Table 6	Asbestos and Related I	Winerals				
Minerals	Formula	Color/Luster	SG	Н	Crystal system/ habit	Occurrences
Actinolite Greek actinos = ray reference to bundles of radiating needles	Ca ₂ (Mg,Fe) ₅ [(OH)Si ₄ O ₁₁] ₂	light green to blackish green; transparent to nearly opaque; vitreous	3 - 3.44	5 - 6	monoclinic; long bladed xls, fibrous or thin columnar aggregates, often radiating	contact and regional metamorphosed dolomites, magnesian limestones, low grade ultrabasic rocks
Amosite acronym of <u>A</u> sbestos <u>M</u> ines <u>o</u> f <u>S</u> outh Africa	MgFe ₆ [(OH)Si ₄ O ₁₁] ₂ (grunerite)	ash gray or brown; vitreous or pearly brown asbestos	3.1 - 3.25	5½ - 6	variable fiber length, and a coarse texture	contact and regional metamorphosed iron-rich rocks
Anthophyllite neo-Latin anthophyllum = clove for its brown color	(Mg,Fe) ₇ [(OH)Si ₄ O ₁₁] ₂	white, gray, greenish, dark brown; transparent to nearly opaque; vitreous to silky	2.85 - 3.1	5½ - 6	orthorhombic; massive, fibrous or lamellar; short harsh fibers with poor flexibility	metamorphic rocks such as schists and gneisses, or metasomatic rocks; often major constituent of rock
Chrysotile Greek chrysotos = gold and tilos = fiber for its color and nature	Mg ₆ [OH)₄Si ₂ O ₅] ₂	white, yellowish green; silky white asbestos	2.4 - 2.6	31/2	monoclinic; fibrous	vein in serpentine filling veinlets in serpentine as closely packed silky cross fiber forming a complex stockwork
Crocidolite Greek krokis or krokidos = the nap on cloth	Na ₂ Fe ₅ [(OH)Si ₄ O ₁₁] ₂ (riebeckite)	bluish; silky or dull ; soft to harsh texture; blue asbestos	3.2 - 3.3	31/2	short to long fibers with good flexibility	riebeckite is granite, syenite rhyolite, trachyte, banded ironstones, and regionally metamorphosed schists
Tremolite ocality at Tremola Valley, 5t. Gotthard, Switzerland	Ca₂(Mg,Fe)₅[(OH)Si₄O ₁₁]₂	colorless, white, gray, pale greenish, pink, brown; transparent to translucent; vitreous	2.9 - 3.2	5 - 6	long bladed xls, short and stout; fibrous or thin columnar aggregates, often radiated	contact and regionally metamorphosed dolomites, magnesian limestones, and low-grade ultrabasic rocks

- Nos. 1 and 2, long spinning fibers, are used in textiles (now rarely produced)
- No. 3, spinning or textile fiber, is used in textiles, papers, pipe coverings, insulating blocks, and friction materials
- No. 4, shingle or asbestos-cement fiber, is used in products including pipes, jackets, sheets, and numerous molded products
- No. 5, paper fiber, is used in certain asbestos-cement and friction products, as well as in packing material
- No. 6, waste, stucco, or plaster, is in the same applications as No. 5, although usually restricted to asbestos-cement shingles, flat and corrugated sheets, and putty, plastic, and paper
- No. 7, refuse, floats, or shorts, is used in certain cements, asphalt roof coatings, paper, welding rods, floor tiles, and putty (Harben, 1995; Virta & Mann, 1994).

GENETIC TYPES

produced from calcined magnesia in an electric-alc luman

	Minerals Conto		COL	11	Crustel austana / habit	Occurrences
THIT OF GIVE	Formula	Color/Luster	SG		Crystal system/ habit	
Bischofite for Gustav Bischof (1792- 1870), German chemist & geologist	MgCl ₂ ·6H ₂ O	colorless, white; transparent to translucent; vitreous to dull	1.6	1 - 2	monoclinic; short prismatic crystals, usually granular and foliated, or fibrous	salt deposits (Strassfurt, Germany; Wendover, UT)
Brucite for Archibald Bruce	Mg(OH) ₂ 9.1% MgO	white, pale green, gray, gray- blue, blue; transparent; pearly, waxy, or vitreous	2.4		trigonal; broad tabular xls, rarely acicular, foliated massive, fibrous, scaly, fine granular	serpentine, metamorphosed limestones chloritic and dolomitic schists, assoc, w hydromagnesite, magnesite, talc, calcit aragonite, or chrysotile
	CaCO ₃ · MgCO ₃	colorless, white, grayish, greenish, pale brown, pinkish; transparent to subtranslucent; vitreous to pearly	2.9		trigonal; simple rhombohedrons, often curved faces; massive fine to coarse granular	strata of varying origin; hydrothermal w deposits; cavities or veins in limestone dolomitic rocks; veins in serpentine; altered basic igneous rocks containing
	MgSO ₄ ·7H ₂ O	colorless xls; transparent; vitreous; aggregates white, pinkish, greenish; translucent; silky to earthy	1.7		orthorhombic; rarely as xls; synthetic xls short prismatic or equant	efflorescence on walls of mine working limestone caverns, sheltered magnesiar rock outcrops; waters of salt lakes and mineral springs; oceanic and lacustrine salt deposits; as a fumarolic deposit
Latin magnesia, from	MgCO ₃ 47.8% MgO	white to black, gray, blue (crystalline), white to buff, yellow (cryptocrystalline); transparent to translucent; vitreous	2.9 - 3	3½- 5	trigonal; xls uncommon; commonly massive, compact, coarse or fine-grained, chalky to porcelaineous	alteration product of magnesium-rich rocks; sedimentary deposits; as a gang mineral in hydrothermal ore veins; as a primary mineral in igneous rock
Huntite Walter Frederick Hunt (1882-1975), mineralogist, U of Michigan, Ann Arbor	Mg ₃ Ca(CO ₃) ₄	white; earthy	2.7	soft	trigonal; compact chalk-like masses, very fine grained and fibrous	cave carbonate in Mg-rich rock areas; surface weathering product of Mg-rich rocks like brucite, marbles, dolomites, serpentinites, or magnesites; as diager mineral in Recent sediment sequences
Hydro magnesite See above plus hydro = water	Mg ₄ (OH) ₂ (CO ₃) ₃ · 4H ₂ O	colorless, white; transparent with vitreous xls	2.5	31/2	monoclinic; acicular or bladed xls, in sprays, rosettes, or crusts; massive, powdery, chalk-like	alternation of serpentine or other magnesium rocks
Periclase Greek peri = around and klasis = fracture due to its perfect cubic Forsterite and fayalite -	C St. BHERRI	colorless, white, gray, yellow, brownish, green, black; transparent; vitreous	3.56 3.58	51/2	cubic; octahedral xls, commonly as rounded grains	marbles as a high-temperature metamorphic mineral

its, much of the raw material is "synthetic magnesia" om seawater.

23

and cosmetic uses.

Talc is used extensively as a filler in paint, plastics (especially polypropylene and polyethylene), paper, rubber, adhesives, joint compounds, stucco, and pharmaceuticals. In the paint industry, which accounts for up to 20% of its commercial consumption, talc is used to extend the more expensive titanium dioxide pigment. In certain paints, talc also contributes to oil absorption, viscosity, flatting and sheen control, suspension characteristics, chemical resistance, and dispersion of the pigment. Emulsion paints use a -325 mesh grade of alc, whereas anti-corrosion and automotive paints require micronized grades. A growing use is in plastics, where talc not only reduces the quantity of resin reguired but also has a strong reinforcing effect, increases heat resistance, reduces mold shrinkage and cycle time, and improves melt rheology. In polypropylene, for example, talc increases stiffness and resistance to high-

Source: USBM (USA) EMR (Canada)

Minerals	Formula	Color/Luster	SG	Н	Crystal system/ habit	Occurrences
alc steatite) vabic talq; Greek leatos = suet	Mg ₃ Si ₄ O ₁₀ (OH) ₂	pale to dark green, white, silvery white, brownish; translucent; pearly or dull; greasy feel	2.58 - 2.83		monoclinic and triclinic; thin tabular xls, massive, fine- grained compact; foliated for fibrous masses	secondary as hydrothermal alteration of ultrabasic rocks; thermal metamorphism of siliceous dolomites

A Global Geology

407

Consumption of ball clay in the United States

*includes adhesives, animal feed, asphalt tile, paint, paper filling, plastics, rubber, asphalt emulsions, wallboard, etc.
*includes electrical porcelain, fine china/dinnerware, and miscellaneous ceramics;

*** includes firebrick, blocks, and shape, high-alumina brick and specialties;

**** includes heavy clay products, absorbents, waterproofing seals, brick (common), flue lining, and uses unknown.

CLAYS: KAOLINITE-E

Figure 58 Vertical section through the Capíhnízdo kaolin deposit north of Karlovy Vary, Czech Republic (P. Hrzina).

1 - Quaternary loams; 2 - tuffs and tuffites of the volcanodetrital sequence Oligocene); 3 - sands and clays of the Stard Sedlo Formation (Middle Oligocene); 4 - primary residual kaolin; 5 - intensely kaolinized granite; 6 - biotite granite.

to

a

 \bigcirc -

m-