Pd to yield (anti-) perovskite-type PdCu₃N By M = Ga, Ag, Cu leading to MMn_3N ## **3D Intercalation Compounds** Tungsten trioxide structure - = WO₆ octahedra joined at their corners - = the perovskite structure of CaTiO₃ with all the calcium sites vacant $$Zn + 2 HCl \rightarrow 2 H + ZnCl_2$$ $$WO_3 + x H \rightarrow H_x WO_3$$ 17 The color and conductivity changes are due to the intercalation of protons into the cavities in the WO_3 structure, and the donation of their electrons to the conduction band of the WO_3 matrix. The material behaves like a metal, with both its conductivity and color being derived from free electron behavior. The coloration reaction used in electrochromic displays for sun glasses, rear view mirrors in cars # **3D Intercalation Compounds** $$C_{60} = FCC$$ $$K_3C_{60}$$