

Metadynamics & CPMD

Petr Kulhánek

kulhanek@chemi.muni.cz

National Centre for Biomolecular Research, Masaryk University Faculty of Science, Kotlářská 2 CZ-61137 Brno

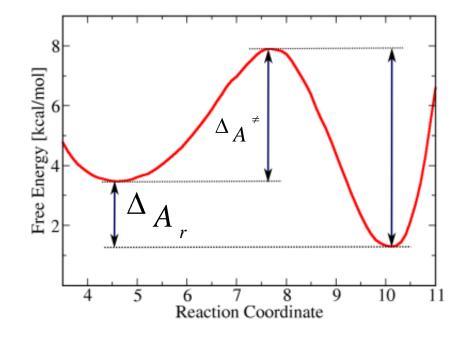
Contents

Free Energy Calculations

- Sampling Problem
- Potential of Mean Force Methods
 - Metadynamics
 - Constrained Dynamics
 - Adaptive Biasing Force
 - Multiple Walkers Approach

Molecular Dynamics and Reactions

- Empirical Valence Bond
- CPMD versus BOMD


Free Energy Calculations

Free Energy

Free energy is related to equilibrium and rate constants.

$$\Delta_{A_{\dot{r}}} = -RT \ln K$$

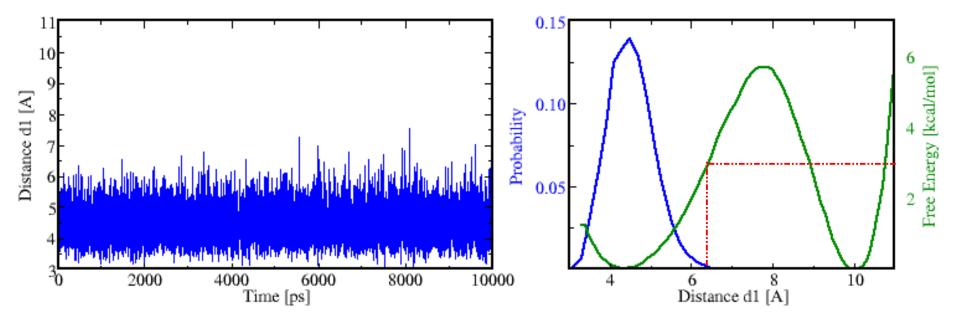
$$k_{1} = \kappa \frac{k_{B}T}{h} e^{-\frac{\Delta_{A}}{RT}}$$

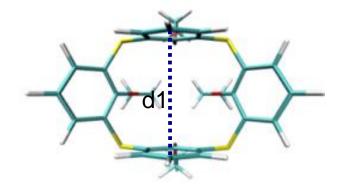
The free energy forms a bridge between a theory and an experiment.

Knowledge of **free energy** allows to quantify:

- chemical reactivity (e.g. enzymatic activities)
- thermodynamics (e.g. binding affinities)

Free Energy Calculations


 $\Delta_{A_{1} \to 2} = -RT \ln \frac{\sigma}{\sigma}$ $A(\xi) = -RT \ln \sigma(\xi) + A_0$ reaction coordinate


Density of state (probability)

It can be calculated from molecular dynamics or Monte Carlo simulations, **but** ...

reaction coordinate collective variables

Sampling Problem

10 ns long simulation is able to discover free energy landscape with depth only about **3 kcal/mol**.

Free Energy Calculations

A system has to be **biased** achieving efficient sampling in the region of interest. We need to know how to obtain the **unbiased free energy** from such biased simulation.

Available methods:

constrained dynamics

system is biased by constraining reaction coordinate

>adaptive biasing force

system is biased by force which is opposite to potential of mean force

umbrella sampling

system is biased by restraining reaction coordinate

➤ metadynamics

system is biased by Gaussian hills, which fill free energy landscape

Free Energy Calculations

Alchemical Transformation

one system is slowly changed to another one (changes are very often unrealistic, atoms are created and/or annihilated)

- what: mostly *changes* in binding free energies:
- **how:** thermodynamic integration (TI), free energy perturbation (FEP)

Potential of Mean Force

system is changed along reaction coordinate

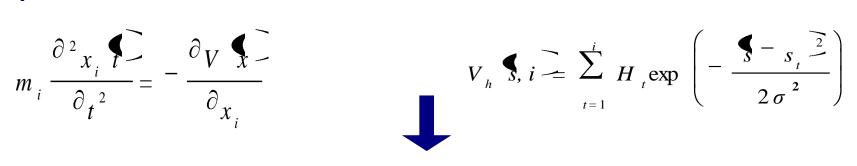
- what: free energy of conformation changes, reaction free energies
- **how:** constrained dynamics, adaptive biasing force, umbrella sampling, metadynamics, steered dynamics

End-points Methods

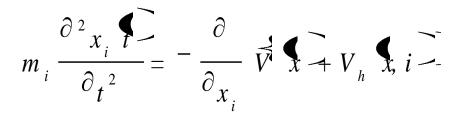
free energy of every state is calculated independently

- what: mostly binding free energies
- how: MM/XXSA; XX=PB, GB, LRA

Metadynamics


Implemented in CPMD

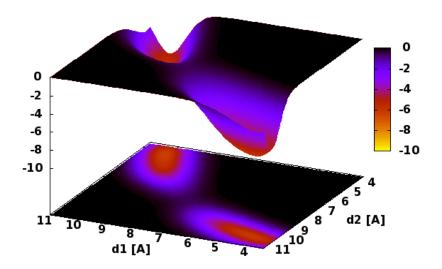
Metadynamics, theory


Free energy landscape is filled by Gaussian hills.

Equations of motion

MTD history potential

Equations of MTD motion (direct approach)



History-dependent term converges to FES

$$A \ \mathbf{S} \stackrel{\sim}{=} \lim_{i \to \infty} -V_h \ \mathbf{I}, \ \mathbf{S} \stackrel{\sim}{=}$$

Metadynamics, example

Free energy [kcal/mol]

Free energy [kcal/mol]

11

10

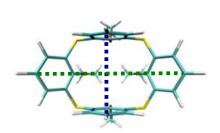
9

8

7

6

5


4

4

5

6

d2 [A]

8

7

d1 [A]

9

DIS (distance)

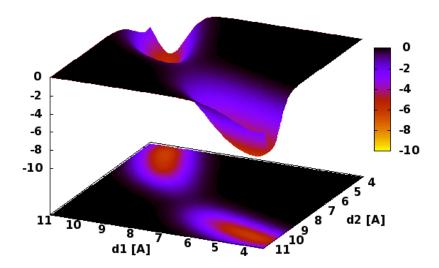
hill height 0.01 kcal/mol, width 0.5 x 0.5 Å MTD frequency 500 fs 2 ns long simulation 300 K, vacuum, GAFF force field, time step 0.5 fs 0

-2

-4

-6

-8


-10

11

10

Metadynamics, example

Free energy [kcal/mol]

Free energy [kcal/mol]

11

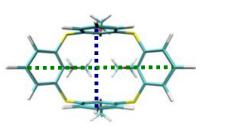
10

9

8

7

6


5

4

5

6

d2 [A]

8

7

d1 [A]

9

DIS (distance)

hill height 0.01 kcal/mol, width 0.5 x 0.5 Å MTD frequency 500 fs

2 ns long simulation

300 K, vacuum, GAFF force field, time step 0.5 fs

0

-2

-4

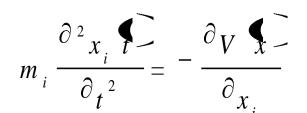
-6

-8

-10

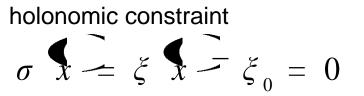
11

10


Constrained Dynamics

Implemented in CPMD

Constrained Dynamics, theory


Reaction coordinate is fixed (constrained) at the value of interest.

Equations of motion

Equations of constrained motion

Constraint condition

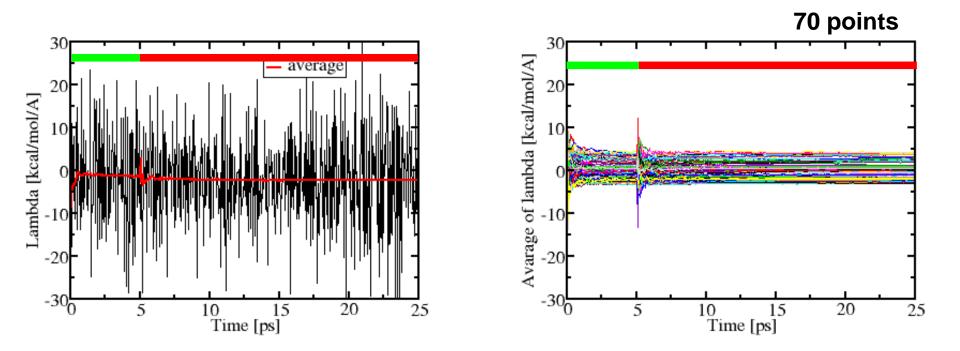
method of Lagrange multipliers

 $m_{i} \frac{\partial^{2} x_{i} \mathbf{f}}{\partial_{t}^{2}} = -\frac{\partial}{\partial_{x_{i}}} \left\{ V \mathbf{f} + \sum_{k} \lambda_{k} \mathbf{f} \mathbf{\sigma}_{k} \mathbf{f} \right\}$

 λ_k = Lagrange multipliers

9th November 2010, Bratislava

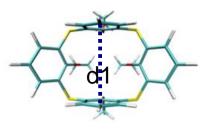
Constrained Dynamics, theory


Derivative of **unbiased free energy** is also given by (concise formulation):

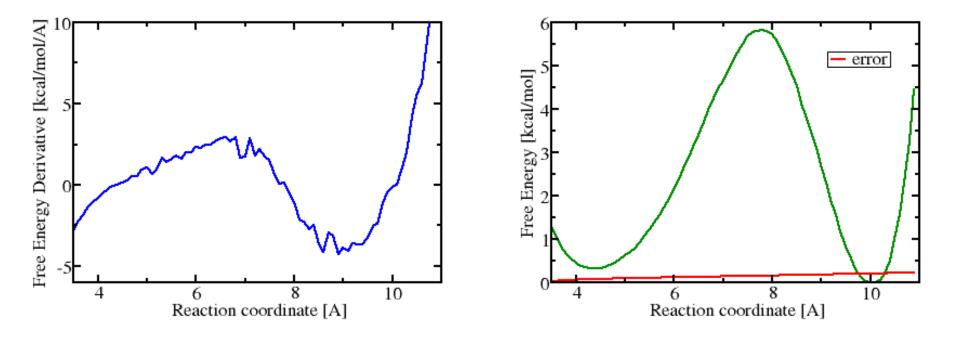
$$\frac{dA \overset{uc}{\xi}}{d\xi} = \frac{dA \overset{c}{\xi}}{d\xi} + \frac{dA \overset{c}{\xi}}{d\xi} = \langle -\lambda \rangle_{\xi_0} - RT \frac{d}{d\xi} \ln \langle Z^{-1/2} \rangle_{\xi_0}$$

second derivatives are not required

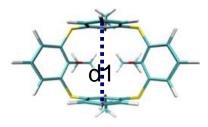
Final free energy is obtained by numerical **integration**:


$$\Delta G = \int_{\xi_1}^{\xi_2} \frac{dA^{uc} \xi}{d\xi} d\xi$$

Constrained Dynamics, example


Small numbers are calculated by averaging big numbers.

77 points, $\Delta \xi$ 0.1 Å Method B: 5 ps shift, 5 ps equilibration, 20 ps production 300 K, vacuum, GAFF force field, time step 1 fs / 0.5 fs



DIS (distance)

Constrained Dynamics, example

77 points, $\Delta \xi$ 0.1 Å Method B: 5 ps shift, 5 ps equilibration, 20 ps production 300 K, vacuum, GAFF force field, time step 1 fs / 0.5 fs

DIS (distance)

Adaptive Biasing Force

Implemented in CPMD

ABF, theory

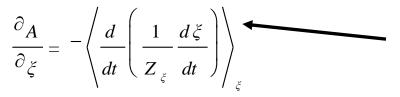
Movement along reaction coordinate is the subject of diffusion process.

Equations of motion

$$m_{i} \frac{\partial_{t}^{2} x_{i} \mathbf{r}}{\partial_{t}^{2}} = -\frac{\partial_{V} \mathbf{r}}{\partial_{x_{i}}}$$

Equations of ABF motion

$$m_{i} \frac{\partial^{2} x_{i} t}{\partial_{t}^{2}} = -\frac{\partial_{V} t}{\partial_{x_{i}}} + F_{ABF} \xi^{-1}$$


Free energy and force along RC

$$F_{ABF} \quad \mathbf{x} \stackrel{\sim}{=} - \frac{dA \quad \boldsymbol{\xi} - d\,\boldsymbol{\xi}}{d\,\boldsymbol{\xi} \quad dx}$$

force along reaction coordinate is subtracted from the system

ABF, theory

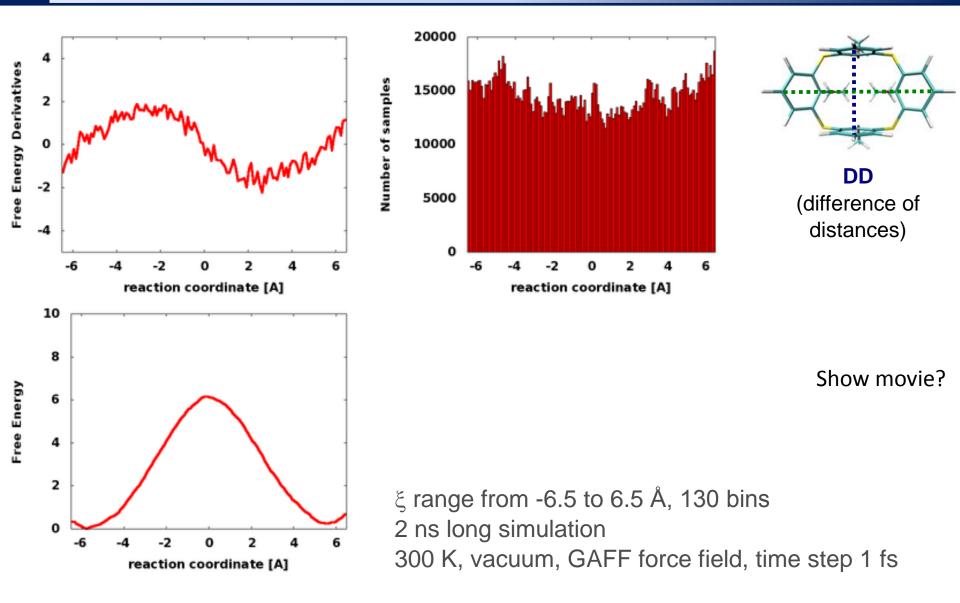
Free energy is given by:

it contains the second derivatives of reaction coordinate if treated analytically

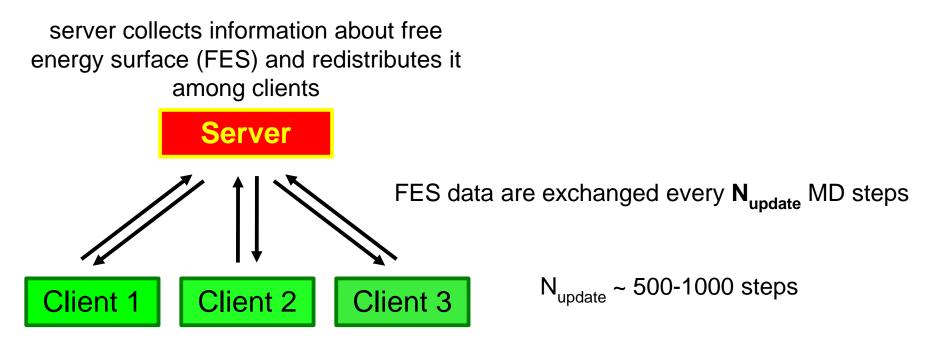
equation is solved numerically

Procedure:

- range of reaction coordinate is divided into bins
- a value of reaction coordinate determine a bin


 a contribution to the derivative of free energy is accumulated into a bin

• ABF force calculated from accumulated free energy derivative

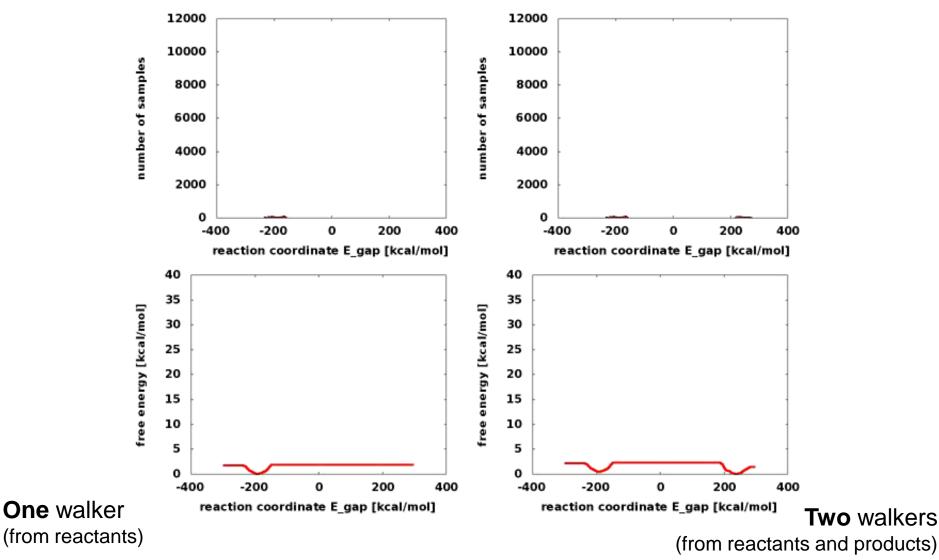

is applied to the system

accumulated free energy derivative very rapidly converges

ABF, example

Multiple Walkers Approach

Applicable to:


- > Metadynamics
- Adaptive biasing force

Advantages:

- Faster convergence
- Easy to implement
- Parallel scaling is almost linear

Multiple Walkers Approach

Nucleophilic substitution reaction (test case)

PMFLib A Toolkit for Free Energy Calculations

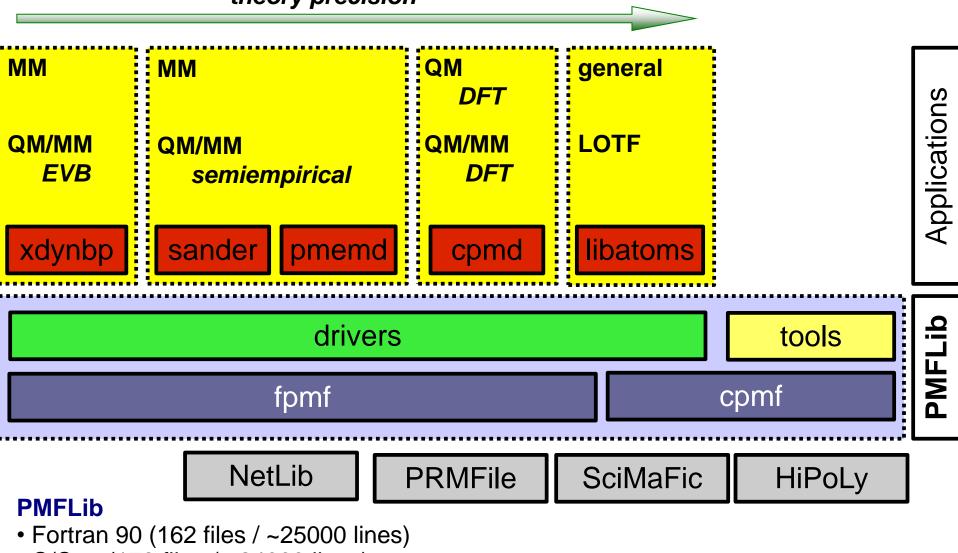
developed by Petr Kulhánek

PMFLib, functionality

Implemented methods:

- Constrained dynamics (BM)
- Adaptive biasing force (ABF)
- Metadynamics (MTD)
- Umbrella sampling
- Multiple walker MTD
- Multiple walker ABF
- Replica Exchange Dynamics
- String Method

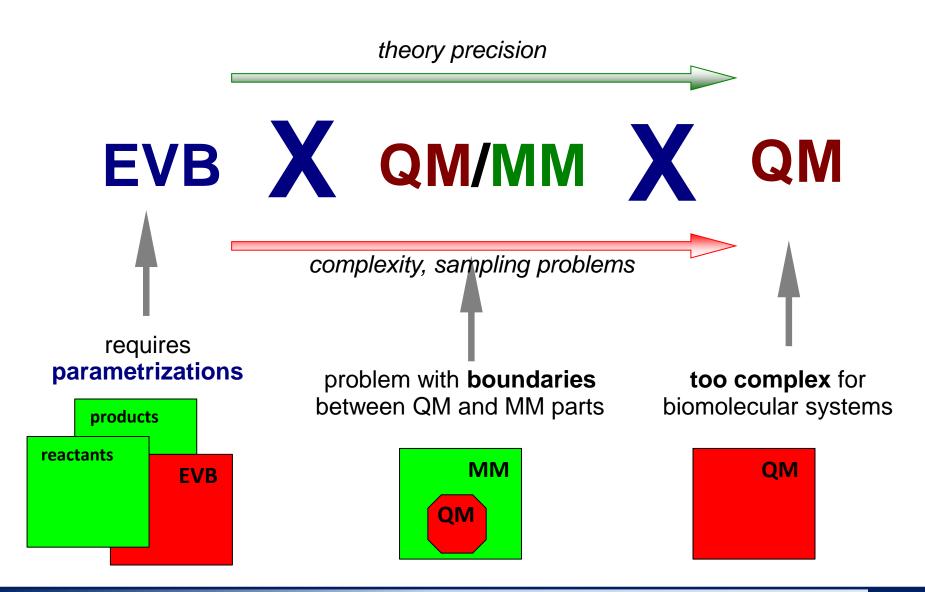
Reaction coordinates:


- DIS, DS
- DD, DDS
- ➢ ODISM, ODSM
- ≻ ANG, ANGM, CANG, CANGM
- ≻ DIH, DIHM
- ≻ AC, GC
- ➢ RGYR
- ➢ RMSDT, RMSDL
- > EPOT, EGAP and variants

Tools:

- MTD energy
- BM integration
- ➤ ABF integration
- Multiple walker MTD server and administration client
- Multiple walker ABF server and administration client

PMFLib, design


theory precision

C/C++ (178 files / ~24000 lines)
 9th November 2010, Bratislava

Molecular Dynamics and Reactions

Description of Chemical Reactions

9th November 2010, Bratislava

CPMD Car-Parrinello Molecular Dynamics

Method

$$\mathcal{L}_{\rm CP}[\mathbf{R}^N, \dot{\mathbf{R}}^N, \{\Phi_i\}, \{\dot{\Phi}_i\}] = \sum_I \frac{1}{2} M_I \dot{\mathbf{R}}_I^2 + \sum_i \mu \left\langle \dot{\Phi}_i \left| \dot{\Phi}_i \right\rangle - \mathcal{E}^{\rm KS}\left[\{\Phi_i\}, \mathbf{R}^N \right] \right.$$

Equations of motion:

 $M_{I}\ddot{\mathbf{R}}_{I} = -\frac{\partial E^{\mathrm{KS}}}{\partial \mathbf{R}_{I}} + \sum_{ij} \Lambda_{ij} \frac{\partial}{\partial \mathbf{R}_{I}} \langle \Phi_{i} | \Phi_{j} \rangle \quad \text{ions}$ $\mu | \ddot{\Phi}_{i} \rangle = -\frac{\delta E^{\mathrm{KS}}}{\delta \langle \Phi_{i} |} + \sum_{j} \Lambda_{ij} | \Phi_{j} \rangle \quad \text{wavefunction}$ fictitious mass of wavefunction
(ca 300-700 a.u., typical value is about 600 a.u. constraints due to

constraints due to orthonormality of wavefunction

CPMD versus BOMD

CPMD

- no SCF procedure
- motion of ions in time
- motions of wavefunction in time
- time step ~ 0.1 fs (5 a.u.)

BOMD

- SCF procedure
- motion of ions in time only
- wavefunction follows ions by SCF (BO)
- time step max ~ 1 fs
- gradients require very tight convergence of wavefunction optimization

- DFT only (in CPMD)
- hybrid functional possible but very slow
- dispersion correction available
- planewaves wavefunction (periodicity!)
- wavefunction quality is determined by cutoff (single value)
- pseudopotentials required (core electrons)

Practicals ...

- read manual (it was very improved in the last version) !
- read two chapters from NIC books about CPMD (about 150 pages), freely downloadable
- be veeeery patient

Typical setup:

- time step 5 a.u.
- WF mass 600 a.u.
- pseudopotentials: Troulier-Martins normconserving
- WF cutoff: 70 Rydbergs
- charged/isolated systems (also in QM/MM calculations)
 - add 2-3A to box dimensions, molecule has to be centered!!!
 - Poission solver: Tuckerman
- heating: Berendsen thermostat
- production: Nose-Hoover thermostat
- ultrasoft Vanderbilt pseudopotential are problematic for Mg

Practicals in smaller group.

Acknowledgements

- Igor Tvaroška, Stanislav Kozmon
- Jaroslav Koča, Zora Střelcová, Jakub Štěpán
- Monika Fuxreiter
- POSTBIOMIN (financial support)