
1

1

Solution
(solvent + solute)

Increasing selectivity

Medium Matters

RhodopsinGas phase

How do biological media enforce selectivity?
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How do a biological media enforce selectivity?

✹ by restricting the rotational and translational motions 
✹ by pre-organizing the reactants
✹ by controlling the extent and the location of free space

within a reaction cavity

Photoactive 
yellow protein

Highly selective geometric isomerization occurs within a protein medium

BacteriorhodopsinRhodopsin
Green fluorescent 
protein
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Water Soluble Hosts as Confined Media

CucurbiturilsCyclodextrins Pd Nano Cage Calixarenes

SDS / CTACSDS / CTAC NaCh NaCh / / NaDChNaDCh Octa Octa acidacidDendrimers
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Are there any other media with some of the features of
biological media?

How can we achieve such a high level of selectivity in
photochemical reactions in a laboratory?

•Ability to solubilize substrates in water

• Weak interactions

• Confinement
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Cartoons of micelle structure

C12 C16

SDS CTABCore (2-3 nm)

Stern Layer 
(up to a few A)

Gouy-Chapman Layer
(up to several hundred A)

Water molecule

SO3
-

Na+

N
+

Br-
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Why do micelles form at all?
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The critical micelle concentration phenomenon:  Sudden break in
properties near a certain concentration of surfactant

Monomers only Monomers plus
micelles
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N

H

H

2 SBD

6 SBD

70 Å
29 Å

8 Å

N-CH2-CH2-CO-NH-CH2-CH2-N

Dendrimers: Macromolecules as micelles
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Generations of dendrimers
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Water soluble organic hosts: Cyclodextrins 

D-glucopyranoside units
connected into a cycle via 

1,4-glycosidic linkages

5 Å

9 Å

7 Å
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~ 5 Å ~ 9 Åˇ
~ 12 Åˇ

Cyclodextrins as supramolecular hosts
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Water soluble organic hosts: Cucurbiturils

 Easily prepared by the 
condensation of glycoluril
in acidic medium.

 Hexamer [CB6] known since    
early 1900’s, first characterized
in 1981.

 Kim and coworkers pioneered the
synthesis and isolation of the 
higher CBs [n = 7, 8, 10] in 2000.

 

 

N

 

N

 

N

 

N

 

O

 

O

 

 

 n

14



8

15

CB[6]b

!"CDa

CB[7]b

#"CDa

CB[8]b

$"CDa

a (Ao) b  (Ao) c (Ao) d (Ao) Volume (Ao3)

14.4 5.8 3.9 9.1 164

5.2 4.7 8.0 174

16.0 7.3 5.4 9.1 279

6.4 6.0 8.0 262

17.5 8.8 6.9 9.1 479

8.3 7.5 8.0 472

14.6

15.4

17.4

b

a

b

c

d

c

Cavity

a)   Szejtli, J. Chem. Rev.,1998, 98 (5), 1743 -1754, 

b)   Lee, J. W., Samal, S.; Kim, K.,  Acc. Chem. Res.  (2003), 36(8), 621-630

a

d
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11.363 A0

5.461 A0
13.729 A07.58 A0

Water soluble organic host: Octa Acid
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9.07 A0

Soluble in sodium tetraborate buffer solution (10mM)-pH > 9
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Octa acid (OA), Cucubituril (CB) and Cyclodextrin (CD)
A comparison
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18.7 Aº

13.1 Aº

Pd

Pd

Pd
Pd Pd
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N

NN

N
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N

N
H2

Pd

NO2

NO2

+

M6L4 Octahedral cage 
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Water soluble inorganic host: Fijita’s Pd host 
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Cronstedt discovered “boiling stones” which he called “zeolites” from the Greek:
zeo (boil) and lithos (stone).

Baron Cronstedt 1722-1765 A zeolite, as found in Nature

Discovery of zeolites
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Zeolites: Sythetic

200 nm1 µm 2.5 µ
m

2 µm

Zeolite-A ZSM-5 Zeolite-X or Y Zeolite-L

0.4 nm
0.5 nm

0.7 nm 0.7 nm

More than 65% of the earth’s crust consists of 3D crystalline
polyaluminosilicates (3D-CPAS): feldspar, zeolite, and ultramarine.
Zeolite is a class of 3D-CPAS having nanochannels and
nanocavities.
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Characteristics of Faujasites (Zeolites)

Mx(AlO2)x (SiO2)y.ZH2O

•   Microporous solid
•   Large surface area
•   Well defined channels/cages
•   Si/Al ratio  = 2.4
•   Type I - 4 cations /supercage
•   Type II- 4 cations /supercage
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Nomenclature of elementary supramolecular hosts
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The enzyme guest@host paradigm

G G+

Host Guest Guest@Host

We’ll be using this paradigm to
discuss supramolecular systems
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C12 C16

SDS CTABCore (2-3 nm)

Stern Layer 
(up to a few A)

Gouy-Chapman Layer
(up to several hundred A)

Water molecule

SO3
-

Na+

N
+
Br-

Surfactant monomersSchematic representation of a
guest@micelle complex

G

G
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Nomenclature of elementary supramolecular
guest@host complexes

28

Container Store
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Container Store

30

H2O

hydrophobic functionality hydrophilic functionality

Water soluble polymer

CucurbiturilsCyclodextrins Pd Nano Cage Calixarenes

SDS / CTACSDS / CTAC NaCh / NaDChNaCh / NaDCh Octa acidOcta acidDendrimers

CrystalsCrystals Zeolites

Supramolecular Containers
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Guest

Boundary

Reaction cavity

Free Space

Supramolecular Containers
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Role of Weak Interactions

Na
+

Cation---π π---π

H

C–H---π Hydrogen bond

O

X

Y H

Z

van der Waals

!+

!"

eA

eD

Charge transfer
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Molecular and Supramolecular Organic Photochemistry

R represents a guest molecule. The circle represents a host molecule.

Molecular organic photochemistry

Supramolecular organic photochemistry
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The beginnings of supramolecular organic chemistry: Cram, Lehn, Pedersen
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The “circle” (host) can accelerate (b)
or inhibit (c) the rate of a reaction

Energy diagram representation of supramolecular control of a reaction

The top reaction (a) is indiscriminate
since the activation energies for R
going to P1 or P2 are identical
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An exemplar of supramolecular control of a
photoreaction with two competing paths
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Acceleration and inhibition of the Type II photoreaction
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Hydrogen bond

O

X

Y H

Z

Pre-organization Through Weak Interactions


