3. Chování vlny na rozhraní

- 3.1. Hraniční podmínky
- 3.2. Snellův zákon
- 3.3. Fresnelovy vztahy
- 3.4. Odrazivost a propustnost na rozhraní
- 3.5. Kolmý dopad
- 3.6. Brewsterův úhel
- 3.7. Kritický úhel
- 3.8. Totální odraz
- 3.9. Absorbující prostředí

3. Chování vlny na rozhraní

Jednou z nejčastějších úloh je řešení chování elektromagnetické vlny na rozhraní dvou prostředí. Omezíme se na rovinné vlny a rovinné rozhraní dvou izotropních, homogenních prostředí. Vztahy odvodíme nejprve pro dvě neabsorbující prostředí a pak je zobecníme pro absorbující. Případ anizotropních prostředí je obtížnější a odkazujeme na speciální literaturu.

3.1. Hraniční podmínky

Základem jsou hraniční podmínky pro elektrické a magnetické pole. Při průchodu rozhraním prvního (1) a druhého (2) prostředí jsou spojité tečné (t) složky vektorů **E**, **H** a normálové (n) složky **D**, **B**.

Obr.3.1.1 Hraniční podmínky pro jednotlivé složky elmag. pole.

Pak

$$\sum \mathbf{E}_{\mathfrak{u}} = \sum \mathbf{E}_{\mathfrak{u}} \qquad \qquad \sum \mathbf{H}_{\mathfrak{u}} = \sum \mathbf{H}_{\mathfrak{u}} \qquad (3.1.1)$$

$$\sum \mathbf{D}_{n1} = \sum \mathbf{D}_{n2} \qquad \qquad \sum \mathbf{B}_{n1} = \sum \mathbf{B}_{n2} \qquad (3.1.2)$$

Nebo

$$\mathbf{E}_{1} \times \mathbf{1} = \mathbf{E}_{2} \times \mathbf{1} \qquad \qquad \mathbf{H}_{1} \times \mathbf{1} = \mathbf{H}_{2} \times \mathbf{1} \qquad (3.1.2)$$

$$\mathbf{n} = \mathbf{D}_2 \mathbf{n} \qquad \qquad \mathbf{B}_1 \mathbf{n} = \mathbf{B}_2 \mathbf{n} \qquad (3.1.4)$$

kde E_1 je celkový vektor intenzity elektrického pole v 1. prostředí, totéž platí analogicky pro další vektory.

D₁

3.2. Snellův zákon

Pro dopadající vlnu použijeme index d, odraženou r a prošlou t. V optické literatuře je obvyklé používat index s pro složky vektoru kolmé k rovině dopadu a index p pro složky rovnoběžné. Složka s se označuje rovněž TE a složka p TM. Vektor **n** je jednotkový vektor kolmý k rozhraní, **t** je jednotkový vektor v rovině dopadu a rovině rozhraní.

Obr.3.2.1 Chování elmag. vlny na rozhraní.

Ve shodě s obr. 3.2.1.

$$\mathbf{E}_{1} = \mathbf{E}_{d} + \mathbf{E}_{r} \qquad \qquad \mathbf{E}_{2} = \mathbf{E}_{t} \qquad (3.2.1)$$

kde

$$\mathbf{E}_{\mathbf{d}} = \mathbf{E}_{\mathbf{0}\mathbf{d}} \mathbf{e}^{\mathbf{i}(\boldsymbol{\omega}_{\mathbf{u}}^{+} + \boldsymbol{\omega}_{\mathbf{d}}\mathbf{r})}$$
(3.2.2)

$$\mathbf{E}_{\mathbf{r}} = \mathbf{E}_{\mathbf{0}\mathbf{r}} \mathbf{e}^{\mathbf{i}(\mathbf{0}_{\mathbf{r}} + \mathbf{r}\mathbf{r})}$$
(3.2.3)

$$\mathbf{E}_{t} = \mathbf{E}_{0t} \mathbf{e}^{i(\mathbf{0}_{t} + \mathbf{1}_{t}\mathbf{r})}$$
(3.2.4)

Vyjdeme z hraničních podmínek (3,1,2), ty musí být splněny v každém čase a místě rozhraní Pak fáze musí být rovněž stejné. Pak např. pro t=0

$$\omega_{d} = \omega_{r} = \omega_{t} = \omega \qquad (3.2.5)$$

Frekvence při odrazu a průchodu se nemění. Dále platí (polohový vektor \mathbf{r} na rozhraní je rovnoběžný s vektorem $\mathbf{t}, \mathbf{r}=u\mathbf{t}$). Pak

$$\mathbf{k}_{d}\mathbf{t} = \mathbf{k}_{r}\mathbf{t} = \mathbf{k}_{t}\mathbf{t} \tag{3.2.6}$$

Všechny tři vektory \mathbf{k}_d , \mathbf{k}_r , \mathbf{k}_t tedy leží v jedné rovině. Tato rovina určená vektory \mathbf{k}_d a **n** se nazývá rovina dopadu. Současně platí **nt=**0 a odtud

$$\mathbf{k}_{d} \times \mathbf{1} = \mathbf{k}_{r} \times \mathbf{1} = \mathbf{k}_{t} \times \mathbf{1}$$
(3.2.7)

Vztahy (3.2.6) nebo (3.2.7) dávají Snellův zákon v obecném tvaru, který určuje velikost úhlu odrazu a lomu včetně skutečnosti, že odražený a lomený paprsek leží v rovině dopadu. Pro $k = 2\pi n/\lambda$ dostaneme známý zákon lomu

$$\mathbf{n}_1 \sin \, \boldsymbol{\varphi}_1 = \mathbf{n}_2 \sin \, \boldsymbol{\varphi}_2 \tag{3.2.8}$$

a odrazu

$$\varphi_{\perp} = \varphi_{\perp}' \tag{3.2.9}$$

3.3. Fresnelovy vztahy

Pro úplnost rozepíšeme amplitudy do složek

$$\mathbf{E}_{d} = \mathbf{A}_{s} + \mathbf{A}_{p} \qquad \mathbf{E}_{r} = \mathbf{A}_{s}' + \mathbf{A}_{p}' \qquad \mathbf{E}_{t} = \mathbf{A}_{s}' + \mathbf{A}_{p}' \qquad (3.3.1)$$

Obr. 3.3.1 Rozložení E do p a s složky.

Označíme $\tau = (\omega - k\mathbf{r}) = \omega (t - n\mathbf{sr}/c)$, pak

 $\tau_{a} = \Im_{t} t - 1_{1} (x \sin \varphi_{1} + z \cos \varphi_{1})/c)$ (3.3.2)

$$\tau_{r} = \mathfrak{D}_{t} t - \mathfrak{1}_{1} (x \sin \varphi_{1}' - z \cos \varphi_{1}')/c)$$
(3.3.3)

$$\tau_{1} = \mathfrak{D}_{1} t - \mathfrak{n}_{2} (x \sin \varphi_{1} + z \cos \varphi_{2})/c)$$
(3.3.4)

$$\mathbf{E}_{\mathbf{d}}(\mathbf{A}_{p}\cos\varphi_{1}e^{i\tau_{u}},\mathbf{A}_{s}e^{i\tau_{u}},-\boldsymbol{\lambda}_{p}\sin\varphi_{1}e^{i\tau_{u}})$$
(3.3.5)

$$\mathbf{E}_{r} (\mathbf{A}_{p}^{\prime} \cos \varphi_{1}^{\prime} e^{i\tau_{1}}, \mathbf{A}_{s}^{\prime} e^{i\tau_{1}}, - \mathbf{A}_{p}^{\prime} \sin \varphi_{1}^{\prime} e^{i\tau_{1}})$$
(3.3.6)

$$\mathbf{E}_{t}(\mathbf{A}_{p}^{\prime}\cos\varphi_{z}e^{i\tau_{x}},\mathbf{A}_{s}^{\prime}e^{i\tau_{x}},-\mathbf{A}_{p}^{\prime}\sin\varphi_{z}e^{i\tau_{x}})$$
(3.3.7)

Příslušné složky vektoru **H** dostaneme např. z (M.r.4.)

Na rozhraní (z=0) platí pro tečné složky

$$E_{dx} + E_{rx} = E_{tx} \qquad \qquad E_{dy} + E_{ry} = E_{ty} \qquad (3.3.8)$$

$$H_{dx} + H_{rx} = H_{tx}$$
 $H_{dy} + H_{ry} = H_{ty}$ (3.3.9)

a pro normálové složky

$$n_1^2 (E_{dz} + E_{rz}) = n_2^2 E_{tz}$$
 $H_{dz} + H_{rz} = H_{tz}$ (3.3.10)

Rovnost fází jsme využili pro odvození Snellova zákona. Pro aplitudy dostáváme 6 rovnic, z nichž jsou 4 nezávislé. Pro z=0 a $\varphi_{\perp} = \varphi'_{\perp}$ dostaneme:

$$(A_{p} - A'_{p})\cos\phi_{1} = A'_{p}\cos\phi_{2}$$
(3.3.11)

$$(A_{p} - A'_{p})n_{1} = A'_{p}n_{2}$$
 (3.3.12)

$$(A_{s} + A'_{s}) = A'_{s}$$
 (3.3.13)

$$(A_{s} - A'_{s})n_{1}\cos\varphi_{1} = A'_{s}n_{2}\cos\varphi_{2}$$
(3.3.14)

Po úpravě do vhodného tvaru dostaneme pro koeficient odrazivosti r_p , r_s a propustnosti t_p , t_s důležité Fresnelovy vztahy:

$$r_{p} = r_{0p} e^{i\delta_{p}} = \frac{A_{p}}{A_{p}} = \frac{n_{1}\cos\phi_{2} - n_{2}\cos\phi_{1}}{n_{1}\cos\phi_{2} + n_{2}\cos\phi_{1}}$$
(3.3.15)

$$r_{s} = r_{0s} e^{i\delta_{s}} = \frac{A'_{s}}{A_{s}} = \frac{n_{1} \cos \varphi_{1} - n_{2} \cos \varphi_{2}}{n_{1} \cos \varphi_{1} + n_{2} \cos \varphi_{2}}$$
(3.3.16)

$$t_{p} = t_{0p} e^{i\delta'_{p}} = \frac{A'_{p}}{A_{p}} = \frac{2n_{1}\cos\phi_{1}}{n_{2}\cos\phi_{1} + n_{1}\cos\phi_{2}}$$
(3.3.17)

$$t_{s} = t_{0s} e^{i\delta'_{s}} = \frac{A'_{s}}{A_{s}} = \frac{2n_{1}\cos\phi_{1}}{n_{1}\cos\phi_{1} + n_{2}\cos\phi_{2}}$$
(3.3.18)

Z praktického hlediska, zejména v elipsometrii, jsou velmi užitečné poměry těchto koeficientů:

$$\frac{r_{p}}{r_{s}} = tg\psi_{r}e^{i\Delta_{r}} = \frac{n_{1}\cos\phi_{2} - n_{2}\cos\phi_{1}}{n_{1}\cos\phi_{2} + n_{2}\cos\phi_{1}} \frac{n_{1}\cos\phi_{1} + n_{2}\cos\phi_{2}}{n_{1}\cos\phi_{1} - n_{2}\cos\phi_{2}}$$
(3.3.19)

$$\frac{t_{p}}{t_{s}} = tg \Psi_{\tau} e^{i\Delta_{\tau}} = \frac{n_{1} \cos \varphi_{1} + n_{2} \cos \varphi_{2}}{n_{2} \cos \varphi_{1} + n_{1} \cos \varphi_{2}}$$
(3.3.20)

kde $\Psi_{r}, \Delta_{r}, \Psi_{t}, \Delta_{t}$ jsou tzv. elipsometrické úhly.

Obr. 3.3.2 Absolutní hodnoty amplitud odrazivosti a propustnosti v závislosti na úhlu dopadu.

Obr. 3.3.3 Závislost rozdílu fází na úhlu dopadu.

3.4.Odrazivost a propustnost na rozhraní

Pro nejčastější případ měření potřebujeme vztahy pro odraženou a prošlou intenzitu světla. Využijeme vztah (2.7.8)

Obr. 3.4.1 Svazek světla na rozhraní.

Pro jednotkovou osvětlenou plošku P na rozhraní můžeme dopadající, odraženou a prošlou intenzitu psát (viz obr.3.4.1) ve tvaru:

$$I_{pd} = un_{1}A_{p}^{2}\cos\phi_{1} \qquad I_{pr} = un_{1}A_{p}^{\prime 2}\cos\phi_{1} \qquad I_{pt} = un_{2}A_{p}^{\prime 2}\cos\phi_{2} \qquad (3.4.1)$$

$$I_{sd} = \operatorname{un}_{1}A_{s}^{2}\cos\varphi_{1} \qquad I_{sr} = \operatorname{un}_{1}A_{s}^{\prime 2}\cos\varphi_{1} \qquad I_{st} = \operatorname{un}_{2}A_{s}^{\prime 2}\cos\varphi_{2} \qquad (3.4.2)$$

Pro odrazivost R_p, R_s dostaneme

$$R_{p} = \frac{I_{pr}}{I_{pd}} = \frac{A'_{p}^{2}}{A_{p}^{2}} = r_{p}^{2} \qquad R_{s} = \frac{I_{sr}}{I_{sd}} = \frac{A'_{s}^{2}}{A_{s}^{2}} = r_{s}^{2} \qquad (3.4.3)$$

a podobně pro propustnost T_p, T_s

$$T_{p} = \frac{I_{pt}}{I_{pd}} = \frac{A_{p}^{\prime 2} n_{2} \cos \varphi_{2}}{A_{p}^{2} n_{1} \cos \varphi_{1}} = t_{p}^{2} tg \varphi_{1} \cot g \varphi_{2}$$
(3.4.4)

$$T_{s} = \frac{I_{st}}{I_{sd}} = \frac{A_{s}^{'2} n_{2} \cos \varphi_{2}}{A_{s}^{2} n_{1} \cos \varphi_{1}} = t_{s}^{2} tg \varphi_{1} \cot g \varphi_{2}$$
(3.4.5)

Platí zákon zachování energie

$$I_{pd} = I_{pr} + I_{pt} \qquad \qquad I_{sd} = I_{sr} + I_{st} \qquad (3.4.6)$$

nebo

$$1 = R_{p} + \Gamma_{p} \qquad \qquad 1 = R_{s} + \Gamma_{s} \qquad (3.4.7)$$

3.5. Kolmý dopad

Pro kolmý dopad $\phi_1 = 0$ a platí

$$r_{p} = r_{s} = \frac{n_{1} - n_{2}}{n_{1} + n_{2}}$$
(3.5.1)

$$t_{p} = t_{s} = \frac{2n_{1}}{n_{1} + n_{2}}$$
(3.5.2)

$$R_{p} = R_{s} = \left(\frac{n_{1} - n_{2}}{n_{1} + n_{2}}\right)^{2}$$
(3.5.3)

$$T_{p,s} = I - R_{p,s}$$
(3.5.4)

3.6. Brewsterův úhel

Brewsterův úhel $\varphi_{_{B}}$ je úhel dopadu pro podmínku $r_{_{p}} = 0$, pak ze vztahu (3.3.15) platí $n_{_{2}} \cos \varphi_{_{1}} = n_{_{1}} \cos \varphi_{_{2}}$ (3.6.1)

a po úpravě s využitím Snellova zákona dostaneme $\phi_1 + \phi_2 = \pi/2$ a tedy

$$t_g \phi_{_B} = \frac{n_2}{n_1}$$
 (3.6.2)

Tento úhel se s výhodou používá pro konstrukci polarizátoru, případně pro určení např. n₂.

Obr. 3.6.1 Závislost odrazivosti na úhlu dopadu pro dva neabsorbující materiály.

3.7. Kritický úhel

V případě $n_1 > n_2$ definujeme kritický úhel $\phi_1 = \phi_0$ pro $\phi_2 = 30^\circ$, pak ze Snellova zákona

$$\sin \varphi_{c} = \frac{n_{2}}{n_{1}}$$
 (3.7.1)

Pro úhel dopadu $\varphi_1 \leq \varphi_c$ je chování koeficientů odrazivosti a propustnosti stejné jako v případě $n_1 \leq n_2$.

3.8. Totální odraz

Pro $n_1 > n_2$ a $\phi_{c} \le \phi_1 \le 90^{\circ}$ nastane totální odraz (R=1). S využitím Snellova zákona lze psát

$$\cos \varphi_{2} = \pm \sqrt{1 - \sin^{2} \varphi_{2}} = \pm i \sqrt{\frac{n_{1}^{2}}{n_{2}^{2}}} \sin^{2} \varphi_{1} - 1 = -i\gamma$$
(3.8.1)

Volba znaménka souvisí s reálným chováním prošlé vlny, která musí být tlumená. Pak pro prošlou vlnu (3.2.4),(3.3.4)

$$\mathbf{E}_{t} = \mathbf{E}_{2t} e^{i(\Theta - \Theta_{t}c^{-}\sin\Theta_{t} + z\Theta_{t}c^{-}Y)}$$
(3.8.2)

$$\mathbf{E}_{t} = \mathbf{E}_{2t} \mathbf{e}^{-\omega_{2} \mathbf{c}^{-\gamma}} \mathbf{e}^{i(\omega_{0} \omega_{1} \mathbf{c}^{-sin} \phi_{1})}$$
(3.8.3)

Dostali jsme vlnu, která se šíří ve směru x, tedy podél rozhraní a současně je tlumená ve směru z. Jedná se tedy o evanescentní vlnu. Pro intenzitu platí

$$\mathbf{E}_{t}\mathbf{E}_{t}^{*} = \mathbf{E}_{2t}^{2} e^{-z^{\alpha}} = \mathbf{E}_{2t}^{2} e^{z^{\alpha}}$$
(3.8.4)

kde

$$\delta = \frac{c}{2n_2\omega\gamma} \tag{3.8.5}$$

Jednoduchý číselný odhad dává $\delta \approx 10^{-1}$ m, tedy intenzita prošlé vlny velmi rychle klesá se vzdáleností od rozhraní.

Pro Fresnelovy koeficienty dostaneme po dosazení

$$r_{p} = r_{1p} e^{i\delta_{p}} = \frac{A_{p}}{A_{p}} = \frac{-n_{1}\gamma - n_{2}\cos\phi_{1}}{-n_{1}\gamma - n_{2}\cos\phi_{1}}$$
(3.8.6)

$$\mathbf{r}_{s} = \mathbf{r}_{1s} e^{i\delta_{s}} = \frac{\mathbf{A}'_{s}}{\mathbf{A}_{s}} = \frac{\mathbf{n}_{1} \cos \phi_{1} + in_{2} \gamma}{\mathbf{n}_{1} \cos \phi_{1} - in_{2} \gamma}$$
(3.8.7)

$$R_{p} = r_{p}r_{p}^{*} = l$$
 (3.8.8)

$$R_{s} = r_{s} r_{s}^{*} = 1$$
 (3.8.9)

Nastane tedy totální odraz, pole sice prosakuje pod rozhraní, ale tok prošlé energie je nulový. Pro fáze dostaneme

$$tg\delta_{p} = \frac{2\gamma_{2}n_{1}\cos\phi_{1}}{n_{2}^{2}\cos^{2}\phi_{1} - n_{1}^{2}\gamma}$$
(3.8.10)

$$tg\delta_{s} = \frac{2\gamma_{2}n_{1}\cos\phi_{1}}{n_{1}^{2}\cos^{2}\phi_{1} - n_{2}^{2}\gamma}$$
(3.8.11)

Pro tok energie obecně platí (2.7.2)

$$\mathbf{S}(\mathbf{r},t) = \mathbf{E}(\mathbf{r},t) \times \mathbf{H}(\mathbf{r},t)$$
(3.8.12)

V případě harmonických vln pro střední časovou hodnotu toku energie (fyzikální smysl má reálná hodnota toku energie) platí

$$\langle \mathbf{S}(\mathbf{r},t) \rangle = \frac{1}{2} \mathbf{\Phi}(\mathbf{r}) \times \mathbf{H}(\mathbf{r})^{-}$$
 (3.8.13)

Pro intenzitu elektrického pole ve druhém prostředí platí podle (3.8.3)

$$\mathbf{E}_{t} = \begin{bmatrix} \Xi_{1p} \mathbf{t}_{p} \cos(\varphi_{\perp}) \\ E_{1s} \mathbf{t}_{s} \\ E_{1p} \mathbf{t}_{p} \sin(\varphi_{\perp}) \end{bmatrix}; \stackrel{\circ}{=} \stackrel{\circ}{=$$

Pak ze 4. Maxwellovy rovnice (2.4.12)

$$\mathbf{H} = -\omega\mu_{0} \mathbf{I}^{-1} \mathbf{K} \times \mathbf{E} \mathbf{I}$$
(3.8.15)

dostaneme pro H_t

$$\mathbf{H}_{t} = -\omega\mu_{0} \begin{bmatrix} -k_{2z}E_{ty} \\ k_{2z}E_{tx} - k_{2x}E_{tz} \\ k_{2x}E_{ty} \end{bmatrix}$$
(3.8.16)

pro složky střední hodnoty toku energie

$$\left\langle \mathbf{S} \right\rangle = \frac{1}{2} \operatorname{Re} \begin{bmatrix} E_{ty} H_{tz}^{*} - E_{tz} H_{ty}^{*} \\ E_{tz} H_{tx}^{*} - E_{tx} H_{tz}^{*} \\ E_{tz} H_{tx}^{*} - E_{ty} H_{tz}^{*} \end{bmatrix} = \frac{1}{2} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \begin{bmatrix} n_{1} \sin(\varphi_{1}) \Phi_{1s}^{2} t_{s}^{2} + E_{1p}^{2} t_{p}^{2} \\ 0 \\ 0 \end{bmatrix} e^{-2z (\omega n_{2} c^{-1} \gamma)}$$
(3.8.17)

Nenulový tok energie je pouze ve směru x.

Obr.3.8.1 Odrazivost v závislosti na úhlu dopadu pro oblast totálního odrazu.

Obr. 3.8.2 Závislost fáze při totálním odrazu v závislosti na úhlu dopadu.

V případě, že prostředí pod rozhraním je ohraničené, např.v blízkosti je další rozhraní ve vzdálenosti srovnatelné s vlnovou délkou , pak prošlý tok energie není nulový, rovněž odražený tok není jednotkový a dochází tak k tzv. porušenému totálnímu odrazu. Totální odraz i porušený totální odraz je využíván v řadě aplikací (světelná vlákna, totálně odrážející hranoly, ATR, SPR atd.).

3.9. Absorbující prostředí

Na rozdíl od předcházejícího zobecníme některé vztahy pro případ dvou absorbujících prostředí. Hraniční podmínky (3.1.) zůstávají stejné, rovněž zobecněný Snellův zákon (3.2.6), (3.2.7) s tím, že vektor k je komplexní a platí:

$$\mathbf{k} = \mathbf{k}' + \mathbf{k}' = \mathbf{k}'(\mathbf{n}\cos\varphi + \mathbf{t}\sin\varphi) + \mathbf{k}'(\mathbf{n}\cos\varphi + \mathbf{t}\sin\varphi)$$
(3.9.1)

kde vektory k'a n svírají úhel ${\boldsymbol{\varphi}}$ a podobně k' a n úhel Φ . Po úpravě

$$\mathbf{k} = \mathbf{k}' + |\mathbf{k}'| = \mathbf{n}(\mathbf{k}'\cos\phi + |\mathbf{k}'\cos\Phi] + \mathbf{t}(\mathbf{k}'\sin\phi + |\mathbf{k}'\cos\Phi]$$
(3.9.2)

což lze formálně napsat ve shodě s (2.5.3)

$$\mathbf{k} = \mathfrak{D} \quad \mathbf{N} (\mathbf{n} \cos \varphi + \mathbf{t} \sin \varphi) \tag{3.9.3}$$

kde úhel $\tilde{\varphi}$ je tzv. komplexní úhel dopadu. Porovnáním posledních dvou vztahů (3.9.2) a (3.9.3) dostaneme

$$\omega_{c}^{-1}N\sin\tilde{\varphi} = k'\sin\varphi + ik'\sin\Phi \qquad (3.9.4)$$

$$\mathfrak{D} \mathfrak{c}^{-1} \mathsf{N} \cos \widetilde{\varphi} = \mathbf{k}' \cos \varphi + \mathbf{i} \mathbf{k}' \cos \Phi$$
(3.9.5)

Podobně jako pro reálné úhly platí:

$$\sin^{2} \phi + \cos^{2} \phi = 1$$
 (3.9.6)

Ze vztahů (3.2.5) a (3.2.6) dostaneme podmínku pro všechna rozhraní:

N sin
$$\varphi$$
 = konst (3.9.7)

nebo

$$k'\sin \varphi = kons t' \qquad k'\sin \Phi = kons t' \qquad (3.9.8)$$

Pro odraženou vlnu

$$\sin \varphi_{a} = \sin \varphi_{r} \qquad (3.9.9)$$

a pro prošlou vlnu

$$N_{1}\sin \varphi_{a} = N_{2}\sin \varphi_{\tau} \qquad (3.9.10)$$

Tyto vztahy mají stejný tvar jako Snellův zákon, jen je nutné vyměnit reálné proměnné za komplexní. Rozpis v reálných proměnných má tvar:

$$\sin \phi_a = \sin \phi_r \qquad \qquad \sin \Phi_a = \sin \Phi_r \qquad (3.9.11)$$

$$k'_{a} \sin \varphi_{a} = k'_{t} \sin \varphi_{t} \qquad \qquad k'_{a} \sin \Phi_{a} = k'_{t} \sin \Phi_{t} \qquad (3.9.12)$$

Obr.3.9.1 Chování rovinné vlny na soustavě vrstev.

Protože ve většině konkrétních případů má měřený vzorek podobu planparalelní desky, respektive soustavy takových desek (vrstev) –viz obr.3.9.1 a navíc světlo vstupuje do vzorku ze vzduchu, pak ze vztahu (3.9.7) a (3.9.8) pro všechna rozhraní platí

$$\Phi = 0, \pi \tag{3.9.13}$$

$$N\sin \varphi = n_o \sin \varphi_o \qquad (3.9.14)$$

$$N\cos\varphi = N(1 - \sin^2\varphi)^{1/2} = (N^2 - \eta_0^2\sin^2\varphi_v)^{1/2}$$
(3.9.15)

Podobným postupem jako v předchozím případě neabsorbujícího prostředí dostaneme prakticky stejné Fresnelovy vztahy, jen je nutné zaměnit reálné veličiny za komplexní:

$$r_{p} = r_{0p} e^{i\delta_{\mu}} = \frac{A'_{p}}{A_{p}} = \frac{N_{1} \cos \varphi_{2} - N_{2} \cos \varphi_{1}}{N_{1} \cos \varphi_{2} + N_{2} \cos \varphi_{1}}$$
(3.9.16)

$$\mathbf{r}_{s} = \mathbf{r}_{0s} \mathbf{e}^{i\delta_{s}} = \frac{\mathbf{A}'_{s}}{\mathbf{A}_{s}} = \frac{\mathbf{N}_{1} \cos \varphi_{1} - \mathbf{N}_{2} \cos \varphi_{2}}{\mathbf{N}_{1} \cos \varphi_{1} + \mathbf{N}_{2} \cos \varphi_{2}}$$
(3.9.17)

$$t_{p} = t_{0p} e^{i\delta'_{p}} = \frac{A'_{p}}{A_{p}} = \frac{2N_{1}\cos\phi_{1}}{N_{2}\cos\phi_{1} + N_{1}\cos\phi_{2}}$$
(3.9.18)

$$t_{s} = t_{0s} e^{i\delta'_{s}} = \frac{A'_{s}}{A_{s}} = \frac{2N_{1}\cos\phi_{1}}{N_{1}\cos\phi_{1} + N_{2}\cos\phi_{2}}$$
(3.9.19)

Pro vztahy využívané v elipsometrii:

$$\frac{r_{p}}{r_{s}} = tg\psi_{r}e^{i\Delta_{r}} = \frac{N_{1}\cos\phi_{2} - N_{2}\cos\phi_{1}}{N_{1}\cos\phi_{2} + N_{2}\cos\phi_{1}}\frac{N_{1}\cos\phi_{1} + N_{2}\cos\phi_{2}}{N_{1}\cos\phi_{1} - N_{2}\cos\phi_{2}}$$
(3.9.20)

Pro kolmý dopad $\varphi_1 = 0$ a platí

$$r_{p} = r_{s} = \frac{N_{1} - N_{2}}{N_{1} + N_{2}}$$
(3.9.21)

$$t_{p} = t_{s} = \frac{2N_{1}}{N_{1} + N_{2}}$$
(3.9.22)

$$R_{p} = R_{s} = r_{p}r_{p}^{*} = r_{s}r_{s}^{*}$$
(3.9.23)

$$T_{p,s} = I - R_{p,s}$$
 (3.9.24)

Obr.3.9.2 Závislost odražených a prošlých absolutních hodnot amplitud na úhlu dopadu pro polovodič.

Obr.3.9.3 Závislost rozdílu fází na úhlu dopadu pro polovodič.

Obr.3.9.4 Závislost odrazivosti na úhlu dopadu pro typický kov a polovodič (viditelná oblast).

V případě absorbujícího prostředí můžeme definovat jen tzv. pseudoBrewsterův úhel pro podmínku:

$$\frac{\mathrm{dR}_{p}}{\mathrm{d}\phi} = 0 \tag{3.9.25}$$

Protože v absorbujícím prostředí vždy R $_{p} \neq 0$.

Pro absorbující prostředí bude $R_p a R_s s výjimkou \phi = 30^{\circ} vždy menší než 1 a tedy totální odraz nenastane i když pro slabě absorbující prostředí je odrazivost pro velké úhly vysoká.$

Obr.3.9.5 Závislost odrazivosti na úhlu dopadu pro slabě absorbující materiál v oblasti porušeného totálního odrazu.