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Thermal Chemistry
Photochemistry
What is the difference?

* Mode of activation
- Selectivity in activation

* Energy distribution

Visualization of Thermal Reactions

COLLISIONS
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Transition state connects a single reactant to a single product and it is
a saddle point along the reaction course.

Collisions are a reservoir of continuous energy (~ 0.6 kcal/mol per
impact).

Collisions can add or remove energy from a system.

Concerned with a single surface.




Visualization of Thermal Reactions
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Visualization Photochemical Reactions

Two surfaces are involved

Adiabatic




Light and Energy Scales

Ultraviolet Region
Chemical Bonds of
DNA and Proteins
Damaged

400 nm
715 kcal/mol

Huge ener gies
per photon.

\

X-Rays
0.1 nm
300,000 kcal/mol

Infrared Region
Chemical Bonds Energy
too low to make or break
chemical bonds.

500 nm 700 nm
57.2 kcal/mol 40.8 kcal/mol

Themal energies Tiny leln:rgles
at room temperature per photon. \
ca 1 kcal/mole -
Microwaves
1,000,000 nm
0.03 kcal/mol 9

Photochemistry consists of two parts
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Points to Remember

Electronic Configuration of States, nn*; nn*
Spin Configuration of States (S and T)
Singlet-Triplet Gap (AE (S-T)

Rules of Intersystem Crossing (El-Sayed's
Rule)

Absorption and Emission

Fluorescence and Phosphorescence

Radiative and Radiationless Transitions

Kasha's Rule

Electronic and Spin Configuration of States
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Singlet-Triplet Gap and Intersystem Crossing
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El-Sayed's Rule

Absorption and Emission

Mirror Image rule

Emission spectrum is typically a mirror image of the absorption
spectrum of the S-S, transition, but shift to higher wavelength.

Electronic Absorption and Emission Bands

Franck-Condon Enorgy Diagram
Photon Energy (Electron-Volts)
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0 Energy
o 333 25.0 20.0 16.7 143 Levels
This similarity occurs because- Wavenumber (cm” x 10°%)

Same electronic tranisiton being involved in both absorption and emission
and the similarities of the vibrational energy levels of Sy and S;.

In many molecules vibrational energy levels are not significantly altered by
the different electronic distributions of S; and S,.




Fluorescence and Phosphorescence
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Photochemists’ handy horoscope of a molecule
Jablonski diagram: Radiative and Radiationless Transitions

Singlet energy

;T Triplet energy
Singlet reaction - : -~ Triplet reaction
Intersystem crossing ----- i Triplet spin configuration

Singlet spin configuration
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Photophysics: Excimer Emission
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Pyrene as an exemplar of excimer formation
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TICT Emission
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Kasha's Rule

Jablonski Energy Diagram
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Examples of Common Organic Chromophores

Carboryls
Olefins NN AN

Enones NN @:o @:o
Aromatics ©

How does ‘light energy' compare with chemical bonds?

Dissociation Wavelength
Bond energy am
kcal/mol
O-H 104 275
C-H 95 300
C-C 82 350
C-Br 66 435
O-0 38 750

22
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Photochemistry: Common Photoreactions

Hydrogen atom
transfer

/—— Electron transfer

Addition to C=C bond
(non-concerted)

a-Cleavage
Olefins
(mnr*)

, Carbonyls
B-Cleavage / (na*)

Geometric Isomerization
Pyramidalization

Proton transfer

Di-n-methane
(Zimmerman) rearrangement

Pericyclic reactions: Sigmatropic shifts
Electrocylisations
Cycloadditions

23

Photochemistry: Primary Photoreactions (1)

a-Cleavage
hv . .
—  » CH3CO + C(CHs); Products
hv .
-/ - > =, 4+ ——— Products

Products

l hv . .
[ + | Products

24
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Photochemistry: Primary Photoreactions (2)

p-Cleavage Q/
[0} o A
é\ hv é Products %
i "Ph 7 "ph
i’h i’h /
P hv N
Ph o_< Ph (o} <\ ——— Products
(¢] . o

<©:0 L @:@ — - Products

H__CH,0H
H__cuH,0H R
j hv
le) hv o K
o g

Products

Products 25

Photochemistry: Primary Photoreactions (3)

4

Hydrogen Abstraction

o H
)k + >~OH hv gi —— Products
CGHS hv . CGHS .
+ CH30OH + CH,OH —— Products

TOCTO-+

H
hv . OH
+ >*OH . + )\ — Products
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Photochemistry: Primary Photoreactions (4)

Electron Transfer

hv - +e
AraCO + RpNCH; ——  Ar,CO + RyNCHj Products — | ~

h —e +e
PhCH ==CHPh + Me,NCH,R — » PhCH=——CHPh + Me,NCH,R Products
(@] O--
hv +e
+ MeoNCHoR —_— + MesNCHLR Products
& . )
+ O L + . Products
N @ N
H H
27

Photochemistry: Primary Photoreactions (5)

Addition to C=C bond, triplet, non concerted >6:%

hv

P — 1

Products N _%
/é

Products

= o+ F
N =~ Sens

ﬁ hv < Z + (7—<7 —  Products

cl Dl
hv
OOO + T - ——  Products
Sens 28
Cl Cl
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Photochemistry often yields multiple products

/ ) I1
R*
\ > 1,

P1
P2
P3

hv
R ——>

P4
P5
P6

A A

Controlling Photochemical Reactions
Through Conventional Means

* Nature of the excited state, nn* and mn*
* Nature of the spin state, S; and T,

- Level of the excited state, S; and S,. T; and T,

15



Nature of the excited state, nn* and nn* control
through solvents

0] o
° o o} [}

2 ju* — Product A hv

S o —'@Ph * - @(Ph N * -
St n#* —- Product B 7 H Ph Ph

Ph i Ph
ni*
[

-
Benzene 100 0
Reactant Acetonitrile 58 42
Formamide 38 62

31

Nature of the excited state, nn* and nn* control through

additives
§2—_ qmm* — Product A
St nw¥ — Product B
Reactant
i I Jf i
| hv ? D ? N
N nic* TUTE
Y

None 20 71 10
In presence of BF; 0 10 90

32
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Spin state control through sensitization

m & -
, L
1 ot

Sens.

§l———  — Product A / i
\% _ o .
TL=—— . Product B Sens. Direct *

_ CeHs
Reactant Ay hv Lb/ CeHs  hy Lb‘/OCHS
“CeHs

CH,OH Sens. CHZ0H

Spin control
sensitized o)
o
33

Spin state control through heavy atom effect

Q
‘ hv 0 N

S1i 100:0
Tyt 1:9
Solvent Cis/trans dimer
Cyclohexane 497
n-Butyl chloride 2.37
n-Propyl bromide 0.41
Ethyl iodide 0.25

(10% mole %)

34
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Large energy gap and violation of Kasha's Rule

Product A - $

T2—— — Product C

Product B - St

TL—— — Product D

Reactant
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Controlling nature of reactive state with wavelength of irradiation
Reaction from upper excited singlet states
Large

r/
o)
o)
§2— —- Product A E%gj , HS +W j
(6]
energy

gap S

H o
§L—1 —~ Product B @:‘j N + Woj

Reactant

S
o 36
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Controlling nature of reactive state with wavelength of
irradiation: Reaction from upper excited triplet states

XX
| T OO energy
N gap

2 photons O
[\ 2photons
SO e

2 photons 0 Large OO

37

Controlling Photochemical Reactions

Electronic barrier: Electronic configuration (nt* vs. nn*)
Spin barrier: Spin configuration (S! vs. T1)

AF* = AH*~TAS”
Enthalpic barrier: Presence of activation energy

Entropic barrier: Changes in conformational, rotational and
translational freedom

@, =k/Sk

Competition: Radiative, radiationless and other reactive
modes

38
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Overcoming the enthalpic barrier with temperature
control

Smaller or no
energy barrier

Energy barrier

P2* P1*

39

Overcoming the enthalpic barrier by controlling temperature of
photoreaction

hv
Room temp. @ +® " [j +©
1 2

3 4

EE N
N
— +
_78° N 7

N—N
5 1
Temperature °C 4 1 2 3 5
22 30 45 6 11 8
0 30 34 3 5 31
-35 20 5 - - 75
- 78 10 - - - 90

40
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P1
P2
P3

P4
. < P5
P6

R —~ 3 Rx

Cutting cut down competition with choice of solvent

H,
o
o]

Ph
'~ H
(CH3);CO CO
Mé H \
Ph Ph
B O/H

Benzene Me

0 hy
g: C w oMe ¢ me=cl
H H H
Meﬂph @ in ter-butanol: 1.0

Hu o @ in benzene: 0.4

Ph

4
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Cutting cut down competition with choice of solvent

Ph /

Ph

Hexy 0
o
? \Ko ® in hexane 05
)K | .. ® in acetonitrile 0.001
Q oy — (A*D=—A" +D")

P“ P Acetonitrile™ A 4 Bf —= A +D

43

P1
I, P2
P3

P4

P6
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Controlling chemistry with wavelength of excitation

OH
~
hv / hv (o]
-~ 0 I} e
254 nm 313 nm Vi

Gt

313 nm

254 nm

Ae
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Conformational control through choice of solvent
o EO
~o
o EQ \
~0 Me
| OH
Me
OSiEty
\ 4
OFt C
o= 9 0 "% o
C - OH
Et;Si0, l = . ' H
) / %”()S;Eu
o HyC
hv
does not exist
hv/Hexane OEt
o={ 0 0 -0
HQ + H
o EtO\C o . on
H Y, H,C
""OH
H;C
100% Hexanes 1:1
CH;0H 1:s 46
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Medium Matters

0

Solution
Gas phase (solvent + solute) Protein

Reaction more selective

Why reactions in biological media are highly selective
compared to gas phase and solution?

Are there any other media with some of the features of
biological media?

47

Highly selective geometric isomerization occurs within a protein medium

Photoactive Green fluorescent
Rhodopsin Bacteriorhodopsin yellow protein protein

How do a biological media enforce selectivity?

* by restricting the rotational and translational motions
* by pre-organizing the reactants
* by controlling the extent and the location of free space

within a reaction cavity 48
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Controlling Photochemical
Reactions Through Weak
Interactions and Confinement
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