Optika nabitých částic Poznámky k přednášce – část 3 Michal Lenc

8. Maticová formulace

8.1. Paraxiální optika

Ve světelné optice se jako standardní postup pro návrh optických systémů používá výpočet se systémem matic, které charakterizují přenos světla od jedné roviny k další pomocí matice přenosu T_p volným prostorem a matice čočky T_{c} , která charakterizuje lom paprsků na lámavé ploše (optické čočce).

Zopakujme zde stručně pojmy týkající se zobrazení tlustou čočkou {obrázek).

Tlustá čočka je charakterizována polohami hlavních rovin H_o a H_i , polohami ohnisek F_o a F_i a indexy lomu v předmětovém a obrazovém prostoru n_o a n_i . Paprsek rovnoběžný s optickou osou v předmětovém prostoru se láme v obrazové hlavní rovině H_i do obrazového ohniska F_i , paprsek procházející předmětovým ohniskem F_o se láme v předmětové hlavní rovině H_o a jde dále v obrazovém prostoru rovnoběžně s optickou osou. Pro polohu předmětu a obrazu je splněna čočková rovnice

$$\frac{f_o}{a} + = =$$
(8.1)

Vzdálenosti v předmětovém prostoru se měří od předmětové hlavní roviny, tj. $f_{o=}$, $a_{=}$, a vzdálenosti v obrazovém prostoru se měří od obrazové hlavní roviny, tj. $f_{i=}$, $t_{=}$. Přímé a úhlové zvětšení jsou definovány jako

$$M_{\underline{-}}^{h} \underbrace{\stackrel{h}{=}}_{\underline{-}}^{h} \underbrace{\stackrel{h}{=}}_{\underline{-}}^{\underline{-}} \underbrace{=}_{\underline{-}}^{\underline{-}} \underbrace{=}_{\underline{$$

Platí zřejmě

$$hh_{\alpha} =$$
 (8.3)

Toto je jeden ze základních vztahů paraxiální geometrické optiky, Smithova - Helmholtzova věta.

Pro maticový zápis paprskového chodu zavedeme pojem přenosové matice. Označíme-li X_1 polohu a X_2 směrnici paprsku v nějaké počáteční rovině Z_{\pm} a X_2 polohu a X_2 směrnici paprsku v nějaké koncové rovině Z_{\pm} , můžeme psát

kde $I_{\mathbb{Z}_2}, \mathbb{Z}_1^{-}$ je matice přenosu. Přenos ve volném prostoru od Z_1 do Z_2 je popsán maticí

$$T_{p} = \begin{bmatrix} T_{p} \\ T_{p} \end{bmatrix}$$
(8.5)

neboť směrnice paprsku se nemění a poloha se mění úměrně prošlé vzdálenosti. Pro přenos mezi hlavními rovinami čočky je matice přenosu dána vztahem

$$T_{\check{c}} Z_{H}, Z_{H_{o}} =$$

$$(8.6)$$

protože souřadnice paprsku se nemění a směrnice se mění jednak působením čočky úměrně souřadnici a jednak díky Snellovu zákonu.

Označíme-li X_1 polohu a X_1 směrnici paprsku v rovině Z_{\pm} před čočkou a X_2 polohu a X_2 směrnici paprsku v rovině Z_{\pm} za čočkou, můžeme psát

$$T z_2, z_1 = \begin{array}{c} & T_c z_H, z_H T_p z_{H_0}, z_1 \end{array}$$

$$(8.7)$$

Vynásobení matic a drobné úpravy vedou k výsledku

$$T z_2, z_1 =$$

$$(8.8)$$

Po využití vztahů $Z_{H_0} = + - a Z_2 = + - dostaneme pro matici <math>T_{I_0}$, Z_1 výraz

$$T z_2, z_1 =$$

$$(8.9)$$

Jsou-li roviny opticky konjugované (tj. rovina Z_{\pm} v (8.8) nebo (8.9) je předmětová rovina a rovina $Z_{2\pm}$ k ní sdružená obrazová rovina), je ovšem matice přenosu mnohem jednodušší

$$T z_i, z_o = \begin{bmatrix} & T & T \\ T & T & T \end{bmatrix}$$
(8.10)

to jest

$$\chi_{i} = - +$$
(8.11)

Také dosazení opticky konjugovaných hlavních rovin Z_1 a Z_2 do (8.8) nebo (8.9) dává zpětně přenosovou matici čočky (8.6). Přenosovou matici pro volný prostor ale dostaneme pouze z matice ve tvaru (8.8) (dosazením $f_{o=}$ a limitním přechodem f_{i}). V matici (8.9) totiž také polohy ohnisek jdou do nekonečna a limitní přechod není dobře definován.

Velmi výhodný je maticový zápis při výpočtu vlastností systému složeného z mnoha prvků jeden každý prvek charakterizujeme maticí a vlastnosti systému získáme vynásobením matic jednotlivých prvků a matic přenosu volným prostorem mezi nimi (transportních matic).

8.2. Silná fokusace

Silnou fokusací v urychlovači rozumíme periodické střídání kvadrupólů orientovaných jako spojky nebo rozptylky. Budeme používat maticového zápisu, tedy např. pro směr x zavedeme vektor o dvou složkách, tj. při parametrizaci pomocí parametru z je paprsek popsán normovanou souřadnicí XZ/X_0 a směrnicí X'Z

$$Xz = \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \tag{8.12}$$

Po průchodu optickou soustavou uzavřenou do intervalu Z_{in}, Z_{at} je

$$X_{at} =$$
, (8.13)

nebo rozepsáno

Pohyb ve volném prostoru délky *L* je vyjádřen maticí (směrnice zůstává konstantní, souřadnice v závislosti na parametru lineárně narůstá)

$$TL_{=} (8.15)$$

působení kvadrupólu jako tenké spojky resp. tenké rozptylky maticí (souřadnice se nezmění, směrnice se skokem změní o optickou mohutnost násobenou hodnotou souřadnice paprsku při dopadu na tenkou čočku)

$$T_{+} f = \begin{bmatrix} & & & \\ & & \\ & & \end{bmatrix} \qquad \qquad \begin{pmatrix} & & \\ &$$

Jeden periodicky se opakující element tvořený volným pohybem od spojky k rozptylce, působením rozptylky, volným pohybem od rozptylky ke spojce a působením spojky bude tak vyjádřen maticí

$$M_{\underline{=}} = \begin{bmatrix} & & \\ & = \\ & & \\ & & \end{bmatrix}$$
(8.17)

Naším úkolem je ale spočítat působení velkého počtu (řekněme N) takových elementů, tedy

$$X_{at} = \tag{8.18}$$

přičemž požadujeme, aby se nezvětšovaly rozměry oblasti, kterou ve fázovém prostoru zaujímá svazek paprsků. K tomu využijeme rozklad obecného počátečního vektoru X_{in} do vlastních vektorů matice M, tj.

$$X_{in} = + \tag{8.19}$$

kde

Obecně pro vlastní hodnoty matice druhého řádu máme

$$\begin{array}{c} m_{1} \\ m_{21} \\ m_{21} \\ m_{22} \\ \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \begin{array}{c} - \\ \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} - \end{array} \xrightarrow{} \end{array}$$

V našem případě

$$\operatorname{Tr} M_{=} - \left(\begin{array}{c} \\ \\ \end{array} \right)^{2} =$$
(8.22)

Důležité jsou vlastnosti kořenů

$$\lambda + = \qquad = \qquad (8.23)$$

Označme

$$\operatorname{Tr}\left(\begin{array}{c} \\ \\ \end{array}\right) \qquad \left(\begin{array}{c} \\ \\ \end{array}\right) \qquad (8.24)$$

potom

$$\lambda = - \qquad (8.25)$$

Parametr μ je buď reálné, nebo ryze imaginární číslo. Je teď

$$X_{at} = = + = + = (8.26)$$

Cvičení: přesvědčit se nejprve, že protože X_{in} je reálné, bude také X_{at} reálné. Potom ukázat rozdíly pro μ reálné a ryze imaginární, nejlépe na skalární veličině

$$X^{T} z X z = \left(\begin{array}{c} \\ \\ \end{array} \right)^{2} \qquad (8.27)$$

9. Optická soustava s přímou osou

9.1. Multipólová pole

Pro výpočet optických vlastností jednotlivých prvků potřebujeme znát rozložení elektrických a magnetických polí na ose, v jejíž blízkosti se svazek nabitých částic pohybuje.

Protože v blízkosti optické osy nejsou ani budicí cívky, ani elektrody, můžeme pole působící na nabitou částici charakterizovat pomocí skalárního magnetického potenciálu a elektrostatického potenciálu. Ze známého rozložení potenciálu nebo pole na ose můžeme vyjádřit elektrostatický nebo magnetický potenciál v blízkosti osy pomocí Taylorova rozvoje v souřadnicích *x, y*. Základními poli pro paraxiální aproximaci jsou pole rotačně souměrné (fokusační), pole dipólové (vychylovací) a pole kvadrupólové (jak pro fokusaci jako kvadrupólové čočky, tak pro korekci astigmatismu).

Zavedeme-li komplexní souřadnici w pomocí vztahu $\mathcal{W}_{=} + = -$, můžeme obecně zapsat skalární potenciál jako

$$\Phi = \sum ,$$

$$\Phi =$$

Ze známého skalárního potenciálu spočteme intenzitu elektrického pole jako

$$\vec{E}_{w=} + = \partial \qquad \partial \qquad (9.2)$$

První členy rozvoje potenciálů rotačně souměrného pole, dipólového, kvadrupólového, hexapólového a oktupólového pole jsou pro elektrostatický pote F_{nc} Z nciál

Zde \mathcal{D} představuje závislost osového rotačně souměrného potenciálu na souřadnici z, a funkce a F_{ns} Z udávají (ve V/mt) průběh osové závislosti pole multipólu. Obecně F_{nc} Z je osové rozložení pole 2*n*-pólu s osou *x* v rovině symetrie a F_{ns} Z je s osou *x* v rovině antisymetrie.

Pro magnetický skalární potenciál platí stejný rozvoj jako pro elektrostatický

$$\Psi = \sum_{n=1}^{n} ,$$

$$\Psi = \sum_{n=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$$
(9.4)

Magnetický skalární potenciál bývá nejčastěji udáván v ampérech, v optice částic se však používá potenciál jako μ_0 -násobek obvyklého potenciálu (μ_0 je permeabilita vakua). Složky indukce magnetického pole jsou

$$\vec{B}_{w=} + = - \partial \qquad \partial \qquad (9.5)$$

Rozvoj potenciálu v souřadnicích x, y dává

Zde BZ (v jednotkách I - Tesla) je průběh indukce fokusačního pole na ose, $D_{nc} Z$ a $D_{ns} Z$ (v I/m–) je multipólové osové pole. Podobně jako u elekrostatických multipólů je $D_{nc} Z$ osové rozložení pole 2*n*-pólu s osou *x* v rovině symetrie a $D_{ns} Z$ s osou *x* v rovině antisymetrie.

9.2. Vztah mezi skalárním a vektorovým potenciálem

Vektor indukce magnetického pole ve vakuu můžeme vyjádřit pomocí vektorového nebo skalárního potenciálu

.

$$\vec{J} \equiv = \Psi$$
 (9.7)

neboli ve složkách

$$B_{x} = \begin{array}{c} & & & \\ B_{x} = \begin{array}{c} & & & \\ \partial & & \partial \\ B_{y} = \begin{array}{c} & & \partial \\ \partial & & \partial \\ B_{z} = \begin{array}{c} & & \partial \\ \partial & & \partial \end{array} \end{array}$$
(9.8)
$$B_{z} = \begin{array}{c} & & & \partial \\ \partial & & & \partial \\ \partial & & & \partial \end{array}$$

Z tohoto vyjádření pak můžeme psát

kde f X, Y, Z je libovolná funkce. Pro skalární potenciál pak

$$\Psi = -\int_{z}^{z} \int_{z}^{v} \int_{z}^{v} \int_{z}^{x} \int_{z}^{v} (9.10)$$

9.3. Lagrangeova a Hamiltonova funkce

Lagrangeova funkce je

Přejdeme k Hamiltonově formulaci. Zobecněný impuls je

$$\vec{c} \rightarrow (9.12)$$

Pro Hamiltonovu funkci pak máme

Protože hamiltonián nezávisí explicitně na čase, přejdeme pomocí transformace souřadnic

k novému hamiltoniánu, který budeme značit H, tedy

Hamiltonovy rovnice jsou teď

Provedeme-li explicitně příslušné derivace v (9.16), dostáváme

$$\frac{dx}{dz} = \frac{p_{x}}{dz} - \frac{p_{x$$

а

Přechodem k lagrangiánu

$$M_{\pm} \stackrel{dv}{+} \stackrel{dv}{-} \stackrel{-}{-} (9.19)$$

dostaneme

Tento výsledek lze pochopitelně dostat i přímo: pomocí zákona zachování energie změníme parametrizaci, přičemž zachovávající se energie vystupuje jako Lagrangeův multiplikátor.

9.4. Paraxiální rovnice

První členy rozvoje potenciálů rotačně souměrného, dipólového a kvadrupólového pole jsou

$$\Phi = - + \Phi = - ,$$

$$\Phi = - - \mathcal{Y} .$$
(9.21)

Zde \mathcal{D} představuje závislost osového rotačně souměrného potenciálu na souřadnici z, $F_{lc} Z$ a $F_{ls} Z$ představují průběh závislosti x a y složky dipólového vychylovacího pole na ose (ve V/M) a funkce $F_{2c} Z$ a $F_{2s} Z$ udávají (ve V/M^2) průběh osové závislosti kvadrupólového pole. První členy rozvoje magnetických potenciálů jsou

$$\Psi = \int_{-}^{z} \int_{-}^{1} + \Psi = -, \quad (9.22)$$

$$\Psi = -, \quad -$$

BZ, $D_{s}Z$ a $D_{c}Z$ (v jednotkách I - Tesla) je průběh indukce fokusačního a dipólového pole na ose, $D_{c}Z$ a $D_{s}Z$ (v I/M) je osové rozložení kvadrupólového pole. Pro vektorový potenciál je

V paraxiální aproximaci ponecháme v Lagrangeově funkci jen nejnižší mocniny souřadnic a jejich derivací, takže

$$M_{\pm} + + \qquad (9.23)$$

kde

Pohybové rovnice jsou

$$\frac{d}{dz}\begin{bmatrix} & & & & \\ & & & \\ \end{bmatrix} \begin{pmatrix} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

а

Pravé strany rovnic (9.26) a (9.27) musí být také řádu srovnatelného se souřadnicemi a jejich derivacemi. Buď jsou tedy dipólová pole slabá, jak se předpokládá v teorii vychylovacích systémů, nebo je pro energii K splněna Wienova podmínka, tedy

$$\begin{bmatrix} & & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$$

Zápis rovnic (9.26) a (9.27) lze podstatně zjednodušit. Zavedeme značení

$$F'_{n=+} = +$$
 (9.29)

Dále předpokládejme záporně nabitou částici (většinou elektron) a zvolme nulovou hladinu elektrostatického potenciálu tak, abychom mohli položit K_{\pm} . Označme ještě $\gamma = - \int_{1}^{1/2} e^{-\frac{1}{2}t^2}$ a rovnice (9.26) a (9.27) nabudou tvaru

10. Paraxiální rovnice ve speciálních případech

10.1. Magnetické pole

Zavedeme značení pro impulz

$$P_{\pm}^{-12}$$
 (10.1)

Potom je lagrangián

a rovnice trajektorie jsou

$$p\frac{d^{2}x}{dz^{2}} - \frac{dy}{dz} + \frac{1}{dz} + \frac{dR}{dz} - \frac{1}{dz} + \frac{1}{dz} = \frac{1}{dz}$$
(10.3)

а

$$p\frac{d^2y}{dz^2 + + + + =}$$
(10.4)

Složky magnetické indukce jsou

$$B_{x=-}^{TAR} - - - ,$$

$$B_{y=-}^{TAR} - - - ,$$

$$B_{y=-}^{TAR} - - + ,$$

$$B_{z=-}^{TAR} - - + ,$$
(10.5)

Jsou-li splněny pohybové rovnice, je účinek

$$S = \int_{-\infty}^{z} - + \left(\int_{-\infty}^{+\infty} \right)^{2}$$
(10.6)

10.1.1. Rotačně souměrné pole

Se značením

$$\theta = -\int_{-\infty}^{\infty} \int_{-\infty}^{z} (10.7)$$

vyjádříme řešení rovnic (9.26) a (9.27) jako

$$\begin{array}{ccc} xz \\ yz \\ yz \\ = \end{array} \begin{array}{c} - \\ + \end{array}$$
(10.8)

kde

$$\begin{array}{c} Xz = \left(\begin{array}{c} \\ \\ \\ Yz = \end{array} \right) \end{array}$$
(10.9)

a $\mathcal{K}_a \ Z \ \mathcal{K}_b \ Z$ jsou dvě nezávislá řešení rovnice trajektorie v rotující souřadné soustavě

$$\frac{d^2rz}{dz^2} + \left(\begin{array}{c} \\ \end{array}\right)^2 = = = = = = = =$$
(10.10)

Při této volbě je wronskián

$$h'_{\prime} = = (10.11)$$

Parametrizaci trajektorie musíme pro výpočet účinku obvykle pozměnit oproti (10.10), kde závisí na počátečních hodnotách souřadnic a směrnic. Například parametrizace pomocí počátečních a koncových hodnot souřadnic dává vyjádření

$$\begin{array}{c} x \zeta = \begin{bmatrix} & & \\ & \frac{r_a \ z \ r_b}{\zeta_{a \ z}} \zeta_{a \ z} & \zeta \begin{bmatrix} & \\ & \\ & \end{bmatrix} \\ y \zeta = \begin{bmatrix} & \\ & \\ & \frac{r_a \ z \ r_b}{\zeta_{a \ z}} & \zeta \begin{bmatrix} & \\ & \\ & \end{bmatrix} \end{array}$$
(10.12)

V zápisu pomocí komplexních čísel

$${}^{W}\zeta = \begin{array}{c} & - & + \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$
(10.13)

Potom máme pro směrnice v koncovém bodě

$$\begin{array}{c} \mathcal{X} \\ \mathcal{X} \\ \mathcal{Y} \\ \mathcal{Y} \\ \mathcal{Y} \\ \mathcal{Y} \end{array} = \begin{array}{c} \left[\begin{array}{c} & & \\ & \\ \end{array} \right] \\ (10.14) \\ \end{array} \right]$$

a pro směrnice v počátečním bodě

$$\begin{array}{c}
\mathcal{Y} = \begin{bmatrix} 1 \\ 1 \\ \mathcal{Y} = \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\
\begin{array}{c}
(10.15) \\
\end{array}$$

Účinek je (vynecháváme argument z funkcí)

$$S = - + \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\$$

Jiné vyjádření účinku získáme vyloučením X_0, Y_0 ze vztahů

$$W_{=}^{-} + + \partial \partial \partial$$
 (10.17)

Je pak

$$W_{=} - + \begin{bmatrix} 1 & & & \\$$

10.2. Kvadrupólové pole

Lagrangeova funkce je

$$M_{=}^{1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 2m_{p}^{m}E_{2s}xy_{-} & + & - & + & - \end{bmatrix}$$
(10.19)
(10.19)

a rovnice trajektorie jsou

Složky elektrické intenzity a magnetické indukce jsou

I v tomto případě platí, že jsou-li splněny pohybové rovnice, je účinek

$$S = \int_{z}^{z} - + \begin{pmatrix} 1 \\ - \end{pmatrix}_{z}^{z}$$
 (10.22)

11. Odvození čočkové rovnice z H-J rovnice

11.1. Základní vztahy

Lagrangeova funkce je

Zobecněná hybnost je definována jako

$$\vec{T} = \vec{T} \qquad (11.2)$$

Hamiltonova funkce je pak

$$H_{\equiv} \stackrel{nn^2}{\xrightarrow{}} \stackrel{nn^2}{\xrightarrow{}} \stackrel{\pi}{\xrightarrow{}} (11.3)$$

Z (11.3) a (11.2) máme

$$\left(\begin{array}{c} \\ \\ \\ \end{array} \right) \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array}$$
 (11.4) (11.4) (11.4)

takže odečtením dostaneme

$$\begin{pmatrix} & & \\ & & \end{pmatrix} \qquad \cdot \vec{-} = +$$
 (11.5)

Pro kompaktnost zápisu zavedeme značení pro veličinu rozměru hybnosti

$$K_{=}$$
 + (11.6)

Hamiltonovu - Jacobiho rovnici dostaneme dosazením

$$\vec{r} \rightarrow \vec{N} \rightarrow \vec{A}$$
 (11.7)

to znamená

Jestliže potenciály nezávisí na čase, máme řešení se zachovávající se energií. Přepíšeme pak (11.8) na

$$H_{= + +}$$
 (11.9)

kde

$$H_{\underline{--}} = - = \Phi = (11.10)$$

V částicové optice často pokládáme

$$H_{\underline{}} \qquad (11.11)$$

Při této volbě je kinetická energie rovna záporně vzaté potenciální energii ($T_{__}$)

$$Kc_{-} = \Phi$$
 (11.12)

tedy na nulové hladině elektrostatického potenciálu má částice nulovou kinetickou energii. Pro částice s $\ell_{<}$ (typicky elektrony) je v klasicky dosažitelné oblasti $rac{1}{100}$, pro kladně nabité částice ($\ell_{>}$) potom $rac{1}{100}$, je tedy vždy – $rac{100}{100}$. Zavádí se tzv. relativisticky korigovaný potenciál

Vždy je $-\Phi > -\Phi^{a v nerelativistické limitě} \Phi - \Phi^{A v nerelativistické limitě}$

$$\vec{\mathbf{v}} \rightarrow \vec{\mathbf{v}} \rightarrow - \vec{\mathbf{v}} \rightarrow - \vec{\mathbf{v}}$$
 (11.14)

11.2. Model paraxiálních vlastností čočky

Budeme používat válcové souřadnice, optická osa bude osou z. Pro magnetickou čočku předpokládáme vektorový potenciál ve tvaru

$$\vec{z} = \vec{z}$$

$$\vec{z} = \vec{z} = \vec{z}$$

Pro elektrostatickou čočku předpokládáme průběh osového potenciálu ve tvaru

$$\varphi = \begin{bmatrix} & & \\ & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \end{bmatrix}$$
(11.16)

_

takže potenciál v paraxiální aproximaci bude

Relativisticky korigovaný potenciál je pak

U magnetické čočky je $p^2 \rightarrow _$, u elektrostatické čočky bude

$$P^{2} r, z = \begin{cases} P_{-}^{2} - z & z & z \\ P_{-}^{2} - z$$

V nerelativistické aproximaci se vztah (11.19) podstatně zjednoduší na

$$p^{2} r, z = \begin{cases} p^{2} = - & < \\ - & = \\ + - & < < \\ - & - & = \\ y^{2} = - & > \end{cases}$$
(11.20)

Řešení Hamiltonovy – Jacobiho rovnice pro volnou částici s hybností *p*, která vychází z osového bodu v předmětové rovině $\mathcal{V}_{\underline{\ }}$ nebo přichází do osového bodu v obrazové rovině $\mathcal{V}_{\underline{\ }}$ je

$$S_{=}^{I} + - \approx - + - 2^{I^{2}},$$

$$S_{=}^{I^{2}} + - \approx + - + - 2^{I^{2}},$$
(11.21)

Účinek má tvar

$$S_{=} +$$
 (11.22)

budeme tedy účinek v paraxiální aproximaci hledat v tomto tvaru i v oblasti čočky. Hamiltonova – Jacobiho rovnice se v oblasti $l_{<<}$ porovnáním členů u mocnin *r* rozpadá na dvě

V krajních rovinách pak bude

$$\omega + = - = + = - =$$

$$\omega \begin{bmatrix} & & \\ & & \end{bmatrix}$$
(11.24)

a

$$\omega + = - = + = - =$$

$$\omega \begin{bmatrix} & & \\ & & \end{bmatrix}$$
(11.25)

11.3. Čočková rovnice

Nejobvyklejší tvar čočkové rovnice je

$$\frac{f_o}{Z_{Hb}} \xrightarrow{t} (11.26)$$

S využitím vyjádření ohniskových dálek

$$f_{o} = - = -$$
 (11.27)

můžeme rovnici (11.26) přepsat na tvar

$$Z_0 _ _ _ _$$
 (11.28)

Tento tvar je pro porovnání s výsledky výpočtu pomocí Hamiltonovy - Jacobiho rovnice vhodnější.

11.4. Magnetická čočka

Z rovnice (11.23) máme

Substituce

$$\sigma = \int_{-\infty}^{f/7} (11.30)$$

převede druhou rovnici v (11.29) na

Řešením je tedy

a účinek v oblasti čočky je

$$S_{=} + + + \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$$
(11.33)

Požadavek spojitosti účinku podle (11.21) a (11.33) v rovinách $Z_{\underline{}}$ a $Z_{\underline{}}$ vede k nepodstatným podmínkám

$$G_{\underline{--}} = -$$
(11.34)

jednak k podmínkám

Vyloučení konstanty $\operatorname{cong} C_2$ nám dá hodnoty

$$f_o = = = = = =$$
(11.36)

а

Pro tenkou čočku máme

11.5. Elektrostatická čočka

Z rovnice (11.23) máme

$$\omega = \int (11.39)$$

kde podle (11.19)

$$p_{z} = \begin{bmatrix} p_{z} & p_{z} & p_{z} \\ p_{z} & p_{z} & p_$$

Úprava druhé rovnice v (11.39) dává

$$\sigma = \int_{-}^{-} \cdot (11.41)$$

Požadavek spojitosti funkce ω v rovinách Z_{\pm} a Z_{\pm} vede na

~ *L*_____

$$G_{=-} = \int + -$$
(11.42)

a z rovnic (11.24) a (11.25) dostáváme

L

Potřebné integrály jsou

$$\begin{array}{c} I \\ - \end{array} \begin{vmatrix} 1 \\ - \end{vmatrix}$$
 (11.44)

а

$$\int_{-\infty}^{L} \frac{1}{10} \frac{p_{2+}}{10} \frac{1}{10} \frac{p_{2+}}{10}$$
(11.45)

V nerelativistické limitě pak

$$\lim_{c \to \infty} \int_{-\infty}^{L} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (11.46)$$

$$\lim_{C \to \infty} \int_{-\infty}^{L} \int_{-\infty}^{-\infty} \int_{-\infty}^$$

Vyloučením konstanty C_2 získáme čočkovou rovnici s parametry

$$f_{o} = \int_{-\infty}^{\infty} e^{AI} - \frac{AI}{2\ln\frac{p_{2}}{p_{+}}} - \frac{p_{1}^{2}p_{2}}{p_{-}}, \qquad (11.48)$$

$$Z_{Ho} = \frac{\gamma I}{-} \frac{p_{1}^{2} K_{2} \ln \frac{p_{2}}{p_{+}}}{\frac{1}{2} \ln \frac{p_{2}}{p_{+}}} - \frac{1}{2}$$
(11.49)

а

$$Z_{Hi} = + \frac{2I}{-2} \frac{p_2^2 K_{\rm I} n p_2^{-}}{p_2^2 m_{\rm H}^{-}} - \frac{1.50}{2}$$
(11.50)

Nerelativistické výrazy jsou pak

$$f_{o} = \begin{pmatrix} QI & n^{2}n & & QI & n^{2}n \\ & & & & - & - & + \end{pmatrix}$$
(11.51)

а