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Cage effect

Conformational effect

2

Photochemistry of dibenzyl ketone as an exemplar of cage effect  
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Definition of cage effect
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GC traces of product
distributions upon irradiation in
solution and in HDTCl micelle
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A comparison between solution and micellar irradiations

6

In micellar solutions the % cage depends on the surfactant
concentration

Cage effect dramatically increases at a certain concentration of surfactant



11/2/10

7

Sulfate surfactants
CH3(CH2)nOSO3Na

Bigger micelles,
more hydrophobic cage.
slower exit to water

In micellar solutions the % cage depends on the the cage size

Reactive radicals escape
from smaller cages more
easily.
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In micellar solutions the % cage depends on the guest structure
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Cage effect depends on the exit rate.

For a given guest the
rate of exit decreases
with increasing micelle
size.

For a given guest the rate
of exit decreases with the
hydrophobicity of the guest.
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Nuclear isotope effect on triplet radical pairs

(b) The degree of
13C=O in DBK
increases with
photolysis (90%
conversion)

(a) Initial sample of
13C=O enriched DBK
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Origin of nuclear isotope effect
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Vector representation of triplet-singlet conversions: intersystem
crossing (ISC)
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Mechanisms of crossing from T to S (intersystem crossing, ISC)

Torques on spins 
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The effect of electron-nuclear hyperfine coupling on T-S conversion
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Triplets coupled to nuclei with spin will cross to the singlets faster
than triplets coupled to nuclei without spins.

Triplet radical pairs coupled to 13C will cross to singlets faster than
triplets coupled to 12C

Result: Separation of 13C radical pairs from 12C radical pairs
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Cage effect can be utilized for isotope enrichment

The competion is between cage escape and hyperfine induced ISC 
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Effect of an applied magnetic field on the T splitting
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Only T0 → S   ISC allowed
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Nuclear isotope effect will
increase cage reactions
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decrease cage reactions

Spin chemistry of radical pairs in supramolecular systems
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The effect of external magnetic field on the cage effect

The cage effect decreases.  More exit from host cage.

Initial 90% photolysis
at 0 applied mag. field

90% photolysis
at 15,000 G applied 
mag. field

Isotope enrichment decreases in presence of applied magnetic field

48% 13C 55% 13C62% 13C
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Octaacid as a Cage
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Structure of MFI zeolites
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Molecular vs. supramolecular radical-radical combination
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An schematic of supramolecular conformational control of a
photoreaction with two competing paths: *R → I(BR) + *R → I(RP)
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Controlling the competition between Type I and Type II
products by controlling the *R →

I(BR) of the Type II process

Type II
Inhibited by
preorganization

Type II
Accelerated by
preorganization
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Supramolecular mechanistic rationalization of the micellar
effect: Preorganization of the conformation of *R

Polar group
favored near
water interface

*R → I(BR)*R → I(RP)

*R → I(BR)
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Exemplar of micellar control of ratio of Type I and
Type products

I(RP) Free radical
products

I(BR) products

 I(RP) favored by fast diffusional separation

I(BR) favored by preorganization
and enhanced cage effect in micelles


