C7895 Mass Spectrometry of Biomolecules

Jan Preisler

Analytical chemistry division, Chemistry dept. A14-312, tel.: 549496629

The course is focused on mass spectrometry of biomolecules, i.e. ionization techniques MALDI and ESI, modern mass analyzers, such as time-of-flight MS or ion traps and bioanalytical applications. However, the course covers much broader area, including inorganic ionization techniques, virtually all types of mass analyzers and hardware in mass spectrometry.

Schedule of lectures for 2010

The lectures will take place in A14-207 every Wednesday 14:00 - 15:50. The changes will be announced in advance.

Consultations Please contact me in advance to make an appointment.

Mass spectrometry of biomolecules 2010

Preliminary Schedule of the Lectures for 2004

- VII. 3.11. Time-of-Flight Mass Spectrometer (TOFMS). Techniques for Enhanced Resolution in TOF MS (Reflector, Delayed Extraction and Orthogonal Extraction).
- VIII. 10. 11. Ion Dissociation (CID, SID, ECD, ETD, IRMPD). Tandem Mass Spectrometry (MS/MS). In-Source Decay (ISD), Post-Source Decay (PSD). New Techniques (TOF-TOF, LIFT). Ion mobility spectrometry (IMS).
- IX. 17. 11. Vacuum: Principles & Techniques. Detectors. Data Acquisition. Coupling of Separation and MS (on-line, off-line, chips)
- Х. 24. 11. Applications: Proteins and Peptides. Protein Identification: Peptide Mapping, Sequence Tag, Accurate Mass Tag.
- XI. 3.12. Proteins and peptides. Isotope Labelling. ICAT. Sequence Determination. Post-translational Modification.
- XII. 10. 12. Disulfide Bridge Analysis. Proteins. MS databases. DNA, Saccharides, Synthetic Polymers. XIII. 17.12. Christmas consultation session

Mass spectrometry of biomolecules 2010

	Content	
I.	Introduction	
II.	Ionization methods and sample introduction	
ш.	Mass analyzers	
IV.	Biological applications of MS	
v.	Example problems	
		2

Preliminary Schedule of the Lectures for 2004

- **22.9.** A Brief Historical Perspective: Overview of Techniques and Technology. Basic Concepts of MS (resolution, sensitivity). Isotope patterns of organic molecules. Ionization techniques and sample ١. introduction. Electron impact ionization (EI).
- 29.9. Chemical Ionization (CI). Glow Discharge. Inductively Coupled Plasma (ICP). Field Ionization/Desorption. Fast Atom Bombardment П. 29. 9. (FAB). Secondary Ion Mass Spectrometry (SIMS). Photoionization (PI). Plasma Desorption (PD)
- III. 6.10. Laser Desorption (LD). Matrix-Assisted Laser Desorption/ Ionization (MALDI).
- IV. 13. 10. Thermospray (TSI). Ionspray (IS). Electrospray (ESI). Mass Spectrometers: Ion Optics. Wein Filter. Energy Analyzer (E).
- V. 20. 10. Magnetic Sector (B). Quadrupole Filter (Q). Ion Trap (IT).
- VI. 27. 10. Linear Trap (LT). Ion Cyclotron Resonance Fourier Transform Mass Spectrometer (FT-ICR-MS). Orbitrap. Electrostatic Trap. Simulation of Ion Movement (Simion), examples.

Mass spectrometry of biomolecules 2010

I. Introduction

- · Information sources about mass spectrometry
- · Brief history of mass spectrometry, a survey of methods and instrumentation
- Basic concepts of mass spectrometry
- · Isotope patterns of organic molecules.

Mass spectrometry of biomolecules 2010

Study Material

Lecture notes

Advice: please take notes, but do not copy the slides; the English slides will be provided at the end of the semester. The Czech slides can be found on the internet: <u>http://bart.chemi.muni.cz</u>

Additional literature

- Robert J. Cotter: Time-of-Flight Mass Spectrometry Instrumentation and Applications in Biological Research, American Chemical Society, 1997.
- Richard B. Cole et al.: Electrospray lonization Mass Spectrometry -Fundamentals, Instrumentation & Applications, John Wiley & Sons, Inc., 1997.

Mass spectrometry of biomolecules 2010

Mass Spectrometers

Ion optics. Simulation of ion movement, Simion Energy analyzers Magnetic sectors Quadrupole filter Ion cyclotron with Fourier transformation (ICR-FT-MS) Ion trap (IT), linear trap (LT) Time-of-flight mass spectrometer (TOFMS) New mass spectrometers: Orbitrap, TOF-TOF, LIFT-TOF Tandem mass spectrometry (MS/MS, MSⁿ) Collision induced dissociation (CID) Surface induced dissociation (CID) In source and post source fragmentation (ISF and PSD) Principles of vacuum instrumentation Detectors a detection electronics Chromatography - MS (on-line, off-line, in-line, microdevices)

Mass spectrometry of biomolecules 2010

Additional Sources of Information

Internet

Textbook http://www.ms-textbook.com/ Comprehensive information source www.spectroscopynow.com Laboratories, e.g. www.mpi-muelheim.mpg.de/stoecki/mass_server.html Protein Prospector prospector.ucsf.edu Proteometrics - PROWL www.proteometrics.com Etc etc.

Specialized journals

International Journal of Mass Spectrometry Journal of Mass Spectrometry Journal of the American Society for Mass Spectrometry Mass Spectrometry Reviews Rapid Communications in Mass Spectrometry

Mass spectrometry of biomolecules 2010

MS Applications

10

11

Analysis of biological compounds:

- Proteins, peptide mapping, protein databases, new methods (ICAT)
- · Peptide analysis (disulfide bonds, post-translational modifications)
- Nucleic acids
- Saccharides

7

8

9

Analysis of synthetic polymers

and more ...

Mass spectrometry of biomolecules 2010

Ionization Techniques and Sample Introduction
Glow discharge (GD)
Electron impact ionization (EI)
Chemical ionization (CI)
Field ionization (FI)
Inductively coupled plasma (ICP)
Fast atom bombardment (FAB)
Secondary ion mass spectrometry (SIMS)
Thermospray (TSI)
lonspray (IS)
Elektrospray (ESI)
Plasma Desorption (PD)
Laser Desorption (LD)
Matrix-assisted laser desorption/ionization (MALDI)
Coupling of separation and mass spectrometry (on-line, off-line, microdevices)
Mass spectrometry of biomolecules 2010

Mass spectrometry of biomolecules 2010

Mass Spectrum

lon signal vs. m/z

lon signal

charge, current, often converted to voltage, arbitrary units signal normalization: intensity of the dominant peak = 100%

Mass, m a.m.u., u, Da (Dalton), molecular weight number of atom mass units numerically equivalent to molar weight m/z mass-to-charge ratio, Th (Thomson) Number of charges, z: number of elemental charges of an ion usually ±1 exceptions, e.g. electrospray-generated ions: z >> 1 Pozitivní and negative ions, not cations and anions. Mass spectrometry, not spectroscopy. Mass spectrometry of biomolecules 2010	Mass Spectrum	
a.m.u., u, Da (Dalton), molecular weight number of atom mass units numerically equivalent to molar weight <i>m/z</i> mass-to-charge ratio, Th (Thomson) Number of charges, <i>z</i> : number of elemental charges of an ion usually ±1 exceptions, e.g. electrospray-generated ions: <i>z</i> >> 1 Pozitivní and negative ions, not cations and anions. Mass spectrometry, not spectroscopy. Mass spectrometry of biomolecules 2010 20	Mass, <i>m</i>	
Number of charges, z: number of elemental charges of an ion usually ±1 exceptions, e.g. electrospray-generated ions: z >> 1 Pozitivní and negative ions, not cations and anions. Mass spectrometry, not spectroscopy. Mass spectrometry of biomolecules 2010 20	a.m.u., u, Da (Dalton), molecular weight number of atom mass units numerically equivalent to molar weight m/z mass-to-charge ratio, Th (Thomson)	
number of elemental charges of an ion usually ±1 exceptions, e.g. electrospray-generated ions: z >> 1 Pozitivni and negative ions, not cations and anions. Mass spectrometry, not spectroscopy. Mass spectrometry of biomolecules 2010 20	Number of charges, <i>z</i> :	
Pozitivní and negative ions, not cations and anions. Mass spectrometry, not spectroscopy. Mass spectrometry of biomolecules 2010 20	number of elemental charges of an ion usually ±1 exceptions, e.g. electrospray-generated ions: z >> 1	
Mass spectrometry, not spectroscopy. Mass spectrometry of biomolecules 2010 20	Pozitivní and negative ions, not cations and anions.	
Mass spectrometry of biomolecules 2010 20	Mass spectrometry, not spectroscopy.	
	Mass spectrometry of biomolecules 2010	20

	Abbreviations	
n I F R f Δ LD S/N RSD	numerical concentration (m ⁻³) current (A), flux (m ⁻²), intensity (-) absolute temperature (K) pressure (Pa, Torr) resolution (-) frequency (Hz) angular frequency (rad/s, s ⁻¹) direct proportion detection limit, also <i>LOD</i> , limit of detection (mol, g, M) signal-to-noise ratio relative standard deviation	
Mass	spectrometry of biomolecules 2010	23

Selected Powers in Mass Spectrometry	
Mass resolution A measure of separation of two adjacent peaks.	
 Two definitions: FWHM (full width at half maximum), R = m/∆m Max. mass (m/2), at which two adjacent peaks with a unit mass difference may be resolved. 	
Ion energy, W Instead of Joule (J) use electronVolts (eV) and atoms or ions rather that moles 1 eV = 1.6 x 10 ⁻¹⁹ J simplicity: acceleration voltage = 100 V, charge = 1 W = 100 eV can be easily compared with ionization energy, bond energy, photon en	n ergy
Pressure, <i>p</i> 1 atm = 760 Torr = 101 325 Pa = 1.01325 bar = 14.70 PSI	
Mass spectrometry of biomolecules 2010	21

Isotope Patterns of Organic Molecules
Carbon isotopes: 99% ¹² C, 1% ¹³ C
Pattern as a function of number of carbon atoms in the molecule:
C: 99% ¹² C 1% ¹³ C
C ₂ : 98% ¹² C ¹² C 2% ¹² C ¹³ C 0.01% ¹³ C ¹³ C
C ₃ : 97% ¹² C ¹² C ¹² C 3% ¹² C ¹² C ¹³ C 0.04% ¹² C ¹³ C ¹³ C 10 ⁻⁴ % ¹³ C ¹³ C ¹³ C
Binomic formula
Relative abundance of the light isotope, a
Relative abundance of the heavy isotope, b
Number of atoms <i>n</i>
E a for $n = 2$; $(2 \pm b)^2 = 2^2 \pm 22b \pm b^2$
L.g. 101 H = 2. (a+b) = a + 2ab + b
Monoisotopic molecule contains given atoms in form of a single isotope. In the case of biomolecules usually carbon atoms in the form of ¹² C.
Mass spectrometry of biomolecules 2010 24

	Isotope	e Patterns of Organic Molecules	
Relati	ive abundand	e of molecules (%):	
C ₆₀ :	¹² C ₆₀	100	
	¹² C ₅₉ ¹³ C	66	
	¹² C ₅₈ ¹³ C ₂	21	
	¹² C ₅₇ ¹³ C ₃	4.6	
C ₁₀₀ :	¹² C ₁₀₀	100	
	¹² C ₉₉ ¹³ C	110	
	¹² C ₉₈ ¹³ C ₂	60	
	${}^{12}C_{97}{}^{13}C_{3}$	22	
(norm	alized with re-	spect to the monoisotopic molecule /only ¹² C/ = 100 %	6)
With i mono more envelo	ncreasing nur isotopic form and intensities ope) see ex	nber of carbon atoms, <i>n</i> , the relative intensity of the decreases, the monoisotopic peak is not dominant an s of other isotopic forms are comparable (wide samples below.	y
Mass s	pectrometry of bi	omolecules 2010	25

Practical Impact of Isotope Abundance - Decrease of sensitivity - High resolution R necessary at high m/z for correct determination of m/z+ Use of isotopic internal standards. The best internal standards. Example: 5 peptides/proteins with relative abundance of elements C : H : N : O : S = 30 : 45 : 6 : 6 : 1 $R = 20\ 000$ C₃₀H₄₅N₆O₆S C₆₀H₉₀N₁₂O₁₂S₂ $C_{90}H_{135}N_{18}O_{18}S_3$ $C_{180}H_{270}N_{36}O_{36}S_6$ (also shown for more *R*) $C_{270}H_{405}N_{54}O_{54}S_9$ $\mathsf{C}_{360}\mathsf{H}_{540}\mathsf{N}_{272}\,\mathsf{O}_{272}\mathsf{S}_{12}$ $C_{900}H_{1350}N_{180}O_{180}S_{30}$ $C_{1800}H_{2700}N_{360}O_{360}S_{60}$ Mass spectrometry of biomolecules 2010 26

Mechanism of El

Interaction of electron with analyte molecule ABC: e^{-} (fast) + ABC \rightarrow ABC⁺ + 2 e^{-} (slow) Total equation, ABC \rightarrow ABC⁺ + e⁻ is characterized by ionization energy ABC, *AH*(ABC). lons ABC⁺ with energy excess can undergo fragmentation: $(ABC^+)^* \rightarrow AB^+ + C, A + CB^+ etc$ Fragmentation extent depends on electron energy, E(e⁻) and on the analyte structure: a) $W(e) \sim ionization potential \Rightarrow$ production of molecular ions. Ionization potential of simple organic molecules ~10 - 12 eV. b) $W(e) >> ionization potential \Rightarrow fragmentation.$ Type of fragmentation depends on analyte structure; compounds of similar structure have similar fragmentation spectra. Interpretation of spectra. Spectral libraries (> 100 000 spekter). Mass spectrometry of biomolecules 2010 44

Mechanism of El Appearance energy (AE), at which the fragments AB⁺ appears, does not have to be higher than $\Delta H(ABC)!$ $\rm ABC \rightarrow ABC^{+} + e^{-}$ Ionization energy ABC, *AH*(ABC) Threshold energy AB+, AE(AB+) $ABC \rightarrow AB^+ + C + e^ AE(AB^+) = \Delta H(ABC) + D(ABC^+)$ Dissociation energy ABC+, D(ABC+) Absorption of electron during travel through the analyte Reduction of electron flux, dl during the travel through infinitesimally thin analyte layer: $dI = -\alpha cIdx$, after integration: $I = I_o e^{-\alpha cx}$ I electron flux (A) c concentration of ABC, (cm⁻³) (c = p/RT) x layer thickness (cm) α cross-section (cm²) ... analogy of ε coefficient in the Lambert-Beerově law Mass spectrometry of biomolecules 2010 45

Mechanism of Ion Formation at CI (cont.)				
2b) proton transfer (more common) RH ⁺ \rightarrow R + H ⁺	PA(R) proton affinity			
ABC + $H^+ \rightarrow ABCH^+$	- <i>PA</i> (ABC)			
$RH^+ + ABC \rightarrow R + ABCH^+$	$\Delta E = PA(R) - PA(ABC)$			
ΔE < 0: exothermic, preferred reaction				
$\Delta E << 0$: energy excess at ABCH ⁺ \Rightarrow f str	ragmentation of ABCH+ uctural analysis			
$\Delta E < 0, \Delta E \rightarrow 0 \Rightarrow ABC^{+} a ABCH^{+} do $ + quantitative analysis + determination of molecular weight	minate of ABC			
+ high ionization efficiency (ABC)				
Mass spectrometry of biomolecules 2010		48		

Collisions during Cl

Mean free path

Mean path, which a particle travels between 2 collisions $\lambda = (\sqrt{2\pi\sigma^2 n})^{-1}$ $\lambda(cm) = 0.66/p(Pa)$ (only the 1st approximation)

Number of collisions $z = \pi \sigma^2 (8kT/(\pi \mu))^{1/2}$

 μ reduced mass, $\mu = (m_1^{-1} + m_2^{-1})^{-1}$

- σ collision diameter
- σ^2 collision cross-section

CI: 10¹⁵⁻¹⁶ collisions \Rightarrow high ionization efficiency (ABC)

Comparison of CI vs. El

- + stronger signal
- higher noise
- + overall S/N higher (LOD of organic compounds ~ pg)

Mass spectrometry of biomolecules 2010

Sample Introduction for EI/CI (cont.) ii) membrane interface - sample introduction through a membrane, separation of the carrier gas using a gas-permeable membrane c) direct introduction from a capillary GC column lower gas load; lower flow rate of the carrier gas (He) 2. Volatile, thermally stable solid sample Direct sample introduction on a probe (glass, ceramics, steel). After introduction of the probe, the sample begins to evaporate and undergoes ionization in the gaseous state.

52

Mass spectrometry of biomolecules 2010

Negative Chemical Ionization The same ion source as in the case of EI plus an inlet for reagent gas Mechanism 1. Production of thermal (slow) electrons e^{-} (fast) + RH \rightarrow RH⁺ + 2 e^{-} (slow) $W(\text{slow e}) \sim 3/2 \ kT$

 $T \sim 400 \text{ K} \Rightarrow E \sim 0.1 \text{ eV}$

2. Electron capture

 $ABC + e^- \rightarrow ABC^-$ Preferred by compounds with electronegative groups (PCB, NO3 etc.) LD ~ pa

Mass spectrometry of biomolecules 2010

50

49

Sample Introduction for EI/CI (cont.) 3. Nonvolatile compounds Large molecules Molecules with many polar groups .. many interesting compounds (proteins, DNA, saccharides) a) Generation of volatile derivates and consecutive standard ionization (EI, CI). Useful for molecules with M < 1000 Da. Example: esterification, RCOOH + $CH_3OH \rightarrow RCOOCH_3$ b) Application of classical <u>ionization in desorption arrangement</u>. Sample deposited on a probe is inserted into an ion source, in which electrons interact directly with the sample in condensed state c) Other ionization techniques "Soft" ionization: production of molecular ions without their thermal decomposition: FAB, electrospray, laser desorption techniques 53

Mass spectrometry of biomolecules 2010

ICP

Supersonic jet

Hot plasma (5000 K) streams via an aperture (slit) into a chamber and expands at supersonic velocity. Random movement of atoms at the atmospheric side is characterized by wide kinetic energy distribution (5000 K) and relatively low translational velocity. The atoms move at supersonic velocity with a very narrow kinetic energy dispersion ... supersonic cooling (~300 K). Distribution is later ruined by collisions with molecules of background gas (*barrel shock, Mach disc*).

Efficient ionization

90 - 100 % elements are ionized (very uniform ionization). Applicable for determination of isotopic abundance (low systematic deviation), elemental composition.

Disadvantages

not useful for structural characterization of analytes
 interferences

Mass spectrometry of biomolecules 2010

Examples of isobaric ions and required resolution Interfering ion Isotope Resolution ³⁹K 38Ar1H+ 5690 ⁴⁰Ca 40Ar+ 71700 40Ar1H+ ⁴¹K 4890 14N14N16O+ 44Ca 970 12C16O16O+ 1280 52Cr 40Ar12C+ 2380 40Ar16O+ ⁵⁶Fe 2500 40Ar35Cl+ 75As 7770 ⁸⁰Se 40Ar40Ar+ 9690 Note: higher resolution often means lower sensitivity. Mass spectrometry of biomolecules 2010 64

Spectral Interference in ICP

		10	СР			
Detection li 1 ppt (quadr 10 ppq (mag for comparis	mits upole) gnetic sector) son: <i>LD</i> of ICF	P-AES and A	AAS ~ ppi	m - ppb		
ppm million 10 ⁶	ppb billion 10 ⁹	ppt trillion 1	ppq 0 ¹² qua	drillion 10 ¹⁵		
Interference 1. <u>Non-spec</u> Shifts of i easily ion	es <u>tral</u> onization equ izable elemer	libria as a re its etc.	esult of su	Ippression by	matrix, ac	ids or
2. <u>Spectral</u> Isotopic id Izobaric n	ons nolecular ions					
Mass spectrom	netry of biomolec	ıles 2010				62

Spectral Interferences in ICP Plasma gas and reaction products (Ar*, Ar²⁺, ArH*, ArO*, ArC*, ArN* etc.) Sample or solvent (hydride ions, OH*, ClO*, NO*, CaO*, LaO* etc.) Chemical ionization of background gas (H₂O*, H₃O*, C_xH_y* etc.) Elimination of spectral interference Mathematic corrections (e.g. using isotope distribution) Desolvation of aerosol (e.g. by freezing in liquid N₂) Cold plasma (relative shifts of ionization degree) Collision cell (thermalization of ions, shifts of reaction equillibria) Mass spectrometer with high resolution

Mass spectrometry of biomolecules 2010

63

61

Desorption Ionization Techniques LDI Laser Desorption/Ionization 1963 R. Honig FD Field Desorption 1969 H. D. Beckey PD Plasma Desorption 1974 R. D. MacFarlane FAB Fast Atom Bombradment 1981 M. Barber SIMS Secondary Ion Mass Spectrometry 1976 A. Benninghoven MALDI Matrix-Assisted Laser Desorption/Ionization 1988 M. Karas & F. Hillenkamp, K. Tanaka Mass spectrometry of biomolecules 2010 66

Matrices - Ap	plications	
peptides < 10 000	CHCA, DHB	
peptides, proteins > 10 000	SA, DHB	
oligonucleotides < 3 kDa	THAP	
nucleic acids > 3 kDa	HPA	
synthetic polymers	DHB, DIT, IAA	
carbohydrates	DHB, CHCA, THAP	
Addition of "comatrices" (e.g. mono improvements in crystallization, sar resolution, suppression of fragment	saccharides) may lead to nple homogeneity, mass ation etc.	
Mass spectrometry of biomolecules 2010		92

	Properties of Matrices	
CHCA:	"hot" matrix	
	to peptides with $M < 10000$ Da	
	userul for FSD (structure analysis)	
DHB:	"cold" matrix	
	universal use	
Mass spectro	metry of biomolecules 2010	93

MALDI Perspective MS analysis of large series of biological samples • peptide mapping for identification of proteins (MALDI MS of products enzymatic protein digests) • peptides, proteins, oligonucleotides, saccharides Micro methods Coupling with separation techniques • advantage of sample archiving on MALDI target • recent availability of MS/MS spectrometers for MALDI • complementar to ESI (various ionization efficiency for various analytes)

106

Mass spectrometry of biomolecules 2010

MALDI Characteristics

- + one of the most ionization techniques applied in mass spectrometry of biopolymers (together with ESI)
- + soft ionization
- + simple spectra, usually z = +1 or z = -1 (for analytes with electronegative groups)
- + pulse ionization (predestined for coupling with TOF mass analyzers)

104

- + detection limits ~ amol (for small peptides best case)
- + fast sample preparation and analysis

Mass spectrometry of biomolecules 2010

	LDI	MALDI
Ionization	relatively hard	soft
Sample	only analyte	analyte in excess of matrix
Max. <i>m</i> (Da)	<10 000	106
Typical analyte	small organic molecules, small peptides, synthetic polymers	peptides, proteins, DNA, saccharides, synthetic polymers

Particle Beam

Principle

- Derived from the generator of monodisperse aerosol (R. C. Willoughby, R. F. Browner, *Anal. Chem.*, 56, 1984, 2626-2631).
- Similar to TSI and heated nebulizer. Additional beam of particles, usually He. Separator of He atoms from ions.
- Additional EI source may be used to increase ion production. Results are EI spectra (with higher noise due to presence of ions and molecules of solvent).

Characteristics

- Spectra similar as in the case of TS. More fragments.
- Less sensitive than TS and ESI.
- · Useful for thermally stable, nonionic compounds with medium mass.

Mass spectrometry of biomolecules 2010

ESI Principle

- Formation of Taylor cone in electric field. Concentration of positive charge in the cone, destabilization of the meniscus and emission of droplets with excess of positive charge.
- Volume reduction and increase of surface charge density of the droplets due to solvent evaporation.
- Unsymmetrical fission of charged droplets (Rayleigh stability limit); original droplet loses ~15% of charge, but only 2% of volume.
- Droplet size: $\mu m \rightarrow nm$. Number of charges in a droplet: $10^5 \rightarrow 10$. (Note: Size of a macromolecule ~ nanometers.)
- Formation of secondary ions in gaseous phase, secondary reactions in gaseous phase.
- · Ion transfer into the mass spectrometer.
- · No discharge; discharge is not desirable.

Mass spectrometry of biomolecules 2010

122

ESI Arrangement

- Additional (curtain) gas N_2 stream, heated capillary behind the entrance aperture: better desolvation, reduction of cluster formation.
- Optional coaxial stream of liquid through an additional capillary.
- Needle: *i.d.* < 100 μm, *o.d.* 100 μm 1 mm, *tip* < 100 μm.
- Distance tip counter electrode: 1 3 cm. Flow rate < 10 mL/min.
- Nanospray: smaller dimensions,without additional coax. liquid and forced flow, flow rate < 100 nL/min.

```
Mass spectrometry of biomolecules 2010
```


ESI

- Application of <u>electric field (nozzle-skimmer</u>) ⇒ fragmentation in source.
 For structure analysis additional chamber for collision dissociation after the first mass analyzer.
- ESI signal dependent on analyte concentration, c(analyte); at very low concentrations dependent on the amount of analyte (nanospray).
- Signal α c(analyte) (10⁻⁷ 10⁻³ M), it reaches plateau at higher c(analyte).
- · ESI closely related to other API:
 - e.g. APCI (Atmospheric Pressure Chemical Ionization) (solvent acts as a reagent gas ... ionization similar to CI)
 - heated needle
 - zero voltage on needle
 - additional elements:
 - electrode for discharge in front of the entrance nozzle
 - piezoelectric element for better nebulization
 - nebulizer (ion spray sometimes called pneumatic ESI)

Mass spectrometry of biomolecules 2010

Factors Influencing ESI

- Type of analyte
- · Needle, spray tip (dimensions, arrangement)
- · Voltage between needle and counter electrode
- Solution composition (solvents, additives, salts, ion-pair reagents)
- · Flow rates of sample, sheath liquid and drying (curtain) gas
- · Temperature of the entrance capillary

Mass spectrometry of biomolecules 2010

128

127

III. Mass Analyzers Ion optics basics. Simulation of ion movement Energy analyzer Mass analyzers Detection of ions and data acquisition Vacuum techniques

- Coupling of separation to MS. Microfabricated devices
- New techniques/instrumentation

Mass spectrometry of biomolecules 2010

131

ESI – Some Rules • Use volatile buffers: - CH₃COOH - HCOOH

- TFA (trifluoroacetic acid)
- NH4+ salts of volatile acids
- Keep salt concentration < 20 mM
- · Avoid use of sulfates, phosphates etc.
- Orthogonal or Z spray may partially help in the cases the rules mentioned above cannot be applied.
- For positive ionization, pK_a (electrolyte) < pK_a (analyte) 2
- For negative ionization, pK_b (electrolyte) < pK_b (analyte) 2
- Proper sample preparation = easier analysis

desalting, removal of surfactant and other contaminants

```
Mass spectrometry of biomolecules 2010
```

	Ion Optics	
Analogy with light optics	5	
slit	slit	
lens	lens	
prism, grating	Wkin: energy analyzer, deflector	
	<i>m</i> / <i>z</i> : mass analyzer	
mirror	ion mirror	
optical fiber	ion guide	
Differences from light or	ntics	
wavelength, λ	kinetic energy, W_{kin} mass/charge, m/z	
refraction index (const.)	electric or magnetic fields (tunable, can be altered even during experiment)	
Intensity-independent	space charge effects - mutual ion repulsion	
Mass spectrometry of biomolecules 2010		

 $(E=\frac{V}{L})$

Simulation of Ion Movement Wein Velocity Filter · Exact calculation of ion movement complex even for relatively simple For ion flying on axis of the filter: electric and magnetic fields. zeE = zevB Simulation of ion movement: program Simion v = EВ Development of ion optics using the program Simion: 1. Input of geometry (schematics of electrodes). ... only ions with specific speed pass through the filter. 2. Input electrode potential, define magnetic field. 3. Definition of ions (number n, v_0 , x_0 , y_0 , z_0 , α_0 , ϕ_0). In case all ions were accelerated by voltage U: 4. Movement simulation \Rightarrow result (graphical representation, text). $\frac{mv^2}{2} = zeU$ $m eB^2$ Mass spectrometry of biomolecules 2010

	$\frac{m}{z} = \frac{eB}{E^2} \frac{2U}{z}$
	Wein filter can be used for mass analysis (m/z) .
140	Mass spectrometry of biomolecules 2010 143
	Energy Analyzor: Electrostatic Analyzor (ESA E)
	Energy Analyzer, Electrostatic Analyzer (ESA, E)
	+V
	entrance slit
	ion
0.85	+U <u>=</u>
, 00,	
141	Mass spectrometry of biomolecules 2010 144

Simion	
Example: Simulation of electrostatic lens using program Simion.	
Lens: 3 segments	L
diameter, $a = 36$ mm	L
length of segments, $y_1 = 28$ mm, $y_2 = 26$ mm, $y_3 = 32$ mm	L
gaps between segments, / = 2 mm	L
ion origin in xyz [0, 0, 0] mm	L
potentials, $U_1 = 0$; $U_2 = \text{tunable}$; $U_3 = 0$	L
lons: number, n = 5	L
mass, <i>m</i> = 100	L
kinetic energy, $W_0 = 100 \text{ eV}$	L
coordinates xyz [0, -30, 0] mm	L
$\alpha_0(i) = (-4 + 2i)^\circ$, where $i = 0 \dots n - 1$	L
<u>Aim</u> : Verify function of the lens for voltage of the middle ring, $U_2 = 0, 85$,	L
100, 120 a 133 V.	L
Solution: Presented in the lecture	
Mass spectrometry of biomolecules 2010 141	

Tandem EB (ESA-MAG)		Other Combinations of E and B		
• Dispersion of ion characteristics (v , x , α) and instability of fields (B, U)	Reverse-geometry, BE		
reduce quality of spectra.		1. magnetic sector: mass filter		
 Placing ESA prior to MAG solves problem with velocity (kinetic e <i>W_{kin}</i>) dispersion of ions entering into mass sector. 	nergy,	2. energy analyzer: sorting of ions according to kinetic energy		
Practical EB geometries:		MIKES (Mass-Analyzed Ion Kinetic Energy Spectrometry)		
1. Nier-Johnson		the first MS/MS technique, tandem mass spectrometry (1973)		
90° ESA + 60° MAG		1. Magnetic sector allows passing of only ions with certain m/z.		
exit focused for given radius, <i>r</i> suitable for scanning spectrometers		 Metastable ions may undergo decay in the region between magnetic a energy analyzer. 	nd	
2. Mattauch-Herzog 31.8° ESA + 90° MAG single fool place for ince with different m/r		Daughter ions from the decay are sorted according to kinetic energy in the energy analyzer.	I	
suitable for planar detectors (photographic plate, array)		A variety of hybrid instruments based on E and B: EBE, BEB, EBEB,		
3. Matsuda suitable for compact instruments		BEBE		
Mass spectrometry of biomolecules 2010	151	Mass spectrometry of biomolecules 2010	154	

Ion Trap

· MS/MS - trap can replace tandem of two mass spectrometers

CID, CAD: collision-induced (activated) dissociation

- High R ... < 10 000, usually ~ 5 000
- **Upper mass limit**, *m*/*z*_{max} ~ 70 000 (resonance ejection)
- Miniaturization: ion micro trap, trap on a chip (also quadrupole filter)
 + total size only 1 cm

175

- + useful in space exploration
- much lower mechanical tolerances, demanding manufacturing
- low parameters (R, m/z_{max})

Mass spectrometry of biomolecules 2010

Ion Trap Ion transmission only half ions may be detected Physical restrictions dimensions, voltage and frequency limited. Maximum dynamic range (10⁶ for single ion type) limited: minimum by sensitivity (usually 10; even 1 ion may be detected) maximum by space charge effect: for number of trapped ions higher than 10⁶ the trap does not function properly – due to mutual ion repulsion. Note that the charge limit involves sum of charges of all ion types!

Linear Trap

Linear trap or "2D trap" is based on quadrupole ion filter/ion guide. The previously described ion trap is sometimes called "3D trap".

lons are injected into the quadrupole and trapped by elevating potential on lids. (Ions oscillate in a potential well of RF-only quadrupole.) Later the ions can be gradually ejected and detected through the rods or lids.

Two approaches of ion ejection from LT:

- A. Schwartz, J.C., Senko, M.W., Syka, J.E.P., J. Am. Soc. Mass Spectrom. 13, 2002, 659.
- B. Hager, J.W., Rapid Comm. Mass Spec. 16, 2000, 512.

Mass spectrometry of biomolecules 2010

```
Wider varie
```

177

Advantages of 2D Ion Traps Capture Efficiency: 50-75% (3-D: 5% - 20%, and depends on mass) Extraction Efficiency: 25-50% (3-D: 20%) Sensitivity increased by a factor of 5-10 Ion Capacity: 20 - 30 times larger than 3-D Linear range increased more than 2 orders, up to 10⁶ Resolution: ~10 000 at scan rate 300 a.m.u./sec Wider variety of ion handling (accumulation, scans...)

Mass spectrometry of biomolecules 2010

Comparison of Quadrupole Analyzers					
	QIT	QQQ	LQIT]	
Sensitivity	++	-	++	1	
Dynamic range	-	++	+	1	
Mass range	-	+	+		
MS ³	++	-	++		
Neutral loss scan/Precursor scan	-	+	+	1	
m/z accuracy	+	-	+	1	
Resolution	+	-	+	1	
Mass spectrometry of biomolecules 2010					

FT-ICR-MS Principle

Ionization for FT MS

- 1. internal: analyzer = source (e.g. EI, LDI)
- <u>external:</u> ionization in an external source and introduction to the cell

 ion guides, quadrupoles, electrostatic lens
 differentially pumped chambers (ions are formed at the first cell at higher
 pressure and then introduced into analyzer cell through an aperture along
 z-axis)

Excitation

- 1. Pulse ... high amplitude, extremely short duration
- 2. Chirp ... fast scan through frequencies in required interval
- <u>SWIFT</u> ... Stored Waveform Inverse Fourier Transform profile of the excitation waveform generated by iFT of required m/z profile (iFT = inverse FT, transformation from frequency (m/z) to time domain

Mass spectrometry of biomolecules 2010

FT-ICR-MS

Resolution $\frac{m}{\Delta m} \alpha \frac{Bt}{m}$

Mass spectrometry of biomolecules 2010

z Upper *m/z* limit. From the mean quadratic speed of thermal movement, $v = \sqrt{\frac{2kT}{m}}$, which is responsible for pre-excitation of ions, it can be expressed: $r = \frac{mv}{zeB} = \frac{\sqrt{2mkT}}{zeB}$.

In a trap characterized by *B* and *r*, *m* of ions that can be stored is lower than $m = \frac{(zeBr)^2}{2kT}$

190

FT-ICR-MS Principle

Detection

- 1. <u>nondestructive (inductive)</u> ions attract electrons in the detection plates during passage nearby: non-destructive detection (FT-ICR)
- 2. destructive ions strike the detection plates (ICR)

Data acquisition

- Higher sampling frequency ⇒ higher upper m/z limit.
 Nyqist criterion: the highest achievable frequency = sampling frequency/2
 Longer acquisition period, t⇒ higher resolution and lower m/z limit.
- Conger acquisition period, t is ingrief resolution and lower mizininit.
 Result ... necessity of storage of many data points

 heterodyne frequency mixer (shift of signal frequency down allows to use lower sampling frequency)

Mass spectrometry of biomolecules 2010

188

187

New Mass Spectrometers Mass spectrometer of future? ... not a single solution Trends: • Withdrawal of magnetic sector instruments. • Hybrid spectrometers Modern spectrometers and their hybrids gain popularity (ion traps, orthogonal TOF analyzers). • New spectrometers? Linear quadrupole traps (discussed earlier) Electrostatic trap "Orbitrap" Linear electrostatic trap

FT-ICR-MS Principle

Z-trapping

- DC voltage ~1-5 V on the lids to keep ions inside (and not to leave in z-axis direction.
- Presence of an additional electric field causes magnetron oscillations (~10 Hz) of ions in addition to cyclotron oscillation (~ MHz). The result of combined movement are more complex calibration, peak shift and higher loss of heavy ions.

Mass spectrometry of biomolecules 2010

194

Linear Electrostatic Trap

 Detection tube in potential well
 Trap electrodes (ion mirrors)

 Image: Comparison of the second s

electrons are attracted and repelled, AC current is produced Detected frequency = f(*m*/*z*) (Benner, *Anal. Chem.* **1997**, 69, 4162-4168) *Mass spectrometry of biomolecules 2010*

Dual Stage Ion Mirror

Mass spectrometry of biomolecules 2010

Co	mparison	of TOFMS	Systems	
system	geometry	extraction	R	
TOFMS	linear	DC	500	
DE-TOFMS	linear	pulse	5 000	
rTOFMS	reflector	DC	10 000	
DE-rTOFMS	reflector	pulse	20 000	
oTOFMS	reflector	pulse	10 000	
Mass spectrometry of I	biomolecules 2010			237

Commercial TOFMS						
Applera	Mariner Voyager 4700 OSTAP	API MALDI MALDI API MALDI	oTOF TOF TOF/TOF			
Bruker	Biflex, Proflex, Reflex Autoflex, Omniflex, Ultraflex	MALDI MALDI	TOF TOF (LIFT)			
JEOL	AccuTOF	API	oTOF			
LECO	Renaissance	API (ICP)	TOF			
	Jaguar	API	oTOF			
Micromass/Waters	M@LDI	MALDI	TOF			
	QTOF	API	oTOF			
	QTOF Ultima	API, MALDI	oTOF			
Thermo/Finnigan	Tempus	EI, CI	oTOF			
Kratos/Shimadzu	Kompact, Axima	MALDI	TOF			
etc. etc.						
Mass spectrometry of	biomolecules 2010		247			

DFMS Perspective Advantages of TOFMS upper m/z limit, speed and high sample throughput, high sensitivity and resolution, relatively lost cost **Huge spread of TOFMS in the last decade** MALDI + PE TOF, rTOF MS API, AP MALDI + oTOF MS New techniques for MS/MS (TOF-TOF, LIFT, QTOF) **Competition** LT, FT-ICR and hybrid MS

Compariso	n of Com	mon Ma	ss Spectrometers	5
MS	max. <i>m/z</i>	R		
quadrupole filter	4 000	2 000		
magnetic sector	20 000	50 000		
ion traps	10 000	5 000		
FT-ICR-MS	100 000	100 000		
TOFMS	1 000 000	10 000		
Note: The values in the ta instruments, the significantly high	able are appro parameters of er (differences	ximate, as t f research-g s in order of	hey describe average rade systems might be magnitudes).	
Mass spectrometry of bio	molecules 2010			248

TOFMS Summary

- Unlimited theoretical upper *m*/*z* limit. Practical limit: ionization and detection efficiency, metastable ion decay.
- · Entire spectrum recorded at once.
- High speed of data acquisition (1 spectrum in ~10⁻⁴ s).

E.g. insulin (m/z = 5735) accelerated by 15 kV overcomes 1-m drift zone in \sim 50 $\mu s.$

- High ion transmission, especially in linear mode (> 50 %).
- High resolution (*R* > 10 000).
- · Simplicity and relatively low cost.
- Fragmentation techniques available (ISD, PSD, TOF/TOF ... next lecture)

Mass spectrometry of biomolecules 2010

Fragmentation Classification		Ion Collisions
Dissociation monomolecular reaction, t(induction) << t(dissociation)		Fragmentation
		 intended fragmentation aimed at elucidation of analyte structure
Fragmentation can be induced by:		usually with atoms of rare gases
1. Collision w/ atom or molecule		
collision-induced dissociation, CID		Elastic collisions
2. Collision with surface		Kinetic energy is conserved.
surface-induced dissociation, SID		
3. Photon (photodissociation, PD)		Inelastic collisions
e.g. infrared multiphoton dissociation, IRMPD using CO ₂ laser		Part of kinetic energy is converted into inner ion energy:
4. Electron (electron capture dissociation, ECD)		$E_{in} \le E(M_t/(M_t + M_i))$
		t = target, i = ion
Note: It is difficult sometimes to determine the exact cause of ionization,		Use heavy target to transfer more energy on ion.
e.g. the decay in MALDI (in- and post-source decay, ISD and PSD) m	iay	
be induced by both collisions and photons.		1 eV/ion ~ 100 kJ/mol (100 kJ/5 g tatranky)
Mass spectrometry of biomolecules 2010	253	Mass spectrometry of biomolecules 2010

Fragmentation Induced by Collisions

- <u>collisions with molecules of background (collision) gas in collision cell</u> at elevated pressure, *p* ~100 Pa
 CID, collision-induced dissociation
 CAD, collisionally activated dissociation
- 2. <u>excessive excitation during ionization</u>, e.g. high laser power at MALDI ISD, in-source decay ... in TOFMS PSD, post-source decay ... in TOFMS
- <u>collisions with surface</u>: SID, surface-induced dissociation

 surface: layer of an organic compound (polymer or monolayer of small organic molecules, e.g. alkanthiols) on a suitable substrate (Au)
 collisions as a result of acceleration by electric field, e.g. voltage nozzle-skimmer

Mass spectrometry of biomolecules 2010

254

Low-Energy Collisions Collision Energy: 1 – 100 eV vibrational excitation, t (ion-target interaction) ~ 10⁻¹⁴ s Collision efficiency usually sufficient due to many collisions in collision cell Instrumentation triple quadrupole filter, ion traps, hybrid MS The most widespread technique nowadays.

256

Ion Stability

- 1. Stable: lifetime, $\tau > 10^{-6}$ s lon flights through entire MS without decomposition.
- 2. Metastable: lifetime, $\tau \sim 10^{-7} 10^{-6}$ s lon is decays during flight in the *m/z* analyzer.
- **3.** Unstable: lifetime, $\tau < 10^{-7}$ s lon fragments in the ion source.
- Note: This is historical classification according to the time ions spend in magnetic sector.
- Reactions: unimolecular, bimolecular

```
255
```


Mass spectrometers for MS/MS 1. Triple quadrupole filter (Triple quad, QQQ, TQ, Q3) 2. Ion traps (IT, LIT, FT-ICR) 3. BE (magnetic sector – electrostatic analyzer) with reverse geometry 4. TOF/TOF MS 5. Hybrid spectrometers, such as QTOF, IT-TOF, EBQ etc. Classification of tandem mass spectrometry 1. in space – 1, 3, 4, 5 2. in time – 2, 5 (IT-TOF)

262

Other Mass Spectrometers for MS/MS

Tandem magnetic and electrostatic sector with reverse geometry (BE)

- 1. Isolation of precursor ABC+ in B.
- 2. Fragmentation in collision chamber.
- 3. Kinetic energy analysis in E.
- Daughter ions are characterized with W; W = f(m/z). More sophisticated combinations: EBE, EBEB.

EBqQ

- EB: precise precursor selection
- q₁: RF-only (collision cell)
- Q2: selection/analysis of products

Tandem quadrupole filter - oTOFMS (QTOFMS)

TOFTOF

Mass spectrometry of biomolecules 2010

In-Source Decay (ISD)

- · Also called In-Source Fragmentation (ISF)
- · Technique for study of molecular structure
- Elevated laser power at MALDI leads to excessive "heating" (vibrations) of molecules/ions of analyte and fragmentation of analyte in the source

268

- · Intensity of fragments << intensity of parent ion ([M+H]*)
- · Pulse extraction necessary to:
 - · reach sufficient resolution and sensitivity
 - · prolong ion stay in the ion source (more collisions)

Mass spectrometry of biomolecules 2010

265

266

Other Mass Spectrometers for MS/MS

Tandem IT - TOFMS (IT-TOFMS)

IT: accumulation and MSⁿ option in the 1st stage. TOF: sensitive detector with high mass resolution&accuracy as the 2nd stage.

Ion traps: IT, FT-ICR-MS

- MSⁿ option
- the same spectrometer as for MS, only software upgrade needed
- · the same price
- Procedure:
 - 1. isolation of precursor (after accumulation of all ions)
 - 2. excitation of precursor (amplitude boost) for a longer period
 - 3. product scan (or back to the 1st step for MS^n , n > 2)

Tandem LT – FT-ICR-MS

plenty of scan types and operational modes

Mass Spectrum Acquisition					
	I(m/z)=f(X)=f(t)			
Scannii	ng instruments	Scanned X	Scan period		
MAG	magnetic sector	B, U	~ 1 s		
Q	quadrupole filter	U, V, f	~ 0.1 s		
IT, LT	ion traps	U, V, f	~0.1 s		
Direct s	signal acquisition in ti	me:			
TOF			~ 100 µs		
FT-ICR	ion cyclotron		~ 1 s		
Other n	on-scanning instrument	s may use array de	etectors.		
Mass spe	ctrometry of biomolecules 20	10		292	

Signal Precision and Accuracy

Precision and (accuracy) of measurement given by number of bits of ADC

Example: for 8-bit ADC, 28 = 256 levels:

deviation might be up to 1/2 of the difference between two adjacent levels min. rel. deviation > (2x(number of levels - 1))-1 = (1/2x255)-1 ~ 0.2 %

	number of bits	1	8	12	16	24	
	number of levels	2	256	4 096	65 536	16 777 216	
	min. rel. deviation (%)	50	0.2	0.01	8x10 ⁻⁴	3x10 ⁻⁶	1
	dynamic range (rel. deviation < 10%)	-	50	800	13 000	3 000 000	
M	Aass spectrometry of biomolecules 2010 2						2

Gas Flow Regimes Gas Flow Rate, Q [Q] = Pa m³/s, Pa L/s C... conductance of a tube with diameter D and length L C = f(D, L, p, gas, T), [C] = L/sAt molecular flow regime, conductance is not a function of pressure p: $C \propto D^3/L$ (approximation) At viscous flow, conductance C depends on pressure p: $C \propto pD^4/L$ (approximation) Design of a vacuum apparatus - Short thick connectors \Rightarrow C^ \Rightarrow faster pumping. · In serial connections, the thinnest tube (bottleneck) limits pumping of the entire system: $1/C_{tot} = \Sigma 1/C_i$

316

Mass spectrometry of biomolecules 2010

Vacuum Instrumentation Background

Evangelista Torricelli (1608-1647)

Pressure unit: 1 Torr = 1 mm Hg

Pressure, p

 $p = \text{force/area} [Pa, N/m^2]$ 1 atm = 760 Torr = 101 325 Pa = 101.325 bar = 14.70 psi 1 Torr = 133 Pa

Vacuum

gaseous state with p < 101325 Pa

Mean free path of a molecule

Mean path of a molecule (atom, ion, particle) travels between 2 collisions $\lambda = (\sqrt{2\pi\sigma^2 n})^{-1}$ $\lambda(cm) = 0.66/p(Pa)$... only rough estimation for air at 25°C 314

Mass spectrometry of biomolecules 2010

Pumping Speed $S = \frac{Q}{n}$ Pumping speed, S [S] = L/s $1/S_{chamber} = 1/S_{pump} + 1/C_{tot}$ Appropriate design: $C_{tot} > S_{pumpa}$ i.e., using expensive efficient pump together with long narrow tubes or hoses does not make sense Notes: • In molecular flow regime pump does not suck gas. Pump acts as a trap; molecules that come to the pump will not return to chamber. • Pumping speed varies with gas type (drops with gas M.W.). · Pressure is not constant throughout the system, positioning of pressure sensor matters. · Outgassing. Time needed for reaching sufficient vacuum is prolonged by presence of volatile compounds adsorbed (water, sample, finger prints) and absorbed in the system (gases and water in gaskets, plastics). Mass spectrometry of biomolecules 2010 317

Gas Flow Classification

1. Turbulent flow (p > 10 kPa) very short λ

many collisions between molecules

- 2. Viscous, continuous flow (p = 1000 0.1 Pa, "rough" vacuum) $\lambda = \mu m - cm$:
 - still much shorter compared to dimension with vacuum apparatus more collisions molecule - molecule than molecule - wall
- 3. Molecular flow (p < 0.01 Pa, "high" or "ultra high" vacuum, UHV) $\lambda > m$

collisions of molecules with walls of vacuum apparatus prevail usual situation in mass spectrometer (exceptions: collision cells, CI, ion mobility spectrometry)

315

Mass spectrometry of biomolecules 2010

Vacuum Pumps Mechanical pumps (rotary oil, membrane, roots) **Diffusion pump** Turbomolecular pump Cryotrap, sorption traps, chemisorptions traps Mass spectrometry of biomolecules 2010 318

Rotary Oil Pump

- One, two or even more stages.
- · Rotor immersed in oil
 - min. pressure limited by oil vaporization
 - trap for oil vapors needed (to keep apparatus clean oil contamination!)
 - trap for oil mist on outlet needed (to keep operator's lungs clean)
 - periodic oil changes required
- Pressure > 0.1 Pa \ldots "rough" vacuum, pumping speed, S: 1 500 L/s (typical)
- The most common rough pump in commercial systems.
- Other mechanical pumps: membrane pump (no contamination, but higher limit *p* and lower pumping speed)

Turbomolecular Pump

Mass spectrometry of biomolecules 2010

UHV System Heating Molecules of background gas (especially water) adsorb on inner walls of mass spectrometer. Slow desorption of gas molecules continues to elevate pressure and prolongs pumping time. Pumping can be fastened by heating of the entire system (e.g. by wrapping the system using a resistively-heated tape), which shift equilibrium from adsorption to desorption.

Mass spectrometry of biomolecules 2010

Series of turbines rotating at extremely high speed (up to 50 000 rpm). Gas molecules are reflected by turbine blades. Perimeter speed of turbine blades > speed of gas molecules. Dependence of inlet and outlet pressure on gas molecular weight: In (p_{out} p_{in}) ∝ √m UHV pump, limit pressure ~10⁻⁸ Pa

- · Pumping speeds up to ~ 3000 L/s
- · Commonly used UHV pump in commercial systems.

Mass spectrometry of biomolecules 2010

320

319

Pressure Sensors (Pressure Gauges) Hydrostatic pressure gauge • Pressure determined from difference of liquid levels. • Range down to 1 kPa, or 0.1 Pa for special constructions. Mechanical gauge • Determineding of pressure from deviation of algorithm completions.

- · Determination of pressure from deviation of elastic membrane.
- Reading of the deviation mechanical
 - change of capacitance (range 10⁵ 10⁻² Pa)

Thermocouple gauge (Pirani)

- · Bimetallic thermocouple and resistively heated filament.
- Heat transfer from filament to thermocouple dependent on pressure and type of gas.
- Range *p*: 100 Pa 0.1 Pa or 100 kPa 0.1 Pa (convectron).

Mass spectrometry of biomolecules 2010

323

322

Diffusion Pump

- Special non-volatile oil heated with a heater at the base of the pump, heated oil vapors flow upwards through a central tube, stream as circular jets downwards on cooled walls, condense and flow down to the base. Molecules of pumped gas are drawn by oil jets.
- Often used in combination with a trap cooled with water or liquid nitrogen; this may prevent oil backstreaming or increase pumping speed (solvent vapors).
- UHV (ultra-high vacuum) pump, limit pressure ~10 6 Pa, pumping speed up to ~ 10 000 L/s.
- Reliable, low maintenance.
- Slow start, backstreaming,

Cryotrap

- Sorbent (e.g. charcoal) cooled down to 4 K (liquid He).
- · Regeneration necessary.

Mass spectrometry of biomolecules 2010

321

Pressure Gauges

Ion gauge

- Bayard & Alpert: ion tube with heated cathode.
- Three electrodes in a glass bulb: spiral (+), collecting wire (-) in the center of spiral and heated filament (-) outside the spiral (heated cathode).
- The same setup as in the case of open ion source: electron from heated filament are extracted towards the spiral, ionize gas, ions and electrons are captured on the wire and current is measured. *p* = *f*(current). Note: current depends on gas composition!
- Pressure range: 10⁻² 10⁻¹⁰ Pa (high vacuum, UHV)

Penning: ion tube with cold cathode.

- · ions are formed in electric discharge in magnetic field.
- Pressure range: 1 10⁻⁴ Pa, some constructions down to 10⁻¹⁰ Pa.

Note: commercial spectrometers employ thermocouple and ion gauges.

Coupling Separation to Mass Spectrometry

Why separation?

- ... analysis of very complex samples, mixtures of many analytes, e.g. common sample in proteomics contains >10² peptides
- Simple MS or even MS/MS is not powerful enough for several reasons:
- high probability of occurrence of 2 or more analytes with the same m/z
- overlap of isotopic envelopes of analytes with close m/z
- mutual ion suppression
- · limited dynamic range of mass spectrometer
- resolution of the 1st stage at MS/MS often unsatisfactory ($R_1 \sim 500$)
- · removal of contaminants
- · source of additional information about analytes

Mass spectrometry of biomolecules 2010

325

Separation - ESI MS

Most common techniques:

2D GE - MS

- · 2-dimensional gel electrophoresis on polyacrylamid gel
- · band excision and protein processing
- · common planar technique for protein separation

RPHPLC - ESI MS

- · liquid chromatography on reverse phase ESI MS
- · common column technique for peptide analysis

Data dependent scan ... one MS scan followed by few MS/MS scans (discussed again later)

Mass spectrometry of biomolecules 2010

Separation of biomolecules: MALDI or ESI ?

328

329

ESI MS

- Separation compatible +
- Commercially available, routinely used +
- ESI-MS/MS well established +
- High sensitivity
- Easy automation +
- No sample archiving only on-line
- Minor components not analyzed in MS-MS mode
- Quantification vs. MS-MS
- LC gradient often slow

Simpler spectra

MALDI MS

- Separation decoupled from mass spectrometry
- + Capability of sample archiving

Mass spectrometry of biomolecules 2010

MALDI Interface	
Common strategy: 1. Deposition of liquid sample on target 2. Sample drying 3. Target insertion into mass spectrometer and analysis	
Regime • On-line • Off-line • In-line	
 Addition of MALDI matrix Mixing with analyte solution (sheath flow, T, liquid junction) Deposition of analyte solution on target precoated with matrix layer 	
Collection of eluent Discrete fractions Continuous streak	
Mass spectrometry of biomolecules 2010	330

• jet separator for analyte enrichment in carrier gas (particle beam)

Classification of Interfaces

· membrane interface

 $Gas \rightarrow vacuum$

· capillary column or classical column + splitter

Liquid → vacuum

- · API ionization techniques (ionization directly from liquid at atmospheric pressure)
- Flow probes (FAB)
- · Sample deposition on a target
 - moving belt (deposition at atmospheric pressure transport, differential pumping - ionization)
 - Fraction collection

Mass spectrometry of biomolecules 2010

327

MALDI Interface

Off-line

Targets with hydrophilic spots (anchorchip). Micromethods using piezoelectric pipetors and microtargets. Deposition using electrospray

On-line

Flow probe with or without frit Nebulizer for aerosol generation

In-line

ROBIN Interface Deposition on target at subatmospheric pressure, moving belt interface

331

Off-line vs. on-line

+ Separation decoupled from mass analysis + Sample archiving

IUPAC: Amino Acids					
Trivial name	Symb	ols	Formula		
Alanine	Ala	Α	CH ₃ -CH(NH ₂)-COOH		
Arginine	Arg	R	H ₂ N-C(=NH)-NH-[CH ₂] ₃ -CH(NH ₂)-COOH		
Asparagine	Asn	N	H ₂ N-CO-CH ₂ -CH(NH ₂)-COOH		
Aspartic acid	Asp	D	HOOC-CH ₂ -CH(NH ₂)-COOH		
Cysteine	Cys	c	HS-CH ₂ -CH(NH ₂)-COOH		
Glutamine	Gln	Q	H ₂ N-CO-[CH ₂] ₂ -CH(NH ₂)-COOH		
Glutamic acid	Glu	Е	HOOC-[CH ₂] ₂ -CH(NH ₂)-COOH		
Glycine	Gly	G	CH ₂ (NH ₂)-COOH		
Histidine	His	н			
Mass spectrometry of	Mass spectrometry of biomolecules 2010 346				

Biological Applications of MS

Genome, proteome, metabolome.

Small organic molecules, biomolecules, drugs, petrochemical products. Biopolymers (DNA, proteins, carbohydrates). Synthetic polymers.

Proteomics

Characterization of peptides and proteins – protein complement of genome. Nowadays the main and the most perspective application of mass spectrometry.

Genome \leftrightarrow proteome. Level of protein expression (gen \rightarrow protein) varies.

Genome is static, proteome dynamic: expression depends on type and function of protein, location in cell, state and health of cell. Function of organism is directly related to proteome.

Mass spectrometry of biomolecules 2010

IUPAC: Amino Acids					
Trivial name	Sym	bols	Formula		
Isoleucine	lle	I.	C ₂ H ₅ -CH(CH ₃)-CH(NH ₂)-COOH		
Leucine	Leu	L	(CH ₃) ₂ CH-CH ₂ -CH(NH ₂)-COOH		
Lysine	Lys	к	H ₂ N-[CH ₂] ₄ -CH(NH ₂)-COOH		
Methionine	Met	М	CH ₃ -S-[CH ₂] ₂ -CH(NH ₂)-COOH		
Phenylalanine	Phe	F	C ₆ H ₅ -CH ₂ -CH(NH ₂)-COOH		
Proline	Pro	Ρ	Соон		
Serine	Ser	s	HO-CH ₂ -CH(NH ₂)-COOH		
Mass spectrametry of hismology las 2010 247					
mass speciformery of biomolecules 2010					

Proteomics
Proteome analysis much more complex than genome analysis:

- more building blocks (amino acids)

- higher variability modification of amino acids
- no existing amplification method for proteins analogical to PCR
- low levels of many proteins (e.g. regulatory proteins)

Differential proteomics

Determination of relative protein expression (presence or absence) in v influenced and healthy organism (organ, tissue, cell).

Functional proteomics

Determination of all interactions (protein-protein, protein-DNA, etc.) in given organism (organ, tissue, cell).

Mass spectrometry of biomolecules 2010

345

	IUPAC: Amino Acids			
Trivial name	Sym	bols	Formula	
Threonine	Thr	т	CH ₃ -CH(OH)-CH(NH ₂)-COOH	
Tryptophan	Trp	w	CH ₂ CH(NH ₂)-COOH	
Tyrosine	Tyr	Y	HO-CH2-CH(NH2)-COOH	
Valine	Val	v	(CH ₃) ₂ CH-CH(NH ₂)-COOH	
Mass spectrometry	of biomole	cules 20	010	348

Development of Techniques for Ionization of Peptides and Proteins

1963 LDI	Laser Desorption/Ionization (R. Honig)	
1969 FD	Field desorption (H. D. Beckey)	
1974 PD	Plasma desorption (R. D. McFarlane)	
1976 SIMS	Secondary ion mass spectrometry (A. Benninghoven)	
1981 FAB	Fast atom bombardment (M. Barber)	
1984 ESI	Electrospray (J. B. Fenn)	
1988 MALDI	Matrix-Assisted Laser Desorption/Ionization (M. Karas & F. Hillenkamp, K. Tanaka)	
1994 nano-ESI	Nanoelectrospray (M. S. Wilm, M. Mann)	
Mass spectrometry	of biomolecules 2010	349

GE gel electrophoresis on polyacrylamide gel HPLC high performance liquid chromatography on reverse phase IEC ion-exchange chromatography AC affinity chromatography CE capillary electrophoresis Centrifugation common centrifugation, gradient centrifugation Mass spectrometry of biomolecules 2010 352

Current Ionization Techniques in Proteomics

350

FAB

max. $m \sim 10~000$ Da $LD \sim 20$ pmol (classical FAB), < 1 pmol (CF-FAB)

ESI

max. $m \sim 100\ 000\ Da\ (z >> 1)$ LD < 10 fmol (routine) LD ~ amol or 10.9 M (selected applications)

MALDI

max. $m \sim 10^6$ (practically unlimited – TOF analyzer) relatively least vulnerable to contaminants LD < 10 fmol (routine) $LD \sim$ amol or 10^9 M (selected applications)

Mass Spectrometers in Proteomics				
MALDI MS	high sample throughput TOF			
ESI MS-MS	structure elucidation QqTOF, IT, FT ICR			
New instrumentation	MALDI TOF-TOF, MALDI LIFT TOF MALDI QqTOF			
 fast identification in MS mode option of later detail analysis in MS/MS mode (result-dependent analysis) 				
Mass spectrometry of biomole	acules 2010	351		

RP HPLC

- + Column: classical, capillary (ϕ ~300 $\mu m)$ or nano LC (ϕ ~75 $\mu m)$
- Packing: C₁₈, particle size: 3 10 μm (RP ... reverse phase)
- · Gradient elution, e.g.:
 - organic phase: ACN (acetonitrile) + 0.1% TFA (trifluoroacetic acid)
 - aqueous phase: 0.1% TFA
 - start: 10% organic phase + 90% aqueous phase
 - end: 80% organic phase + 20% aqueous phase
- Organic solvent promotes peptide solubility, enables detection in UV (230 240 nm) and evaporates fast, which is convenient for fraction collection, e.g. in MALDI MS.
- · Standard technique of column separation for peptides and proteins

355

Mass spectrometry of biomolecules 2010

Enzymatic Protein Digestion Most commonly used enzyme is trypsin (modified, e.g. TPCK to suppress chymotrypsin activity, methylation etc.). Other enzymes and reagents: lysine, chymotrypsin, CNBr etc. Products of enzymatic cleavage · specific fragments of analyzed protein E.g. trypsin cleaves on C-terminus of amino acids K or R, if P is not a neighbor. (Actual rules more complex): N terminus-X-X-X-X-X-K-Y-Y-Y-Y-Y-C terminus (Y≠P) non-specific fragments of analyzed protein artifacts (modification of amino acids, e.g. oxidative, due to PA gel etc.) · fragments of enzyme (autolysis) keratin fragments (< →)

Mass spectrometry of biomolecules 2010

2.

3.

6.

Example: RP HPLC of BSA Digest Mobile phase: A - 0.1% TFA in H₂O Sample: Tryptic Digest of BSA B - 0.1% TFA in ACN Gradient: 10% to 50%B in 20 min. Flow: 1.0 mL/min Detector: UV @ 220nm 18-20 peaks 150A. BetaBasic[®] 18 5µm, 150x4.6mm 715-081 over 40 peaks 300Å, BioBasic[®] 18 5um 150x4.6mm 721-002 15 MIN 5 10

- gei sices in a rotatory evaporator. Re-swell the gel pieces with 10 microliters of 25 mM ammonium bicarbonate containing Promega modified tryskin (sequencing grade) at a concentration such that a substrate to enzyme ratio of 10:1 has been achieved. (If the amount of protein is not known, add 0.1-0.2 microgramsof modified tryskin in 10 microliters of 25 mM ammonium bicarbonate). Alter 10-15 microliters of additional buffer to cover the gel pieces. Gel pieces need to stay wet during the digest. Incubate 4 hrs to overright at 37 degrees Centigrade. Proceed to step 8 if further extraction of the gel is desired (recommended)-otherwise continue with step 7.
- Approximately 0.5 microliters of the supernatant may be removed for MALDI analysis and/or the supernatant acidited by adding 10% TFA to a final concentration of 1% TFA for injection onto a narrow-or microbore reverse phase column. (If necessary the sample's volume may be reduced-1/3 on a rolatory exportator).
- Totatory evapuadu., J Extraction (Optional)- Save supernatant from step 7 in tube X, and extract peptides from gel twice with 50 microliters of 60% accetonitrile/0.1% TFA for 20 min. Combine all extracts in tube X (using the same pipet tip to minimize losses), and speed vac to near dyness. Reconstitute in 20 microliters of appropriate solvent. Proceed with chromatography or MALDI analysis. 8 (http://www.abrf.org/ResearchGroups/ProteinIdentification/EPosters/pirgprotocol.html)

Mass spectrometry of biomolecules 2010 359

Mass spectrometry of biomolecules 2010

360

Strategy of Analysis in Proteomics

Top-down

- · protein isolation
- · protein processing, enzymatic cleavage
- · analysis of peptides (MS, MS/MS)

Bottom-up

- · enzymatic cleavage
- · separation of peptides
- · MS and MS/MS analysis of peptides

Mass spectrometry of biomolecules 2010

361

Mass spectrometry of biomolecules 2010

Some Useful Terms				
genotype phenotype	genetic "equipment" of an organism, disposition actual state of organism, result of interaction with environment			
in vivo	in living organism			
in vitro	outside living organism, in artificial environment			
http://www.n	neta-library.net/gengloss			
Mass spectrometry of biomolecules 2010				


```
363
```


PMF: Theory and Practice

Extra (unexpected) peaks

- non-selective cleavage (e.g. due to chymotryptic activity of trypsin)
- impurities (e.g. keratins)
- unsatisfactory protein isolation (additional proteins in band)
- enzyme autolysis
- post-translational modifications (PTM's), artifacts

Missing peaks

- low-soluble peptides
- · adsorption of peptides
- · mutual suppression of peptides
- non-selective cleavage
- · insufficient digestion (sterical restrictions)
- PTM's, artifacts

Mass spectrometry of biomolecules 2010

370

Drawbacks of PMF

- Sample with a single protein needed, if possible, max. 2-3 proteins before cleavage
- m/z accuracy < 100 ppm or even better (<10 ppm) needed
- Better m/z accuracy \Rightarrow more confident answer from database search
- Absence of peptides in digest usually lower problem than presence of unexpected peptides
- Usually 4-5 peptides (in conjunction with high mass accuracy) sufficient for confident protein identification

Mass spectrometry of biomolecules 2010

Accurate Mass Tag (AMT)

- Identification of protein on basis of knowledge of accurate mass of a single peptide fragment (after enzymatic digestion of the protein)
- · Accurate determination of protein mass of peptide using FT ICR MS

I	atom	Н	С	N	0	S
	<i>m</i> [Da]	1.0078246	12.000000	14.00307	15.994915	31.972072

- Typical number of amino acid residues in peptide chain ~ 10
- With precision of determination m/z < 1 ppm, there is high probability that the measured mass correspond only to a single amino acid composition as shown on the next slide

Mass spectrometry of biomolecules 2010

Other Strategies of Proteome Analysis • Not aimed at complex proteome analysis • Based on column separation techniques (rather than on 2D GE) • Simplification of the original mixture – selection of specific proteins/peptides, e.g. containing cystein (ICAT) or phosphorylated amino acid (IMAC) etc. • Possible losses due to incomplete analysis are not dramatic and are compensated for by simpler and shorter analysis • Additional tricks, such as use of isotope labels provide quantitative

382

Mass spectrometry of biomolecules 2010

379

information about analyte

Some Methods and Abbreviations				
GIST	Global Internal Standard Technology (2H, 13C, 15N)			
ICAT	Isotope-Coded Affinity Tags			
	(cystein-containing peptides capture on affinity columns)			
PhIAT	Phosphoprotein Istope-coded Afinity Tag (fosforylované peptidy)			
IMAC	Ion Metal Afinity Chromatography			
	(phosphopeptide capture on affinity columns)			
AQUA	Absolute QUAntification			
	(synthesized isotopically labeled peptides as internal standards)			
SILAC	Stable Isotope Labeling with Amino acids in Cell culture			
	(culture growth in normal and enriched media)			
MUDPIT	Multidimensional Protein Identification Technology			
	(SCX – RHPLC – MS/MS)			
etc. etc.				
Mass spectro	metry of biomolecules 2010 384			

ICAT

Note

· Proteins can be labeled before digestion (step # 2 and 3 exchanged)

Drawbacks of 1st generation ICAT

- Mass difference of the isotope labels was equal to 8, which might lead to interferences in MS/MS spectra
- Slightly different retention of analytes labeled with light and heavy reagent. Result: the ratio b/w light and heavy form cannot be found from the ratio of ion intensities during HPLC MS/MS; integration across entire LC peak was necessary

2nd generation ICAT

- Use 9 ¹³C atoms in the link (instead of 8 ²H atoms)
- $\ensuremath{\cdot}$ The same elution profile of light and heavy forms and less interferences

Mass spectrometry of biomolecules 2010

Determination of Peptide Sequence using MS					
Combination of chemical cleavage and MS					
1. Constration of mixture of pantide fragments differing by one amine					
acid:					
 a) phenyl isothiocyanate + A₁A₂A₃ → phenylisothihydantoinA₂A₃ + A₁ phenyl isothiocyanate + A₂A₃ → phenylisothihydantoinA₃ + A₂ etc. 					
phenyl isothiocyanate in low amounts as terminating reagent forms small fraction of phenylcarbamate of each peptide					
b) alternative strategy uses application of carboxypeptidase for different time periods or in different amounts \Rightarrow formation of different digests					
2. MALDI MS of peptide fragment mixtures.					
amino acid is determined from distance of adjacent peaks of the same type, sequence from the peak order					
Mass spectrometry of biomolecules 2010 390					

Determination of Peptide Sequence using MS/MS

CID

- low-energy CID currently most popular fragmentation method of peptides - IT, TQ, QTOF

ISD

- · requires isolation of pure analyte
- MALDI TOF

PSD

- lower quality of spectra compared to CID, sometimes spectra stitching needed
- MALDI TOF
- Note
- high-energy CID, SID, photodissociation, dissociation after electron capture are not used routinely yet

Peptide Fragmentation

392

• Leu/Ile ... isomers, Gln/Lys ... isobars

Mass spectrometry of biomolecules 2010

$\label{eq:regression} \begin{array}{l} \mbox{Fragmentation of 1 or 2 bonds in peptide chain} \\ \mbox{-} fragments containing N terminus (a, b, c) \\ \mbox{-} fragments containing C terminus (x, y, z) \\ \mbox{-} these ions may be formed even after breakage of 2 bonds of the chain \\ \mbox{-} loss of NH_3, H_2O, CO_2 \end{array}$

Inner fragments

- do not contain either N or C terminus ... lower analytical significance

Immonium ions

- useful information about amino acid presence; m(IM)= m(AKres) - 27

Mass spectrometry of biomolecules 2010

COOH

amino acid	m(mono)	m(immonium)	m(accompanying ions)	
A	71.03712	44		<i>m</i> amino
R	156.10112	129	59,70,73,87,100,112	acid rosiduur
N	114.04293	87	70	aciu residuuli
D	115.02695	88	70	
С	103.00919	76		
E	129.04260	102		
Q	128.05858	101	56,84, 129	
G	57.02147	30		
н	137.05891	110	82,121,123,138,166	
I	113.08407	86	44,72	
L	113.08407	86	44,72	
К	128.09497	101	70,84,112,129	
М	131.04049	104	61	
F	147.06842	120	91	
Р	97.05277	70		
S	87.03203	60		
Т	101.04768	74		
W	186.07932	159	77,117, 130 ,132, 170,171	
Y	163.06333	136	91,107	
V	99.06842	72	41,55,69	

Determination of Protein Sequence

Procedure

1. Enzymatic digestion

- production of more types of digests to generate overlapping fragments various length of digestion
- various enzymes (trypsin, V8 ...)
- random cleavage, "shotgun sequencing"
- 2. Determination of at least partial sequence of peptides RPHPLC ESI MS/MS
- 3. Deduction of sequence using PC total sequence determined from combined portions of peptide sequences

Mass spectrometry of biomolecules 2010

 Mutation Detection

 Detection of exchange/absence of an amino acid(s) in protein chain

 Procedure:

 1. Enzymatic digestion

 2. Analysis of mass spectra

 - missing peptides

 - superfluous peptides

 3. MS/MS analysis of unknown (superfluous) peptides and their comparison with normal proteins/peptides, analysis of peak shifts

Mass spectrometry of biomolecules 2010

409

410

Helpful Techniques for Sequence Determination

Protein hydrolysis in $H_2^{18}O$ identification of terminus: C-terminus will not be labeled

Hydrolysis of protein in mixture of $H_2^{18}O \ a \ H_2^{16}O$ (1:1)

 MS: dublets of tryptic peptides (except fragment of protein C-terminal)
 MS/MS: both dublet peaks of a peptide selected as precursor for MS/MS; only fragments containing C terminus of a peptide will generate doublet fragments ... easier to survey spectra

Esterification (methylation) of carboxyl groups of a peptide $\Delta m = +14 / \text{carboxyl group (-COOH} \rightarrow -COOCH_3)$

comparison of original and resulting spectra

similar technique based on derivatization of amino group of a peptide Note 1: exchange reaction may run even on C terminus Note 2: more complex isotope patterns with masses M (2x¹⁶O), M+2

 $(1x^{16}O, 1x 2x^{18}O)$ a M+4 (2x^{18}O)

Mass spectrometry of biomolecules 2010

Post-Translational Modifications (PTM)

Common PTMs:

- phosphorylation
- glycosylation
- acylation (fat acid esters, acetyl)
- attachment of glycosylphosphatidyl inositol
- proteolytic products
- carboxylation (of glutamic acid)
- deamidation of asparagine and glutamine

Some modifications might be quite complex, e.g. oligosaccharide modifications of glycoproteins (many types of sugars and many sites on protein that can accommodate sugars – O, N). For structural elucidation, combined methods using MSⁿ and enzymatic cleavage might be used (N-glycosidase, O-glycanase etc.).

Mass spectrometry of biomolecules 2010

414

Phosphorylation					
Identification procedure: 1. Preparation of mixture of proteolytic peptides (containing phosphopeptides					
 Separation of phosphopetides using e.g. HPLC, CE, affinity chromatography, such as <u>Immobilized Metal Affinity Chromatography</u> (<u>IMAC</u>), see Porath, J. Protein Expression Purif. 1992, <i>3</i>, 263. 					
3. MS/MS analysis of phosphopeptides					
Relatively stable monoester bond \Rightarrow peak shifts in MS/MS spectra ($\Delta m = + 80$ Da)					
amino acid	M (residue)	M (monoester H₃PO₄)			
serine	87	167			
threonine	107	187			
tyrosine	163	243			
Mass spectrometry of biomolecules 2010					

Scientific Databases on Internet

Internet sources for protein identification using MS

- Eidgenossische Technische Hochschule (MassSearch) www.cbrg.inf.ethz.ch
- European Molecular Biology Laboratory (PeptideSearch) <u>http://www.mann.embl-</u> heidelberg.de/GroupPages/PageLink/peptidesearchpage.html
- Swiss Institute of Bioinformatics (ExPASy) <u>www.expasy.ch/tools</u>
- Matrix Science (Mascot) <u>www.matrixscience.com</u>
- Matrix Science (Mascot) <u>www.matrixscience.com</u>
- Rockefeller University (PepFrag, ProFound) prowl.rockefeller.edu
- Human Genome Research Center (MOWSE) <u>www.seqnet.dl.ac.uk</u>
- University of California (MS-Tag, MS-Fit, MS-Seq) prospector.ucsf.edu
- Institute for Systems Biology (COMET) <u>www.systemsbiology.org</u>
 University of Washington (SEQUEST)
- http://fields.scripps.edu/sequest/index.html

Mass spectrometry of biomolecules 2010

MS of Nucleic Acids and Oligonucleotides

- Ionization: usually more efficient for negative ions. Analysis typically in negative mode.
- · Ionizaton technique: MALDI (usually IR MALDI)
- · Less successful than in the case of proteomics
- · Higher extent of fragmentation and more salt adducts
- Proper desalting essential \ldots prevention of formation of a series of adducts with Na and K
- MALDI of heavy DNA (>100 kDa): linear TOF MS, IR laser, pulse extraction

Mass spectrometry of biomolecules 2010

Scientific Databases on Internet

Other links:

UMIST (pepMAPPER) http://wolf.bms.umist.ac.uk/mapper/ European Molecular Biology Laboratory, Heidelberg (PeptideSearch) www.narrador.embl-heidelberg.de Global Proteome Machine http://h112.thegpm.org/tandem/thegpm_tandem.html Protein (peptide) databases Genpept – NCBI GenBank NBRF - National Biomedical Research Foundation Swissprot - Swiss Institute of Bioinformatics Owl - Leeds Molecular Biology Database Group

Owi - Leeds Molecular Biology Database Group Delta Mass – protein posttranslational modification database

Mass spectrometry of biomolecules 2010

```
428
```

427

MALDI MS of Nucleic Acids and Oligonucleotides

3-hydroxypicolinic acid

2', 4', 6'-trihydroxyacetophenon picolinic acid
Typical applications

characterization of synthetic and biologic oligonucleotides (determination of *M.W.*)
analysis of PCR products, mutation analysis (absence or exchange of nucleotides)
DNA sequencing

Sanger sequencing (classical method)
Sequencing using exonuclease
Fragmentation (in gaseous phase)

Mass spectrometry of biomolecules 2010

431

430

Useful Tools on Internet

Tools

MS-Comp – suggestion of possible combinations of amino acids, mass table of dipeptides MS BLAST 2 – short sequences (6 amino acids)

BLAST a FASTA – protein homology

 $\label{eq:GlycoSuite DB, GlycoSciences} \\ - \mbox{saccharides analysis}$

Mass calculators (GPMaw, SHERPA, PAWS, MW Calculator)

etc.

Other Topics ... all topics were not covered, for example: Fragmentation – chemistry of reactions in gaseous state Ion mobility mass spectrometry Isotope dilution/enrichment, quantification in MS Preparative MS, history: preparation of ²³⁵U etc. etc. Mass spectrometry of biomolecules 2010

V. Questions and Consultation	
Jan Preisler Dept. Analytical Chemistry 43, tel.: 541 129 271, preisler@chemi.muni.c	Ζ
Please download updated study material in pdf format:	
http://147.251.29.118/MSBio/MSBio.htm	
Please report any discrepancies/errors in the pdf document to me. Thank you.	
Other Consultations in my office.	
Exam dates	
December? January? February?	
Mass spectrometry of biomolecules 2010	450

Mass spectrometry of biomolecules 2010

Exemplary Questions

- 21. What parameters of mass spectrum may improve if signal is recorded using a) FT ICR MS, b) TOF MS, c) IT for longer period?
- 22. Why does mass spectrometer need to be evacuated prior to any measurement?
- 23. What is the most significant reason of limited resolution in MALDI TOF MS? Explain principles of techniques leading to resolution improvement in MALDI TOF MS.
- 24. What is the difference between units u, Da a Th?
- 25. What is the difference between energy and velocity dispersions of ions? 26. In what region of TOF mass spectrometer are analytically important
- fragments generated during a) MALDI ISD, b) MALDI PSD?

Mass spectrometry of biomolecules 2010

454

Exemplary Questions

- 7. Why instruments that can monitor both isotopes at the same time are preferred for isotope ratio determination?
- 8. Can a quadrupole filter be used for analysis of a protein with M.W. 30 kDa?
- 9. What ionization method and what mass spectrometer would you suggest for:
 - a) explosive detection on airport
 - b) sequencing of short peptides
 - c) semiquantitative determination of ~70 samples in geologic sample d) identification of elemenal impurities in thin surface layer of sample
- 10. What is the origin of Lorentzian peak profile in FT-ICR-MS?
- 11. What is mutual orientation of equipotential level of U and electric field intensity vector E?
- 12. What will be the difference between velocities of two ions with m = 100a.m.u., z = 2, initial velocity $v_{01} = 100$ m/s and $v_{02} = 200$ m/s after acceleration by 1 kV and 10 kV?

Mass spectrometry of biomolecules 2010

Exemplary Questions

- 13. What determines the practical upper m/z limit in TOF MS?
- 14. Compare challenges in determination of peptides and DNA oligomers using MS.
- 15. You are about about to analyze peptides/proteins in a soup. Adding of what compound will you try to avoid prior to MS analysis? How would you modify the soup and what ionization technique will you use?
- 16. What detector fits ion trap better: MCP, channeltron, electron multiplier, photographic plate or Faraday cup?
- 17. What is the influence of time dispersion (of ion formation) on resolution of ion trap?
- 18. What is m of amino acid A, its residuum (in peptide chain) and its immonium ion?
- 19. Explain the plateau on the graph of number of peptides vs. m/zaccuracy (AMT method) between 200 and 700 ppm accuracy.
- 20. Compare advantages and disadvantages of 2DGE and column separation techniques in proetomics.

Mass spectrometry of biomolecules 2010

453

452