Layered Compounds

Two-dimensional layers

Graphite

Clay Minerals

Layered Double Hydroxides (LDHs)

Layered α-Zirconium Phosphates and Phosphonates

Layered Manganese Oxides

Layered Metal Chalcogenides

Alkali Silicates and Crystalline Silicic Acids

Layered Compounds

Host-Guest Structures

TOPOTACTIC SOLID-STATE REACTIONS = modifying existing solid state structures while maintaining the integrity of the overall structure

2D

3D

1D

0D

Host-Guest Structures

Exfoliation

Intercalation

Intercalation

Insertion of molecules between layers

Graphite

ABABAB

Graphite sp² sigma-bonding in-plane p-p-bonding out of plane Hexagonal graphite = two-layer ABAB stacking sequence

SALCAOs of the p-p-type create the valence and conduction bands of graphite, very small band gap, metallic conductivity properties in-plane, 10⁴ times that of out-of plane conductivity

Graphite

GRAPHITE INTERCALATION

G (s) + K (melt or vapour) \rightarrow C₈K (bronze)

 $\textbf{C}_8\textbf{K} \text{ (vacuum, heat)} \rightarrow \textbf{C}_{24}\textbf{K} \rightarrow \textbf{C}_{36}\textbf{K} \rightarrow \textbf{C}_{48}\textbf{K} \rightarrow \textbf{C}_{60}\textbf{K}$

C₈K potassium graphite ordered structure

Ordered K guests between the sheets, K to G charge transfer

AAAA stacking sequence reduction of graphite sheets, electrons enter CB K nesting between parallel eclipsed hexagonal planar carbon six-rings

Graphite

Graphene

High electric conductivity (metallic)

Optically transparent – 1 layer absorbs 2.3% of photons

High mechanical strength

Preparation:

- Scotch tape layer peeling, flaking
- SiC pyrolysis epitaxial graphene layer on a SiC crystal

Graphene

- Exfoliation
- CVD from CH₄ on Ni, Cu surfaces

Scotch tape – Layer peeling

Mechanical exfoliation

SiC pyrolysis

- Annealing of the SiC crystal in a vacuum furnace (UHV 10⁻¹⁰ Torr)
- Sublimation of Si from the surface at 1250 1450 °C
- The formation of graphene layers by the remaining carbon atoms

Exfoliation

Chemical exfoliation (surfactant)

Sonochemical exfoliation

CVD from CH₄ / H₂ on Metal Surfaces

1L 2L B Flake 0.34 nm Cu grain boundary Step Wrinkle 100 µm 5 µm С D glass MM 1 CM 1 cm graphene Graphene SiO

(A) SEM - graphene on a copper foil

(B) High-resolution SEM - Cu grain boundary and steps, two- and three-layer graphene flakes, and graphene wrinkles. Inset (B) TEM images of folded graphene edges.
1L, one layer; 2L, two layers.

Graphene transferred onto (C) a SiO₂/Si substrate

(D) a glass plate

Clay Minerals

16

Montmorillonite

Clay Minerals

A clay $[Si_4O_{10}]^{4-}$ tetrahedral (T) sheet in (a) top view and (b) side view

A clay octahedral (O) sheet (c) top view and (d) side view

The $[AI_4O_{12}]^{12}$ dioctahedral top view is shown in (c)

[Mg₆O₁₂]¹²⁻ trioctahedral top view would show a continuous sheet of octahedral units

Clay Minerals

N₂ sorption isotherms

(a) TMA- and Camontmorillonite

(b) An Italian sepiolite

(c) Natural SHCa-1 Na-hectorite

(d) synthetic laponite and Li-(silane)-hectorites

Closed symbols = adsorption Open symbols = desorption

Surface Area

the most important parameters of clays with respect to catalytic applications

TABLE 3 N ₂ BET Surface Areas of Various Clay Minerals		
Clay	Outgassing conditions	S. A., m ² /g
Kaolinite ^{a,b}	200° C, overnight, $<10^{-2}$ torr	8.75
Na,Ca-montmorillonite ^{a,c}	same	31.0
Ca-montmorillonite ^{a,d}	same	80.2
Ca-montmorillonite ^{a, e}	same	93.9
Na-hectorite ^{a,f}	same	64.3
Laponite ^g	105°C, overnight, 10 ⁻³ torr	360
Sepiolite ^h	96°C, 3 h	378
Palygorskite ^h	95°C, <70 h	192

nonpolar guest molecules N₂ do not penetrate the interlayer regions

Na⁺ forms of smectites and vermiculites – no penetration larger ions (Cs⁺ and NH_4^+ keep the basal planes far enough) - limited penetration

20

Layered Double Hydroxides

LDH = layered double hydroxides HT = hydrotalcites Natural mineral hydrotalcite Mg₆Al₂(OH)₁₆CO₃.4H₂O

Brucite layers, Mg²⁺ substituted partially by Al³⁺

Layers have positive charge

Hydrotalcites

Brucite layers, Mg²⁺ substituted partially by Al³⁺ Layers have positive charge

(a) $[Ca_2Al(OH)_6]_2SO_4.6H_2O$ (b) $[LiAl_2(OH)_6]Cl$ (c) $[Mg_{2.25}Al_{0.75}(OH)_6]OH$

Hydrotalcite

The layered structure of LDH is closely related to brucite Mg(OH)₂

a brucite layer, Mg²⁺ ions octahedrally surrounded by six OHthe octahedra share edges and form an infinite two-dimensional layer the brucite-like layers stack on top of one another either rhombohedral (3R) or hexagonal (2H) sequence

Hydrotalcite Mg₆Al₂(OH)₁₆CO₃.4H₂O - 3R stacking

 $[M^{II}_{1-x}M^{III}_{x}(OH)_{2}]^{x+}(A^{m-})_{x/m}]\cdot nH_{2}O$

 $x = 0.25 Mg_6Al_2(OH)_{16}CO_3$

x = 0 Mg(OH)₂

Hydrotalcite

The interlayer spacing c' is equal to d003, 2d006, 3d009, etc.;

c' = (d003 + 2d006 + ... + nd00(3n)) / n

The cell parameter c is a multiple of the interlayer spacing c'

c = 3c' for rhombohedral (3R)

c = 2c' for hexagonal (2H) sequences

Hydrotalcite

Hydrotalcite Mg₆Al₂(OH)₁₆CO₃.4H₂O - 3R stacking

unit cell parameters

a = 0.305 nm c = 3d(003) = 2.281 nm

the interlayer spacing: d(003) = 0.760 nmthe spacing occupied by the anion (gallery height) = 0.280 nm a thickness of the brucite-like layer = 0.480 nm the average M—O bond = 0.203 nm the distance between two nearest OH⁻ ions in the two opposite side layers = 0.267 nm shorter than a (0.305 nm) and indicative of some contraction along the c-axis.

XRD Patterns of LDH

XRD patterns of layered double hydroxides synthesized by coprecipitation method with various cations composition: A – Mg/AI; B- Mg/Co/AI; C- Mg/Ni/AI

* = Reflections from Si crystal used as a reference

XRD Patterns of LDH

rhombohedral structure the cell parameters *c* and *a*

The lattice parameter a = 2d(110) corresponds to an average cation–cation distance

The *c* parameter corresponds to three times the thickness of *d*003

c = 3/2 [*d*003+2*d*006]

Layered Compounds

LDH = layered double hydroxides hydrotalcites mineral $Mg_6Al_2(OH)_{16}CO_3.4H_2O$

Brucite layers, Mg²⁺ substituted partially by Al³⁺

Intercalation to LDH

the intercalation of methylphosphonic acid into Li/Al LDH

- (a) $[LiAl_2(OH)_6]CI.H_2O$
- (b) second-stage intermediate, alternate layers occupied by CI and MPA anions
- (c) first-stage product with all interlayer regions occupied by MPA.

Intercalation to LDH

LDH = layered double hydroxides

hydrotalcites mineral Mg₆Al₂(OH)₁₆CO₃.4H₂O

Brucite layers, Mg²⁺ substituted partially by Al³⁺

Layers have positive charge

Intercalate anions $[Cr(C_2O_4)_3]^{3-1}$

Memory Effect

Calcination to Spinels

The anionic exchange capacity (AEC)

33

Types of the composite structures

Layered Compounds

 MPS_3 (M = V, Mn, Fe, Co, Ni, Zn)

TiS₂

 α -Zr(HPO₄)₂.H₂O

Layered Compounds

x Li + TiS₂ \rightarrow Li_xTiS₂

3D Intercalation Compounds

Cu₃N and Mn₃N crystallize in the (anti-) ReO₃-type structure

the large cuboctahedral void in the structure can be filled

By Pd to yield (anti-) perovskite-type PdCu₃N

By M = Ga, Ag, Cu leading to MMn_3N

3D Intercalation Compounds

Tungsten trioxide structure

= WO₆ octahedra joined at their corners

= the perovskite structure of CaTiO₃ with all the calcium sites vacant

 $Zn + 2 HCI \rightarrow 2 H + ZnCI_2$

 $WO_3 + x H \rightarrow H_x WO_3$

The color and conductivity changes are due to the intercalation of protons into the cavities in the WO_3 structure, and the donation of their electrons to the conduction band of the WO_3 matrix. The material behaves like a metal, with both its conductivity and color being derived from free electron behavior. The coloration reaction used in electrochromic displays for sun glasses, rear view mirrors in cars

OD Intercalation Compounds

 $C_{60} = FCC$

K₃C₆₀

