Learning outcomes (Lecture 3a) Replication of damaged DNA

Understanding:

- Basic mechanism of damage avoidance by recombination repair in E. coli
- Concept of translesion synthesis
- Y-family polymerases and XP variants
- Polymerase switching

Effects of DNA damage on replication

- 1. No effect, eg 7Me-G.
- 2. Misreplication, eg O6-MeG
- 3. Lesion obstructs fork progression
- 4. Lesion stops initiation
- 5. Lesion arrests cell cycle.

Model for recombination repair of daughter-strand gaps

uvrA- strains tolerate 50 CPD per genome New DNA is small, gets bigger.

Genetics of UV mutagenesis

A. *E. coli*

UV dose

SOS Response

In *E.coli, recA, umuCD* mutants are not mutable by UV light. LexA is a repressor of about 30 genes including recA, umuCD (as well as NER genes).

RecA is activated by ssDNA, exposed at replication fork when it encounters DNA damage (RecA*).

RecA* catalyses cleavage and inactivation of lexA repressor.

Results in increased levels of RecA* and UmuDC.

RecA* also catalyses cleavage of N-terminal 24aa from UmuD \rightarrow UmuD'

UmuD'₂C is DNA Pol V, which, unlike Pol III, can synthesise past DNA damage – but it makes errors

Quantitatively minor, but v important

3.5

Translesion Synthesis (TLS)

Replicative DNA synthesis is blocked by DNA lesion

TLS polymerase can incorporate either correct or incorrect nucleotide

Replication restart

DNA Polymerases

* Y-family of DNA polymerases

Properties of Y-family polymerases

- **Conserved catalytic domain at N-terminus**
- **Finger, palm and thumb domains characteristic of DNA polymerases**
- **Extra Little finger domain**
- **C-terminal third involved in protein-protein interactions**
- **Catalytic domains have more open structure**
- **Can accommodate damaged bases in active sites**
- **Error-prone on undamaged DNA**
- **Poor processivity**

Xeroderma Pigmentosum Patients

variant

XP-D

Robbins et al 1974

Properties of XP, CS and TTD complementation groups

***Unscheduled DNA synthesis as a percentage of wild-type activity**

XP variants

- XP-Variant patients are hypersensitive to sunlight
- XP-V cells carry out normal nucleotide excision repair but are defective in their replication of UV-damaged DNA (postreplication repair)
- The cells are only mildly sensitive to killing by UV
- This sensitivity can be increased with caffeine (diagnostic test)
- They are hypermutable with UV light
- They are defective in Polη

Diagnostic test for XP Variant Patients

- **UDS is normal**
- **Cell survival after UV is close to normal**
- **Cell survival after UV is reduced by caffeine**

Genetics of UV mutagenesis

A. *E. coli*

UV dose

B. Human cells

Properties of XP, CS and TTD complementation groups

***Unscheduled DNA synthesis as a percentage of wild-type activity**

XP variants

- XP-Variant patients are hypersensitive to sunlight
- XP-V cells carry out normal nucleotide excision repair but are defective in their replication of UV-damaged DNA (postreplication repair)
- The cells are only mildly sensitive to killing by UV
- This sensitivity can be increased with caffeine (diagnostic test)
- They are hypermutable with UV light
- They are defective in Polη

DNA Polymerases

* Y-family of DNA polymerases

DNA polymerase η

- Member of Y-family
- Can carry out TLS past CPDs
- Puts correct bases opposite CPD!
- Can carry out TLS past other lesions inefficiently
- Inaccurate on undamaged template NB TLS is the major pathway in mammalian cells

What do the other Y-family pols do? Different lesions Insertion and extension?

Insertion and extension

Polζ is a good extender: needed for replication past most lesions (except CPD – polη can do it all)

Polymerase Switch A9

Proteins involved in replication of DNA damage in *S. cerevisiae*

- **Rad6 and Rad18 are required for all processes of postreplication repair**
- **Mms2, Ubc13 and Rad5 are involved in an error-free branch**
- **Rad6 and Ubc13-Mms2 are E2 Ubiquitin conjugating enzymes**
- **Rad18 and Rad5 are E3 ubiquitin ligases**
- **Multiple interactions (Ulrich and Jentsch)**

$$
Ub + E1 \longrightarrow Ub-E1 \longrightarrow E2
$$
 $\xrightarrow{E1} Ub-E2$ $\xrightarrow{E3} Ub$ -target

PCNA is the ubiquitination substrate

B6

3.15

Replication of damage and errors

- **All Y-family polymerases have ubiquitin-binding domains**
- **So they can all bind to Ubiquitinated PCNA**
- **With UV-irradiated DNA, pol**η **makes few errors**
- **In its absence, others can substitute. They make more errors**
- **May need two pols to get past some types of damage, for insertion and extension**
- **TLS can be error-free, but is usually error-prone**
- **The template switch mechanism is error-free**

Genetics of UV mutagenesis

A. *E. coli*

UV dose

B. Human cells

UV mutagenesis

In bacteria, UvrABC proteins needed for (3)

Therefore in *uvr ABC-* **cells, more mutations via step (5)**

RecA needed for (4) and (5). So no mutations in *recA***cells**

UmuCD needed for (5). So no mutations in *umuCD-* **cells**

In humans, no excision-repair in excision-defective XPs, so more mutations via step (5)

In XP variants, step (4) a. is deficient, so more mutations via step (5)

Ubiquitination of PCNA modulates channelling into different pathways

Summary (Lecture 3a)

- *In E. coli* **avoidance of damage by recombination is the major pathway**
- **Mutations are generated by translesion synthesis (TLS) using PolV**
- **TLS is carried out by the specialised Yfamily of DNA polymerases**
- **XP variants are defective in pol**η
- **Polymerase switching is mediated by the ubiquitination of PCNA**

Learning outcomes (Lecture 3b)

Understanding:

- Age-related incidence of cancer
- Interpretation of mutation signatures in tumours
- Links between DNA damage and ageing

Age-related cancer incidence

Cancer incidence proportional to (Age)6 Interpreted to indicate need for 6 events (mutations, chromosome rearrangements)

Mutations in skin cancer (A11)

- Skin cancers, Basal Cell Carcinoma (BCC) Squamous cell carcinoma (SCC) Malignant Melanoma (MM)
- Cell culture: UV mutations are mainly $C \rightarrow T$; $CC \rightarrow TT$ at dipyrimidine sites.

P53

- Database of mutations in p53 gene, at sites of dipyrimidines
- 60% skin cancers have p53 mutations. All at dipyrimidines, 65% $C \rightarrow T$
- BCC 12% CC \rightarrow TT, SCC 15%, very characteristic of UV mutations, very different from internal tumours.
- More striking in XP tumours as well. 90% C \rightarrow T; 60% C \rightarrow TT.
- Strong evidence that sunlight induced damage results in p53 mutations.

HPTC

- Gorlin's syndrome high frequency of BCC.
- Gene cloned and found to be *HPTC*, human homologue of Drosophila *patched*.
- Protein is a transmembrane glycoprotein receptor for Hedgehog signalling. Involved in control of differentiation and proliferation. Not a DNA repair gene
- Mutations in *HPTC* gene in BCCs in XPs.
- Found in 73% XP BCCs, half are CC to TT. Implies important step in BCC development.

Colon cancer

p53 mutations in HNPCC

- Mismatch repair deficiency results in general increase in mutation frequency
- 65% of HNPCC tumours have p53 mutations
- Mutations mainly $C \rightarrow T$, but not at dipyrimidine sites, at CpG sites
- Cytosine spontaneously hydrolyses to uracil, which is removed by BER
- Cytosines are methylated at 5 position at many CpG sites
- 5MeC hydrolyses to thymine, resulting in a G:T mismatch, repaired by MMR not BER
- In HNPCC, G:T mismatches repaired poorly.
- This is the major source of p53 mutations in HNPCC

Unanswered questions in XP, CS and TTD

Cancer in XP, TTD, CS

- Why no cancer in TTD and CS despite NER defects?
- TTD? Transcription defect interferes with cancer progression?
- What about CS, not essential genes? Most mutations nulls.
- How can we explain the complex combined features of XP and CS, in some XP-B, XP-D, XP-G patients.

Neurological abnormalities

XP-A, D, G progressive neurological degeneration CS, TTD dysmyelination, mental retardation ?oxidative damage in brain?

Ageing (A12, B7)

- Long-standing hypothesis that decreased repair is a cause of ageing.
- Aspects of premature ageing in CS.
- TTD mouse: after 1 year looks very old.
- XP-A/TTD double even more extreme, implies DNA damage and transcriptional defect result in premature ageing. What is damage?

TTD mouse

Hoeijmakers hypothesis of ageing and cancer

Summary (Lecture 3b)

- **Cancer results from about 6 genetic changes**
- **Mutation signatures in skin cancers show importance of UV damage in p53 and PTCH genes**
- **p53 mutations at CpG sites are important in HNPCC**
- **Unrepaired DNA damage plays a role in ageing**