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CHAPTER 1

Lie groups

1. Lie groups

Definition 1.1. A Lie group G is a group, which is at the same time a smooth
manifold in such a way that

• the multiplication µ : G×G→ G is smooth,
• the inverse ν : G→ G is smooth.

By a homomorphism of Lie groups we understand a smooth group homomorphisms.

Notation. We denote by e the unit and write a−1 instead of ν(a). We will be
using the left and right translations λa, ρa : G→ G defined by

λa(b) = ab ρa(b) = ba

Theorem 1.2. The smoothness of the inverse follows from the smoothness of
the multiplication.

Proof. The defining equation for the inverse is µ(a, ν(a)) = e. By the implicit
function theorem it is enough to verify that the derivative of µ(a,−) at a−1 is
invertible. This follows from the fact that µ(a,−) = λa has an inverse λa−1 . �

Remark. Every Lie group is a topological group, i.e. a group and a topolog-
ical group such that the multiplication and the inverse are continuous. The fifth
Hilbert problem states that every topological group G that is at the same time a
(topological) manifold admits a smooth structure for which G becomes a Lie group.
This was proved in 1952 (in fact the structure is even analytic). If time permits we
will get to the implication C2 ⇒ C∞.

Let M , N be smooth manifolds. Then the projections p : M × N → M and
q : M ×N → N provide the canonical isomorphism

(p∗, q∗) : T(x,y)(M ×N)
∼=−−→ TxM × TyN.

The inverse isomorphism is obtained from the inclusions

iy : M →M ×N jx : N →M ×N
a 7→ (a, y) b 7→ (x, b)

Under the above identification the pair (X,Y ) ∈ TxM × TyN corresponds to
(iy)∗X + (jx)∗Y ∈ T(x,y)(M ×N).

Lemma 1.3. The following formulae hold for A,B ∈ TeG:

µ∗(A,B) = A+B, ν∗A = −A.

1



1. LIE GROUPS 2

Proof. These are just simple calculations

µ∗(A,B) = µ((ie)∗A+ (je)∗B) = (µie)∗A+ (µje)∗B = A+B

and by differentiating e = µ(a, ν(a)) in the direction A ∈ TeG we get

0 = µ∗(A, ν∗A) = A+ ν∗A

�

Examples 1.4. The classical gropups:

• The general linear group GL(n,R) - the group of invertible matrices (aij).

Since GL(n,R) ⊆ Rn×n can be described as GL(n,R) = det−1(R−{0}) it
is an open subset and hence a manifold. Multiplication is clearly smooth
(even algebraic).

• The general linear group GL(n,C) with coefficients in C. We think of
GL(n,C) as a subgroup of GL(2n,R) via the identification Cn = Rn⊕iRn.
The embedding becomes

A+ iB 7→
(
A −B
B A

)
On the other hand GL(n,C) ⊆ Cn×n is again open and hence a manifold.

• The special linear groups

SL(n,R) = {A ∈ GL(n,R) | detA = 1}
SL(n,C) = {A ∈ GL(n,C) | detA = 1}

are certainly closed submanifolds and also subgroups. Later we will prove

Theorem. Every closed subgroup of a Lie group is a submanifold and
with the submanifold smooth structure a Lie group (i.e. a Lie subgroup).

• Let β : Rn×Rn → R be a bilinear form represented by a matrix B = (bij).
A linear map α : Rn → Rn is said to preserve β if

β(αx, αy) = β(x, y) ⇐⇒ ATBA = B

Such linear automorphisms clearly form a closed subgroup of GL(n,R).
– Specifically for β = 〈 , 〉, the scalar product, we have B = E, the

identity matrix and we obtain the orthogonal group

O(n,R) = {A ∈ GL(n,R) | ATA = E}

and also the special orthogonal group

SO(n,R) = O(n,R) ∩ SL(n,R)

– Consider on R2n the (nondegenerate antisymmetric) bilinear form

n∑
i=1

(xiyn+i − yixn+i)

with its matrix J =

(
0 E
−E 0

)
. The group of linear automorphisms

preserving this form is called the symplectic group Sp(2n,R). Anal-
ogously we obtain Sp(2n,C).
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• The unitary group U(n) = {A ∈ GL(n,C) | ĀTA = E} and the spe-
cial unitary group SU(n) = U(n) ∩ SL(n,C). There is also a complex
orthogonal group which is different from the unitary group. One of the
main qualitative differences is that O(n,C) is a complex manifold and a
complex Lie group (reason being that the defining equation ATA = E
is holomorphic unlike that for the unitary group - it contains complex
conjugation).

• The spin group Spin(n). We will say more about it later. It is related to
SO(n,R) by a short exact sequence of groups

1→ Z/2→ Spin(n)→ SO(n,R)→ 1.

• Sp(n) = {A ∈ GL(n,H) | ĀTA = E}, the group of linear automorphisms
of the quaternionic space Hn preserving the scalar product. Also Sp(n) =
Sp(2n,C) ∩U(2n).

2. Lie algebras

Definition 2.1. A vector space L over R is called a Lie algebra if there is
given a bilinear map [ , ] : L× L→ L satisfying

• the antisymmetry: [X,X] = 0,
• the Jacobi identity: [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0.

From bilinearity we obtain

0 = [X + Y,X + Y ] = [X,X] + [X,Y ] + [Y,X] + [Y, Y ] = [X,Y ] + [Y,X]

implying [Y,X] = −[X,Y ].

Example 2.2. The vector fields on a smooth manifold M with the bracket
[X,Y ]:

X =
∑
i

Xi
∂
∂xi , Y =

∑
i

Yi
∂
∂xi =⇒ [X,Y ] =

∑
i,j

(
Xj

∂Yi
∂xj − Yj

∂Xi
∂xj

)
∂
∂xi

Let L be a finite dimensional Lie algebra and e1, . . . , en its basis. Then [ei, ej ] =∑
k c

k
ijek. The numbers ckij are called the structure constants of L with respect to

the basis. They satisfy the following identities:

• ckji = −ckij ,
•
∑
k(ckijc

m
kl + ckjlc

m
ki + cklic

m
kj) = 0.

Conversely, by giving the basis e1, . . . , en and the structure constants ckij satisfying
the above equalities we obtain a Lie algebra L. The complete classification of Lie
algebras is not yet known.

Example 2.3. Let V be a vector space and denote L = hom(V, V ). On L we
define a bracket

[f, g] = f ◦ g − g ◦ f.

In this way we obtatin a Lie algebra gl(V ).

For a Lie group G we define g = Lie(G) = TeG as a vector space. Now we
proceed to introduce a bracket on g.
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Definition 2.4. A vector field X : G → TG is called left-invariant if (λa)∗ ◦
X = X ◦ λa for any a ∈ G.

TG
(λa)∗

// TG

G

X

OO

λa

// G

X

OO

In other words X is λa-related with itself which we denote by X ∼λa X.

Remark. The f -relatedness of vector fields X and Y has the following char-
acterization via the flow lines, easily verified by differentiating both sides.

f(FlXt (x)) = FlYt (f(x))

In other words f transfers the flow lines of X into the flow lines of Y . We will use
this property quite often.

Remark. Let A ∈ TeG be an arbitrary vector. It defines a vector field λA :
G→ TG by the formula λA(a) = (λa)∗A. This vector field is clearly left-invariant
as

λA(ab) = (λab)∗A = (λaλb)∗A = (λa)∗((λb)∗A) = (λa)∗(λA(b))

It remains to verify its smoothness. Since (λa)∗A = µ∗(0a, A) this is achieved by
the following diagram

TG× TG
Tµ
// TG

G

(0,A)

OO

λA

AA

with (0, A) being the map with components the zero section 0 and the constant
map sending everything onto A.

Theorem 2.5. Let X,Y be left invariant vector fields. Then X + Y , kX and
[X,Y ] are again left-invariant.

Proof. Since X and Y are λa related with X and Y respectively, the same is
true for their sum, multiples and bracket. �

Definition 2.6. The vector space g = Lie(G) = TeG together with the bracket
[A,B] = [λA, λB ]e is called the Lie algebra of the Lie group G.

Remark. For every finite dimensional Lie algebra g there exists a Lie group
G for which Lie(G) = g.

We would like to explain now why this is a reasonable object of study. We have
seen that the first derivative at e does not see anything from the structure of the
Lie group. The second derivative does but in order to make sense of the second
derivative one has to fix the coordinate charts (which we will do later and for them
the second derivative will be described exactly by the Lie bracket). Without a fixed
choice of the charts the second derivative only makes sense when the first derivative
vanishes at that point which is not the case for the product. The way out is to
“subtract from µ the sum of the two coordinates” by considering

[ , ] : G×G −→ G

(a, b) 7→ aba−1b−1
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We will see shortly that the first derivative of the commutator vanishes at e and
the essential part of the second derivative is exactly the Lie bracket.

Notation. Let X, Y be two vector fields on a manifold M . Then we denote

(FlXt )∗Y (x) = (FlX−t)∗Y (FlXt (x)) ∈ TxM

the pullback of Y along the flow FlXt of X. For each x ∈M it is defined for t small.

Lemma 2.7. d
dt

∣∣
t=t0

(FlXt )∗Y (x) = (FlXt0 )∗[X,Y ](x).

Proof. First assume that t0 = 0 and let f : M → R be a smooth function.
We differentiate f in the direction of the left hand side:(

d
dt

∣∣
t=0

(FlXt )∗Y (x)
)
f = d

dt

∣∣
t=0

(
(FlXt )∗Y (x)f

)
= d

dt

∣∣
t=0

(
(FlX−t)∗Y (FlXt (x))f

)
= d

dt

∣∣
t=0

(
Y (FlXt (x))(f ◦ FlX−t)

)
= Y (x)(−Xf) + d

dt

∣∣
t=0

(Y f)(FlXt (x))

= −(Y Xf)(x) + (XY f)(x) =
(

[X,Y ](x)
)
f

For a general t0 we have (FlXt )∗Y (x) = (FlXt0 )∗(FlXt−t0)∗Y (x). Since (FlXt0 )∗ is a

linear map we can interchange with d
dt . �

Corollary 2.8. The following conditions are equivalent:

• [X,Y ] = 0,

• (FlXt )∗Y = Y , i.e. Y is FlXt -related with itself for all t,

• FlXt FlYs (x) = FlYs FlXt (x), i.e. the flow lines commute.

In general we have FlY−s FlX−t FlYs FlXt (x) = x+ st[X,Y ](x) + o(s, t)2.

Proof. Differentiating twice we get

∂
∂t

∣∣
t=0

∂
∂s

∣∣
s=0

FlY−s FlX−t FlYs FlXt (x) = ∂
∂t

∣∣
t=0

(
−Y (x) + (FlXt )∗Y (x)

)
= [X,Y ](x)

The remaining derivatives of order at most two are clearly zero. �

Example 2.9. Let M = G, a Lie group. What does [A,B] for A,B ∈ g
express? Let us consider the following integral curves

• ϕ(t) the flow line of λA with ϕ(0) = e,
• ψ(t) the flow line of λB with ψ(0) = e.

A flow line of λA through a general a ∈ G is easily a · ϕ : t 7→ aϕ(t). This follows
from the λa-relatedness of λA with itself: d

dt (aϕ(t)) = (λa)∗
d
dtϕ(t). In other words

FlλAt = ρϕ(t)

This implies that ϕ(t1 + t2) = ϕ(t1)ϕ(t2) and it is a homomorphism of groups. We
now compute

FlλB−s FlλA−t FlλBs FlλAt (x) = ϕ(t)ψ(s)ϕ(−t)ψ(−s) = ϕ(t)ψ(s)ϕ(t)−1ψ(s)−1.

In other words the group theoretic commutator [ϕ(t), ψ(s)] has a Taylor polynomial

[ϕ(t), ψ(s)] = [A,B]st+ o(s, t)2



2. LIE ALGEBRAS 6

This can also be rewritten as d2[ , ](e,e)((A, 0), (0, B)) = [A,B]. The Lie bracket
thus measures the non-commutativity of the Lie group. More precisely [A,B] = 0
if and only if all the elements ϕ(t) commute with all ψ(s). We will see later that
the connection between commutativity of G and vanishing of the bracket works
perfectly for connected Lie groups.

Definition 2.10. Let L, L′ be two Lie algebras. A linear map ϕ : L → L′ is
called a homomorphism of Lie algebras if ϕ[A,B]L = [ϕA,ϕB]L′ .

Theorem 2.11. Let f : G → H be a (smooth) homomorphism of Lie groups.
Then its derivative f∗ : g→ h at e is a homomorhpism of Lie algebras.

Proof. Let us rewrite f(ab) = f(a)f(b) using the left translations as

f ◦ λa = λf(a) ◦ f
Differentiating in the direction A ∈ g we obtain f∗(λa)∗A = (λf(a))∗f∗A or

f∗λA(a) = λf∗A(f(a))

which means that λA is f -related to λf∗A. Since the bracket respects relatedness,
[λA, λB ] must be f -related to [λf∗A, λf∗B ]. Evaluating at e yields the result. �

Definition 2.12. A smooth map f : G → H between Lie groups is a local
isomorphism if it is both a homomorphism and a local diffeomorphism at e (i.e. the
derivative f∗e : g→ h is an isomorphism).

Two Lie groups G, H are called locally isomorphic if there exist neighbourhoods
U 3 e and V 3 e, in G and H respectively, together with a diffeomorphism f : U →
V which satisfies:

• f(ab) = f(a)f(b) whenever a, b, ab ∈ U ,
• f−1(ab) = f−1(a)f−1(b) whenever a, b, ab ∈ V .

Clearly if there exists a local isomorphism f : G → H then G and H are locally
isomorphic.

Theorem 2.13. Locally isomorphic groups have isomorphic Lie algebras. �

Example 2.14. The additive groups R and T = SU(1) (the group of complex
units in C) are locally isomorphic. We think of the first as the group of translations
of the line while the second is the group of rotations of the circle (or C for that
matter). This is because there exists a local isomorphism R→ T sending t 7→ e2πit.

Definition 2.15. Let L, L′ be Lie algebras. On their product L × L′ we
consider the bracket

[(X1, Y1), (X2, Y2)] = ([X1, X2]L, [Y1, Y2]L′).

We call L× L′ together with this bracket the product of Lie algebras L and L′.

Theorem 2.16. Lie(G×H) ∼= Lie(G)× Lie(H).

Proof. The projections p : G × H → G and q : G × H → H are homomor-
phisms and hence they induce homomorphisms of the Lie algebras in question. This
means

p∗[(X1, Y1), (X2, Y2)] = [p∗(X1, Y1), p∗(X2, Y2)] = [X1, X2]

and similarly for q. The canonical isomorphism (p∗, q∗) : Lie(G × H) → g × h is
then an isomorphism of Lie algebras. �
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Remark. With the above Lie algebra structure L×L′ forms a product in the
category of Lie algebras. The previous proof is then just a demonstration of the
fact that Lie is a functor and preserve products (which is obvious from the fact that
this happens already at the level of tangent vector spaces at e).

What happens if we change sides? Denoting ρA the right-invariant vector field
with value A at e the next theorem asserts that the Lie bracket defined via the
right-invariant vector fields agrees with the usual one up to the minus sign.

Theorem 2.17. For A,B ∈ g the following holds: [ρA, ρB ]e = −[λA, λB ]e.

Proof. Consider the opposite group G∗ with multiplication a ∗ b = ba. The
inverse ν : G∗ → G is a group homomorphism and

[A,B]∗ = [λ∗A, λ
∗
B ]e = [ρA, ρB ]e

Thus −[ρA, ρB ]e = ν∗[A,B]∗ = [ν∗A, ν∗B] = [−A,−B] = [λA, λB ]e. �

Corollary 2.18. For a commutative group G the bracket on its Lie algebra is
identically zero.

3. Subgroups and subalgebras

Definition 3.1. A Lie subalgebra L′ ⊆ L is a vector subspace closed under
[ , ].

Theorem 3.2. If H ⊆ G is both a submanifold and a subgroup then h ⊆ g is a
Lie subalgebra.

Proof. In the diagram

H ×H
µ
//

� _

��

H� _
ι

��

G×G
µ
// G

the map µ (which exists since H is a subgroup) is smooth since H is a submanifold.
Hence H is a Lie group and the inclusion ι : H → G is a homomorphism. Thus its
derivative ι∗ : h→ g is a homomorphism of Lie algebras (saying that the bracket of
h is a restriction of the bracket on g) and its image is therefore a subalgebra. �

Example 3.3. Consider R2. Then every line {(x, kx) | x ∈ R} (for k ∈ R) is
a subgroup (and a submanifold). Now consider the torus T2 = R2/Z2. Again we
get subgroups for any k ∈ R. For k ∈ Q this subgroup is a submanifold but not for
irrational k when this subgroup is dense.

Definition 3.4. A subset A ⊆M of a smooth manifold M is called an initial
submanifold (of dimension k) if for each x ∈ A there exists a chart

ϕ : U
∼=−−→ Rm = Rk × Rm−k

such that ϕ−1(Rk × {0}) is exactly the path component of U ∩A containing x.
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Theorem 3.5. Every initial submanifold is the image of an (essentially unique)
injective immersion i satisfying the following universal property:

A� _

i

��

N

g
>>

f
// M

For every smooth map f : N → M with the property f(N) ⊆ i(A) the unique map
g : N → A satisfying ig = f is also smooth.

Proof. Let ϕ : U −→ Rm be a chart on N from the definition of an initial
submanifold. Declare its restriction

Cx(U ∩A)
∼=−−→ Rk × {0}

to the path component of U∩A containing x to be a chart for A. This does endow A
with a smooth structure. It differs from the subspace topology (which is inevitable)
but the inclusion is clearly an injective immersion.

We verify the universal property for inclusions of initial submanifolds. Let
y ∈ N with f(y) = x and V a path connected neighbourhood of y which maps into
U . Since its image is also path connected it must be contained in U ∩ A. Thus g
in the chart provided by ψ is just a restriction of f and hence smooth.

Suppose now that i′ : A′ ↪→ M is another injective immersion with the same
image as i. Then there exists a factorization

A′
h //� p

i′ !!

A
N n

i~~

M

with h an immerison and a bijection at the same time. Since its inverse is also an
immersion by the same argument h must be in fact a diffeomorphism. �

Remark. It is also true that any injective immersion i satisfying the above
universal property is in fact an inclusion of an initial submanifold but we will not
need this fact.

Remark. We have not proved that A has a countable basis for its topology.
In fact A might well have an uncountable number of components. However each of
the components of A is second countable.

Definition 3.6. A Lie subgroup H ⊆ G is an initial submanifold which is at
the same time a subgroup.

Theorem 3.7. A Lie subgroup H ⊆ G with its canonical smooth structure (and
multiplication) is a Lie group. Moreover h ⊆ g is a Lie subalgebra.

Proof. The whole proof is contained in the diagram

H ×H
µ
//

� _

��

H� _
ι

��

G×G
µ
// G

�
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Our new definition includes the wild subgroups of the torus T2. In fact we
are able to construct a Lie subgroup for any Lie subalgebra of g. To motivate
our construction observe that for a Lie subgroup H ⊆ G and a ∈ H we have
TaH = (λa)∗h and H is an integral submanifold of the left invariant distribution
determined by h.

More generally for a linear subspace P ⊆ g of dimension k the left translations
(λa)∗P =: λP (a) ⊆ TaG form a k-dimensional distribution λP on G. This distri-
bution is smooth: if A1, . . . , Ak is a basis of P then λA1(a), . . . , λAk(a) is a basis of
λP (a).

A distribution S on M is called involutive if for every two vector fields X,Y ∈ S
their bracket [X,Y ] also lies in S.

Theorem 3.8 (Frobenius theorem). If S is involutive then for every x ∈ M
there exists a local coordinate system y1, . . . , ym in a neighbourhood U of x such that
the vector fields ∂

∂y1 , . . . ,
∂
∂yk

form a basis of the distribution S on U . In particular

S is integrable.

Proof. Let X1, . . . , Xk be local vector fields which, near x, span the distribu-
tion S and let us choose a coordinate system around x in which Xi(x) = ∂

∂xi . We
then define a map

ϕ : Rm ⊇ U −→M

(t1, . . . , tm) 7−→ FlX1

t1 · · ·FlXk
tk

(0, . . . , 0, tk+1, . . . , tm)

The partial derivatives at the origin clearly consist of the vectors ∂
∂xi and thus ϕ is

a local diffeomorphism.
Let us compute the partial derivative with respect to ti for i ≤ k at a general

point.
∂ϕ

∂ti
=
(

FlX1

t1

)
∗
· · ·
(

Fl
Xi−1

ti−1

)
∗
Xi

(
Fl
Xi+1

ti+1 · · ·FlXmtm (x)
)

To conclude the proof it is therefore enough to show that for any Y belonging to S
the pullbacks (FlYt )∗Xi also belong to S. Denote this pullback by

Yi(t) = (FlYt )∗Xi(x)

and write [Y,Xi] =
∑
aijXj . By Lemma 2.7 the paths Yi(t) satisfy the following

system of differential equations

d
dtYi(t) = (FlYt )∗[Y,Xi] =

∑
aij(FlYt (x))Yj(t)

We have Yi(0) = Xi(x) ∈ S(x) and since the system is linear we must have Yi(t) ∈
S(x) for all t. Namely applying any linear form α to this system we see that α(Yi(t))
satisfy the very same linear system of differential equations. Using the uniqueness
and the existence of the zero solution we see that α(Yi(0)) = 0 for all i implies
α(Yi(t)) = 0 for all i and t. �

By an integral submanifold we will now understand a connected initial subman-
ifold A ⊆M for which TxA = Sx for all x ∈ A. A maximal integral submanifold is
one that is not contained in any bigger.

Theorem 3.9. If S is involutive then to every point x ∈ M there exists a
unique maximal integral submanifold going through that point.
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Proof. We will obtain this initial submanifold as the set A of all points y ∈M
which can be joined with x by a path γ : I → M tangent to the distribution S,
i.e. with the properties

• γ(0) = x, γ(1) = y,
• γ̇ = d

dtγ ∈ S.

We need to verify that A is indeed an initial submanifold, maximality should be
obvious. In a coordinate chart ϕj : Uj → Rm from the Frobenius theorem Uj ∩ A
is clearly the disjoint union ⊔

(ck+1,...,cm)∈Cj

Rk × {(ck+1, . . . , cm)}

It is enough to show that each Cj is at most countable since every countable subset
of Rm−k is totally disconnected (in between any two distinct x, y in a countable set
X ⊆ R there lies some z 6∈ X). First we prove an auxiliary fact:

Let B be an integral submanifold which is second countable. Then B intersects
each Uj in at most a countable number of leaves Rk × {(ck+1, . . . , cm)}: if, by
contradiction, the number was uncountable then choosing a point from B in each
leaf we would find an uncountable discrete subset of B.

In particular every leaf of ϕj intersects at most countable number of leaves
of ϕk. Now start with A0 = {x} and at each step “leaf complete” Ai to obtain
Ai+1. Then A =

⋃
Ai and it is second countable, hence intersects only a countable

number of leaves of each ϕj . �

Let us return to a linear subspace P ⊆ g and the distribution λP on G.

Lemma 3.10. λP is involutive if and only if P is a Lie subalgebra.

Proof. Since [X, fY +gZ] = f [X,Y ]+(Xf)Y +g[X,Z]+(Xg)Z it is enough
to check the brackets of vector fields of the form λA with A ∈ P . But [λA, λB ] =
λ[A,B]. �

Theorem 3.11. Let h ⊆ g be a Lie subalgebra. Then the maximal integral
submanifold H passing through e is a Lie subgroup.

Proof. Let a ∈ H. Since (λa−1)∗λh = λh, the map λa−1 preserves integral
submanifolds. As λa−1(a) = e and both a, e ∈ H we must have λa−1(H) = H and
thus a−1b ∈ H for all a, b ∈ H. �

Now we tackle the uniqueness issue. First a lemma.

Lemma 3.12. Let f : G → H be a homomorphism of Lie groups whose deriv-
ative at identity is surjective. Then the image of f is a union of components of
H.

Proof. The image is certainly a subgroup which is open. Since any open
subgroup is necessarily also closed (its complement being a union of cosets which
are open) the assertion follows. �

Remark. Later we will use a simple variation of this lemma: Let U be a
connected neighbourhood of e in a Lie group G. Then the subgroup generated by
U is exactly the connected component Ge of G containing e. Here Ge is a subgroup
since the pointwise product of a path from e to a and a path from e to b is a path
from e to ab.



4. HOMOMORPHISMS OF LIE GROUPS AND ALGEBRAS 11

Theorem 3.13. Let H ⊆ G be a connected Lie subgroup. Then H is the
maximal integral submanifold of λh.

Proof. Let H0 be the maximal integral submanifold of λh passing through
e. Since both H is also an integral submanifold it must be contained in H0 and
the inclusion H ↪→ H0 is both injective and surjective by the previous lemma (the
derivative at e is the identity on h) and thus H = H0. �

4. Homomorphisms of Lie groups and algebras

Lemma 4.1. A group homomorphism f : G → H which is smooth near e is
smooth everywhere.

Proof. This is a classical homogeneity argument. Denoting by U the neigh-
bourhood of e where f is smooth pick any a ∈ G and consider the diagram

U
f
//

λa
��

H

λf(a)

��

aU
f
// H

in which aU is a neighbourhood of a and thus f is smooth everywhere. �

The essential idea of this section is to construct homomorphisms through their
graphs. Let us consider ϕ : g → h, a linear map between Lie algebras. The graph
of ϕ is the subset Graph(ϕ) = {(A,ϕ(A)) | A ∈ g}.

Lemma 4.2. Graph(ϕ) is a Lie algebra if and only if φ is a homomorphism of
Lie algebras.

Proof. By the definition of the bracket in the product

[(A,ϕ(A)), (B,ϕ(B))] = ([A,B], [ϕ(A), ϕ(B)])

which lies in Graph(ϕ) if and only if [ϕ(A), ϕ(B)] = ϕ[A,B]. �

Let ϕ : g → h be now a homomorphism of Lie algebras, Graph(ϕ) ⊆ g × h its
graph, a Lie subalgebra. There exists a unique connected Lie subgroup F ⊆ G×H
with Lie(F ) = Graph(ϕ). Assuming that the composition F ↪→ G × H → G is a
diffeomorphism F will be a graph of a homomorphism f : G→ H with f∗ = ϕ. In
general however this projection is only a local diffeomorphism: its derivative at e is
the isomorphism Graph(ϕ)→ g and at other points this follows from the diagram

TeF
f∗

∼=
//

(λa)∗ ∼=
��

TeG

(λf(a))∗∼=
��

TaF
f∗

// Tf(a)G



4. HOMOMORPHISMS OF LIE GROUPS AND ALGEBRAS 12

Definition 4.3. A continuous map f : X → Y is a covering if for each y ∈ Y
there exists its neighbourhood U such that

f−1(U)
∼= //

f
!!

⊔
c∈C

U

∑
c∈C

id
~~

U

Lemma 4.4. Every local isomorphism of Lie groups is a covering.

Proof. Let f : G → H be the local isomorphism, U 3 a, V 3 b open neigh-

bourhoods for which f |U : U
∼=−−→ V with inverse g. Then we will show that

f−1(V ) =
⊔

k∈ker f

k · U

Therefore let x ∈ f−1(V ). Then x = (x · g(f(x))−1) · g(f(x)) is the decomposition.
Also kx = k′x′ implies that x(x′)−1 = k−1k′ ∈ ker f and thus f(x) = f(x′). Since
f in injective on U , x = x′ and necessarily k = k′.

The proof is finished by recalling that the image of f is a union of components
(so that for any b the a above exists). �

Theorem 4.5. Let X be a path connected and locally simply connected topo-
logical space. Then X is simply connected if and only if every connected covering
of X is a global homeomorphism.

Before going into the proof we draw a corollary:

Theorem 4.6. Let G be a simply connected Lie group, H any Lie group. Then
for every homomorphism ϕ : g→ h of Lie algebras there exists a unique homomor-
phism of Lie groups f : G → H with the property f∗ = ϕ. For connected G the
uniqueness part is still valid.

Proof. The above constructed homomorphism F → G is a covering and ac-
cording to the previous theorem a diffeomorphism. Thus F is the graph of f . �

Corollary 4.7. Two simply connected Lie groups G and H are isomorphic if
and only if their Lie algebras are isomorphic. �

The assumption of simple connectivity is essential: the canonical projection
map R→ R/Z = T is a homomorphism but there is no non-trivial homomorphism
in the opposite direction despite the fact LieR = LieT.

Proof of Theorem 4.5. Let us construct the universal covering of X. Set

X̃ = {[γ] | γ : (I, 0)→ (X,x)}
where [γ] denotes the class with respect to homotopies preserving both endpoints.

The projection p : X̃ → X sends [γ] 7→ γ(1). Then clearly

• p−1(x) ∼= π1(X,x).
• p is a covering: Let U be a simply connected neighbourhood of x′. Then

p−1(U) ∼=
⊔
[γ]

γ(0)=x

γ(1)=x′

[γ] ∗ {[δ] | δ : (I, 0)→ (U, y)}︸ ︷︷ ︸
in bijection with U by

simple connectivity
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This bijection defines a topology on X̃ for which p is a covering. Therefore
X̃ is a smooth manifold if X was to start with (again we leave out the

proof that X̃ is second countable).

Remark. We have shown that π1(X,x) is at most countable since
p−1(x) is discrete and X second countable.

• p is universal: let q : Y → X be a covering with connected Y and let
y ∈ q−1(x). Then there exists a unique f : X̃ → Y satisfying qf = p and

f(x̃) = y where x̃ = [x] ∈ X̃ is the class of the constant path

(X̃, x̃)
f

∃!
//

p
##

(Y, y)

q
{{

(X,x)

This is about the path lifting property: the path γ : (I, 0) → (X,x)

has a unique continuous lift to (X̃, x̃), namely t 7→ [γ|[0,t]]. Denote the
unique lift to (Y, y) by γ̃. Since the lifts must be preserved f must send
[γ] 7→ γ̃(1).

• If π1(X,x) = {e} then X̃ → X is a homeomorphism: it is a local homeo-
morphism from the definition of a covering and surjective from the path
connectedness of X. We will prove injectivity. Let p[γ] = p[δ], i.e.

γ, δ : (I, 0, 1)→ (X,x, x′)

The concatenation γ ∗ δ−1 is a loop in X, hence contractible to a point
which gives [γ] = [δ].

�

5. The exponential map

Definition 5.1. By a one-parameter subgroup in G we understand a homo-
morphism γ : R→ G.

Theorem 5.2. For every A ∈ g there exists a unique one-parameter subgroup
γA : R→ G such that γ̇A(0) = A.

Proof. R is simply connected and LieR = R with the trivial bracket and thus
a homomorphism R→ g of Lie algebras is the same thing as a linear map. �

The one-parameter subgroup γA is an integral curve of λA and more generally
for every a ∈ G the curve t 7→ a · γA(t) is:

d
dt

∣∣
t=t0

aγA(t) = d
dt

∣∣
t=t0

aγA(t0)γA(t− t0) = (λaγA(t0))∗A = λA(a · γA(t0))

Theorem 5.3. The flow of the left-invariant vector field λA is

FlλAt (a) = aγA(t) = ργA(t)(a)

Moreover λA is complete (the integral curves are defined for all t ∈ R).

Definition 5.4. The map exp : g → G sending A 7→ γA(1) is called the
exponential map of the Lie group G.
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Example 5.5. For G = (R+, ·) the associated Lie algebra is LieG = R, the
left-invariant vector field λA(a) = (λa)∗A = aA. The equation for the flow is

d
dtγA = γAA

and its solution is clearly γA(t) = etA. Hence exp(A) = eA.

Example 5.6. More generally for G = GL(n,R) the exponential map is

exp : gl(n,R) −→ GL(n,R)

A 7−→ eA =

∞∑
k=0

1

k!
Ak

Theorem 5.7. It holds exp(tA) = γA(t).

Proof. γA(t) = FlλAt·1 (e) = Flt·λA1 (e) = FlλtA1 (e) = exp(tA). �

Theorem 5.8. The map exp : g → G is smooth and a diffeomorphism on a
neighbourhood of 0.

Proof. The vector field λA depends smoothly on A and thus also exp. We
compute the derivative of exp by considering a curve t 7→ tA in g. Its image under
exp is t 7→ exp(tA) = γA(t) whose derivative at 0 is γ̇A(0) = A. We conclude that
exp∗ = id : g→ g. �

Theorem 5.9. For every homomorphism of Lie groups the following diagram
commutes.

G
f
// H

g

exp

OO

f∗

// h

exp

OO

Proof. f(γA(t)) is a one-parameter subgroup with initial speed f∗A and thus
equal to γf∗A(t). Evaluating at t = 1 yields the result. �

Lemma 5.10. Let f : G → H be a homomorphism of Lie groups with G con-
nected and let K ⊆ H be a Lie subgroup. Then f(G) ⊆ K if and only if f∗(g) ⊆ k.

Proof. Suppose that f∗(g) ⊆ k. Then f(exp(g)) = exp(f∗(g)) ⊆ exp(k) ⊆ K.
Since exp(g) is a neighbourhood of e in G, f−1(K) is an open subgroup of G. As
G is connected f−1(K) must equal G. �

Theorem 5.11. Let ϕ : R → G be a continuous group homomorphism. Then
ϕ is smooth.

Proof. In a neighbourhood of 0 ∈ R we can write uniquely ϕ(t) = exp(A(t))
with X(t) a continuous path in g starting at 0. We would like to show that X(t)
is linear. Let ϕ[−t0, t0] ⊆ expU where U is a ball centered at 0 and such that exp
is a diffeomorphism on 2U . Let n ∈ N. We will show that kX

(
t0
n

)
= X

(
k t0n
)

for
0 ≤ k ≤ n by induction on k. For k = 0 or k = 1 this is clear. Assuming the
statement true for k write

(k + 1)X
(
t0
n

)
= kX

(
t0
n

)
+X

(
t0
n

)
∈ 2U
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Since

exp
(
(k + 1)X

(
t0
n

))
=
(
expX

(
t0
n

))k+1
= ϕ

(
t0
n

)k+1

= ϕ
(
(k + 1) t0n

)
= exp

(
X
(
(k + 1) t0n

))
and exp is injective on 2U this finishes the induction step. As a particular case
nX

(
t0
n

)
= X(t0) and thus X

(
k
n t0
)

= k
nX(t0) which easily holds also for all integers

k with |k| ≤ n. From continuity X(rt0) = rX(t0) for all r ∈ [−1, 1]. Since ϕ|[−t0,t0]

is now linear and hence smooth, it is smooth everywhere by the usual argument
(homogeneity). �

Theorem 5.12. Let G, H be Lie groups and f : G → H a continuous group
homomorphism between them. Then f is smooth.

Proof. Pick a basis A1, . . . , Am in g and define a map ϕ : Rm → G by

(t1, . . . , tm) 7→ exp(t1A1) · · · exp(tmAm)

Clearly ϕ is a diffeomorphism near 0. It is called a coordinate chart of a second
kind (the first kind is exp itself). The composition fϕ is the map

(t1, . . . , tm) 7→ f(exp(t1A1)) · · · f(exp(tmAm))

which is smooth: each continuous one-parameter subgroup f(exp(tiAi)) is smooth
by the previous theorem and so is their product. Again we can globalize by homo-
geneity. �

Theorem 5.13 (The closed subgroup theorem). Let H ⊆ G be a subgroup (in
the algebraic sense) which is also closed as a subspace of a Lie group G. Then H
is a submanifold and thus a Lie subgroup.

Proof. We divide the proof into a few steps:

• Define

h = {γ̇(0) | γ : (R, 0)→ (G, e) a smooth curve}

Then h is a linear subspace since γ̇1(0) + γ̇2(0) = d
dt

∣∣
t=0

(γ1(t) · γ2(t)) and

kγ̇(0) = d
dt

∣∣
t=0

γ(kt).
• Let An ∈ g be a sequence converging to A and let tn > 0 converge to

0 ∈ R. We claim that if exp(tnAn) ∈ H then exp(tA) ∈ H for all t ∈ R.
We may suppose that t > 0. Choose mn ∈ N in such a way that |t−mntn|
is minimal. Then |t −mntn| → 0 and consequently mntnAn → tA. But
exp(mntnAn) = exp(tnAn)mn ∈ H and since H is closed it follows that
exp(tA) ∈ H too.

• We show that h = {A ∈ g | exp(tA) ∈ H ∀t ∈ R}. The inclusion ⊇ follows
from the definition of h. For the reverse inclusion let A ∈ g be γ̇(0) for
some curve γ : R→ H. For t small we write γ(r) = exp(A(t)). Then

A = γ̇(0) = exp∗(Ȧ(0)) = Ȧ(0) = lim
n→∞

A( 1
n )

1
n

Setting An = nA
(

1
n

)
→ A and tn = 1

n we have

exp(tnAn) = exp
(
A
(

1
n

))
= γ

(
1
n

)
∈ H.

and by the previous point exp(tA) ∈ H for all t ∈ R.
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• Let k ⊆ g be a linear subspace complementary to h. We claim that there
exists a neighbourhood 0 ∈ W ⊆ k such that exp(W ) ∩ H = {e}. By
contradiction let Bn → 0 be a sequence in k such that exp(Bn) ∈ H.
With respect to some norm on k consider An = Bn

|Bn| . By passing to a

subsequence we may assume that An converges to some A ∈ k. Putting
tn = |Bn| we have exp(tnAn) = exp(Bn) ∈ H and thus exp(tA) ∈ H for
all t ∈ R. By the previous point A ∈ h, a contradiction to A ∈ k.

• Define ϕ : h× k→ G by (A,B) 7→ expA · expB. We will show that there
exists a neighbourhood 0 ∈ V ⊆ h for which the restriction

ϕ : V ×W
∼=−−→ U ⊆ G

is a diffeomorphism onto its image U (which is easy) and such that

U ∩H = ϕ(V × {0}).
Therefore let x ∈ U ∩ H be in the image, x = expA · expB. As both
x, expA ∈ H, also expB ∈ H. By the previous point B = 0.

Thus we found a chart at e which flattens out H. Charts at other points are
obtained by translation. �

6. Homogeneous spaces

Definition 6.1. By a left action of a Lie group G on a smooth manifold M we
understand a smooth map ` : G×M →M satisfying `e = id and `a ◦`b = `ab where
we write `a = `(a,−). The algebraic content is a homomorphism G→ Diff(M).

The right action r : M ×G→M has to satisfy re = id and ra ◦ rb = rba.

We will write `a(x) = a · x and ra(x) = xa.

Remark. A right action of G is the same as a left action of the opposite group
G∗.

Definition 6.2. The orbit of a point x ∈M is the subset Gx = {ax | a ∈ G}.
We call the action transitive if there is only one orbit in M or equivalently if
Gx = M for every x ∈M .

The stabilizer subgroup of a point x ∈M is the (closed) subgroup

Sx = {a ∈ G | ax = x}.
The action is called free if the stabilizer subgroup of each point is trivial, Sx = {e}
for every x ∈ M . The action is called effective if `a = `b implies a = b, i.e. if the
homomorphism G→ Diff(M) is injective.

Set theoretically the action yields a diagram

G
`(−,x)

//

p
""

M

G/Sx

aSx 7→ ax an injective map

<<

and if the action is transitive then G/Sx →M is even a bijection. Naturally G/Sx
is a topological space, a quotient of G:

U ⊆ G/Sx is open ⇐⇒ p−1(U) ⊆ G is open.
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Theorem 6.3. Let H ⊆ G be a closed subgroup of a Lie group G. Then there
exists a unique smooth structure on G/H for which p : G→ G/H is a submersion.

Proof. First we will demonstrate uniqueness in a more general context. The
idea here is that surjective submersions are quotient objects:

M
g
//

f

��

P

N

h

>>

If f is a surjective submersion and g any smooth map which factors through f set-
theoretically, i.e. such that ker f ⊆ ker g (or more concretely f(x) = f(x′) implies
g(x) = g(x′)), then the unique map h satisfying g = hf is smooth. This follows
easily from the fact that f admits smooth local sections (and h is thus a composition
of g with such a section).

The uniqueness now follows formally since in the diagram

G
p

}}

p

!!

G/H
id

,,
G/H

id

ll ←− possibly different smooth structures

the unique factorization maps are the identity maps and the fact that they are both
smooth means precisely that the two smooth structures coincide.

It remains to prove the existence. Let k ⊆ g be a linear subspace complementary
to h. There are neighbourhoods 0 ∈ V ⊆ k, 0 ∈W ⊆ h and e ∈ U ⊆ G such that

ϕ : V ×W −→ U

(A,B) 7−→ expA · expB

is a diffeomorphism and U ∩H = ϕ({0} ×W ). Let 0 ∈ V ′ ⊆ V be such that

(expV ′)−1 · (expV ) ⊆ U

which is possible by continuity of the operations. Suppose now that A1, A2 ∈ V ′
are such that (expA1) ·H = (expA2) ·H. Then (expA1)−1 · expA2 ∈ U ∩H and
is equal to expB for a unique B ∈W . Multiplying back

ϕ(A2, 0) = ϕ(A1, B)

which implies A1 = A2 and B = 0. This says that the map

f : V ′ ×H −→ G

(A, b) 7−→ (expA) · b

is injective. Since it is also a local diffeomorphism on V ′ × (expW ) by translation
it is so everywhere and f is in fact a diffeomorphism onto its image.

We have now identified a neighbourhood of H ⊆ G with a product V ′×H and
in such a way that the cosets a ·H lying in this “chart” are of the form {A} ×H.
Thus the map

ψ : V ′ ∼= V ′ × {e} ↪→ V ′ ×H ↪→ G
p−−→ G/H
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embeds V ′ as a neighbourhood of the coset eH ∈ G/H. We therefore declare it a
chart on G/H. In this way the map p becomes the projection V ′ × H → V ′ and
thus a submersion. To get a chart near arbitrary aH redefine f as

fa : V ′ ×H −→ G

(A, b) 7−→ (expA) · a · b
The transition map between the resulting charts ψa′ and ψa is the composition

V ′
exp−−−→ U

ρa′a−1−−−−−→ U
f−1

−−−−→ V ′ ×H −→ V ′

with all arrows smooth and ρa′a−1 only locally defined. �

Definition 6.4. The manifold G/H is called a homogeneous space.

Theorem 6.5. The orbit of each point is an immersed submanifold (i.e. image
of an injective immersion).

Proof. Consider the diagram

G
`(−,x)

//

p
""

M

G/Sx

f

<<

with the map f smooth by the previous theorem. We need to show that it is
an immersion (on the other hand it is injective almost by the definition of Sx).
Suppose first that for A ∈ g its image p∗A is sent to 0 ∈ TxM by f∗. Then
d
dt

∣∣
t=0

exp(tA)x = 0. On the other hand

d
dt

∣∣
t=t0

exp(tA)x = d
dt

∣∣
t=t0

exp(t0A) exp((t− t0)A)x

= (`exp(t0A))∗
d
dt

∣∣
t=t0

exp((t− t0)A)x︸ ︷︷ ︸
0

= 0

Thus exp(tA)x = x for all t ∈ R and exp(tA) ∈ Sx implying that A ∈ ker p∗ and
p∗A = 0. This finishes the proof that f is an immersion at eSx. At other points
this is guaranteed by the homogeneity:

eSx_

��

G/Sx
f
//

`a ∼=
��

M

`a∼=
��

aSx G/Sx
f
// M

�

Example 6.6. Fix v ∈ R2 and consider the following action of R on R2

R× R2 −→ R2

(t, u) 7−→ u+ tv

Clearly the orbit of u is the line u + Rv. Passing to the torus T2 = R2/Z2 we see
that orbits need not be embedded submanifolds.

Remark. In general every orbit is an initial submanifold.
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Corollary 6.7. For a transitive action the map f : G/Sx → M is a diffeo-
morphism.

Proof. From Sard’s theorem it easily follows that smooth bijections exist only
between manifolds of the same dimension. Hence the immersion f is in fact a local
diffeomorphism. Being also bijective it is a diffeomorphism by the inverse function
theorem. �

Examples 6.8. Examples of homogeneous spaces:

• Let V be a vector space. Then GL(V ) acts transitively on V − {0} and
thus V − {0} ∼= GL(V )/Sv where v ∈ V − {0}.

• The sphere Sn−1 with the action of O(n) is a homogeneous space, Sn−1 ∼=
O(n)/O(n− 1) where O(n− 1) is thought of as a subgroup of O(n) con-
sisting of block matrices

O(n− 1) ∼=
{(

A 0
0 1

)
∈ O(n)

∣∣∣∣ A ∈ O(n− 1)

}
• The n-dimensional affine space is acted upon by the group

GA(n) =

{(
A v
0 1

)
∈ GL(n+ 1)

∣∣∣∣ A ∈ GL(n), v ∈ R
}

of affine transformations, namely we identify a point x ∈ Rn with a vector
( x1 ) in Rn+1 and then(

A v
0 1

)(
x
1

)
=

(
Ax+ v

1

)
The origin is preserved exactly by the subgroup

GL(n) =

{(
A 0
0 1

)
∈ GA(n)

∣∣∣∣ A ∈ GL(n)

}
describing Rn as GA(n)/GL(n). Similarly with GL(n) replaced by O(n)
we arrive at Rn ∼= Euc(n)/O(n) with Euc(n) denoting the group of (not
necessarily origin preserving) isometries of Rn.
• The Stiefel manifold (of orthonormal k-frames in V )

Sk(V ) = {(v1, . . . , vk) | 〈vi, vj〉 = δij}
has as examples S1(V ), the unit sphere in V , Sn(Rn) = O(n). For general
Sk(Rn) there is a natural action of O(n) componentwise:

A(v1, . . . , vk) = (Av1, . . . , Avk)

The stabilizer of the k-tuple (e1, . . . , ek) of the first k vectors of the stan-
dard basis is clearly

O(n− k) ∼=
{(

E 0
0 C

)
∈ O(n)

∣∣∣∣ C ∈ O(n− k)

}
Thus Sk(Rn) ∼= O(n)/O(n− k).

• The Grassmann manifold Gk(V ) of all k-dimensional subspaces of V is
naturally a quotient of Sk(V ), namely by the means of the map

Sk(V ) −→ Gk(V )

(v1, . . . , vk) 7−→ span(v1, . . . , vk)
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The O(n)-action on Sk(Rn) passes to Gk(Rn) with the stabilizer of Rk
being

O(k)×O(n− k) ∼=
{(

B 0
0 C

)
∈ O(n)

∣∣∣∣ B ∈ O(k), C ∈ O(n− k)

}
and thus providing Gk(Rn) ∼= O(n)/O(k)×O(n− k).

Theorem 6.9. Let N ⊆ G be a closed normal subgroup. Then G/N with its
canonical smooth structure is a Lie group.

Proof. The left vertical arrow in

G×G
µ

//

p×p
��

G

p

��

G/N ×G/N // G/N

is a surjective submersion therefore the dotted arrow (the multiplication in G/N)
is smooth. �

7. The adjoint representation

Definition 7.1. By a representation of G we understand a left action of G on
a vector space V by linear maps (automorphisms), i.e. for which each `a : V → V
is linear. Equivalently ρ : G→ GL(V ) is a (smooth) homomorphism of Lie groups.

Definition 7.2. A representation of a Lie algebra L on a vector space V is a
homomorphism π : L → gl(V ) of Lie algebras. More concretely π is a linear map
for which π[X,Y ](v) = πX ◦ πY (v)− πY ◦ πX(v).

Definition 7.3. A linear subspace W ⊆ V is called invariant with respect to
a representation ρ if ρ(a)(W ) ⊆W for all a ∈ G. Analogously it is called invariant
with respect to a representation π if π(X)(W ) ⊆W for all X ∈ L.

Theorem 7.4. Let G be a connected Lie group and ρ its representation on V ,
ρ∗ : g→ V the induced representation of g. Then W ⊆ V is invariant with respect
to ρ if and only if it is invariant with respect to ρ∗.

Proof. Consider the following subgroup of GL(V )

GL(V,W ) = {ϕ ∈ GL(V ) | ϕ(W ) ⊆W}.

It is easy to show that

gl(V,W ) = Lie(GL(V,W )) = {ϕ ∈ gl(V ) | ϕ(W ) ⊆W}.

The statement then becomes a special case of Lemma 5.10. �

Let ` : G ×M → M be a left action and x ∈ M its fixed point (i.e. Sx = G).
Then ρ : G→ GL(TxM) given by a 7→ (`a)∗x is smooth by

TG× TM `∗ // TM

G× TxM
?�

0×id

OO

ρ]

99
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and consequently a representation of G on TxM . We apply these general consider-
ations to the action of G on itself via conjugation (inner automorphisms):

(a, b) 7−→ inta b = aba−1

Now e ∈ G is a fixed point and we define Ad : G→ GL(g) as above

Ad(a)B = (inta)∗B

Moreover Ad(a) ∈ AutLie(g) since inta is a homomorphism of Lie groups. We denote
the induced representation by ad : g→ gl(g) (in fact Der(g)).

Theorem 7.5. For each A,B ∈ g it holds ad(A)(B) = [A,B].

Proof. We compute

ad(A)(B) = ∂
∂s

∣∣
s=0

Ad(exp(sA))(B)

= ∂
∂s

∣∣
s=0

∂
∂t

∣∣
t=0

intexp(sA) exp(tB)

= ∂
∂s

∣∣
s=0

∂
∂t

∣∣
t=0

exp(sA) exp(tB) exp(−sA)

= ∂
∂s

∣∣
s=0

∂
∂t

∣∣
t=0

FlλA−s FlλBt FlλAs (e)

= ∂
∂s

∣∣
s=0

(FlλA−s)∗λB(FlλAs (e)) = [λA, λB ]e = [A,B]

�

Theorem 7.6. If H ⊆ G is a normal subgroup then h ⊆ g is an ideal, i.e. a
linear subspace such that [g, h] ⊆ h (meaning [A,B] ∈ h for all A ∈ g and B ∈ h).

Proof. Since aHa−1 ⊆ H or intaH ⊆ H we differentiate to get Ad(a)(h) ⊆ h
and finally ad(g)h ⊆ h. �

Theorem 7.7. Let H be a connected Lie subgroup of a connected Lie group G
such that h ⊆ g is an ideal. Then H is a normal subgroup.

Proof. We have ad : g→ gl(g, h). Since G is connected Ad : G→ GL(g, h). It
is enough to show that inta(exp tB) ∈ H for all B ∈ h since the subgroup generated
by such elements is the whole group H. But exp tB is a one-parameter subgroup
and inta a homomorphism, thus inta exp tB is also a one-parameter subgroup in G
with initial speed d

dt

∣∣
t=0

inta exp tB = Ad(a)B ∈ h. �

Theorem 7.8. Let ϕ : G → H be a homomorphism of Lie groups. Then its
kernel is a closed normal subgroup K ⊆ G and its Lie algebra k is the kernel of
ϕ∗ : g→ h.

Proof. A ∈ k iff exp tA ∈ K iff exp(t · ϕ∗A) = ϕ(exp tA) = e iff ϕ∗A = 0. �

Definition 7.9. The centre C of a Lie group G is the set

C = {a ∈ G | ab = ba ∀b ∈ G}

In other words, C is the kernel of int : G→ Aut(G).

Theorem 7.10. The centre of a connected Lie group G is the kernel of the
adjoint representation Ad.

Proof. a ∈ C iff inta(G) = e iff Ad(a)g = 0 iff Ad(a) = 0. �
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Definition 7.11. The centre of a Lie group L is the ideal

Z = {X ∈ L | [X,Y ] = 0 ∀Y ∈ L}
In other words, Z is the kernel of ad : L→ gl(L).

Theorem 7.12. For a connected Lie group G, the centre Z of g the Lie algebra
of the centre C of G.

Proof. Since C = ker(Ad), its Lie algebra Lie(C) = ker(ad). �

Remark. If the centre of L is zero then L can be embedded into gl(L) via the
representation ad.

Theorem 7.13 (Ado). Every Lie algebra can be embedded into gl(V ) for some
finite-dimensional vector space V .

Corollary 7.14. Every Lie algebra is induced from some Lie group.

Proof. By Ado’s theorem L ⊆ gl(n). Since gl(n) = Lie(GL(n)) one can find
a Lie subgroup of GL(n) corresponding to L. �

8. Fundamental vector fields

Consider a left action ` : G ×M → M . To every vector A ∈ g we associate a
vector field `A on M by `A(x) = (`(−, x))∗A. As usual `A is smooth and is called
the fundamental vector field on M corresponding to A ∈ g. Analogously we define
fundamental vector fields for right actions.

Theorem 8.1. In the case of a left action of G on M it holds [`A, `B ] = `−[A,B].
For the right action we obtain [rA, rB ] = r[A,B].

Proof. On M ×G consider the vector field (0, λA)(x, a) = (0x, λA(a)).

r∗(x,a)(0, λA) = (r(x,−))∗aλA = (r(xa,−))∗eA = rA(xa)

says that (0, λA) is r-related to rA. As the same is true for B we obtain for the
brackets that [(0, λA), (0, λB)] is r-related to [rA, rB ]. But

[(0, λA), (0, λB)] = ([0, 0], [λA, λB ]) = (0, λ[A,B])

which is r-related to r[A,B]. Thus [rA, rB ] = r[A,B]. �

The last theorem can be expressed by saying that r : g → XM , A 7→ rA is a
homomorphism of Lie algebras. The left action gives an antihomomorphism.

Definition 8.2. By a right infinitesimal action of a Lie group G on a manifold
M we understand a homomorphism R : g→ XM of Lie groups. A right infinitesimal
action is called complete if RA is a complete vector field for each A ∈ g. Analogously
a left infinitesimal action is an antihomomorphism.

Example 8.3. The fundamental vector fields are complete: r(x, exp tA) =
x exp tA is an integral curve through x defined for all t ∈ R.

Remark. A left action is a homomorphism of Lie groups G→ Diff(M) (with
infinite dimensional target). The induced Lie algebra homomorphism is g →
Lie(Diff(M)), the latter being XM but with the opposite bracket. As for finite
dimensional Lie groups we can “integrate” a homomorphism of Lie groups but here
under additional requirements - the completeness.
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Theorem 8.4. For a complete right infinitesimal action R : g → XM of a
simply connected Lie group G on M there exists a unique right action r : M ×G→
M of G on M such that RA is its fundamental vector field rA.

Remarks.

• The simple connectivity is necessary: for the action of G = R on itself
by translations the infinitesimal action rt = t passes to an infinitesimal
action of R on the quotient R/Z for which no action exists.

• The theorem holds locally without the assumptions of completeness and
simple connectivity.

• The usual translation between left and right yields an analogous statement
for left actions.

Proof. Let first r be an action of G on M . Let Sx denote the following
submanifold

Sx = {(xa, a) | a ∈ G} ⊆M ×G
The tangent space of Sx is

TSx = {(rA(xa), λA(a)) | a ∈ G,A ∈ g}

Thus Sx is an integral submanifold of the distribution 〈(rA, λA) | A ∈ g〉.
Let us now start the actual proof of the theorem by considering the distribution

D = 〈(RA, λA) | A ∈ g〉. Then D is involutive since

[(RA, λA), (RB , λB)] = ([RA, RB ], [λA, λB ]) = (R[A,B], λ[A,B]).

Let Sx be the maximal integral submanifold of D through (x, e) ∈ M × G. We
claim now that px : Sx ↪→M ×G→ G is a diffeomorphism.

First we show that it is a covering. Fix a ∈ G and consider an arbitrary
(y, a) ∈M ×G. The computation

d
dt

∣∣
t=t0

(FlRAt (y), a exp tA)︸ ︷︷ ︸
γ(t)

= (RA(FlRAt0 (y)), λA(a exp t0A)) ∈ D

shows that γ(t) ∈ SA since it is tangent to the distribution D. Let U ⊆ g be
an open ball centered at 0 on which exp is a diffeomorphism. If (y, a) ∈ Sx then

also (FlRA1 (y), a expA) ∈ Sx for all A ∈ U and such points form an open neigh-
bourhood on which px is a diffeomorphism onto a expU . If (z, b) ∈ Sx is arbi-
trary with b ∈ a expU then b = a expA and thus the above subset considered for

(Fl
R−A
1 (z), b exp(−A)) contains (z, b). This finishes the proof that px is a covering

and in fact a diffeomorphism as G is simply connected.
We define for x ∈M and a ∈ G the action by the requirement

(xa, a) ∈ Sx
By the previous part there is a unique choice for xa. We need to show that r
is smooth but first let us prove the axioms of an action. Clearly xe = x as
Sx is an integral manifold through (x, e). Consider now a left action of G on
M × G by a(y, b) = (y, ab). The distribution D is invariant under this action (as
(id, λa)∗(RA, λA) = (RA, λA)) and thus also its maximal integral submanifolds.
The requirement for our action r can be then rewritten as

Sx = aSxa = a(bS(xa)b)) = (ab)S(xa)b
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As also Sx = (ab)Sx(ab) the maximal integral submanifolds S(xa)b and Sx(ab) must
also be equal proving (xa)b = x(ab).

A word about smoothness... �

Definition 8.5. Consider two actions r and r′ of a Lie group G on manifolds
M and M ′. A map f : M →M ′ is called equivariant if f(xa) = f(x)a.

Theorem 8.6. If f : M →M ′ is equivariant then rA is f -related to r′A.

Proof. The requirement from the definition is f ◦ r(x,−) = r′(x,−) ◦ f . Ap-
plying the derivatives of both sides to A we get f∗rA = r′Af . �

Theorem 8.7. Let f : M → M ′ be a smooth map such that rA is f -related to
r′A. If G is connected then f is equivariant.

Proof. Consider the set H ⊆ G of all a ∈ G for which f(xa) = f(x)a for
all x ∈ M . Then H is clearly a subgroup and thus we only need that it contains

a neighbourhood of e. But f(x exp tA) = f(FlrAt (x)) = Fl
r′A
t (f(x)) = f(x) exp tA,

hence exp g ⊆ H and H is open and therefore equal to G. �

9. Locally isomorphic Lie groups

Let G be a connected Lie group. Recall that the universal covering of G is

G̃

p

��

{[γ] | γ : (I, 0)→ (G, e)}
_

��

G γ(1)

with [γ] the homotopy class of γ relative to the boundary. G̃ is simply connected:

firstly π1G̃ → π1G (this works for any covering) since we can lift homotopies and
constant paths lift to constant paths. The image consists exactly of the classes of
loops that lift to loops. For G̃ if γ : I → G lifts to a loop its endpoints must be
equal ẽ = [γ] and the image is therefore trivial.

We give G̃ a structure of a Lie group: let γ, δ : (I, 0) → (G, e) be two paths.
Define their product to be the path

(γ · δ)(t) = γ(t)δ(t)

which easily passes to homotopy classes rel ∂I.

Theorem 9.1. The above multiplication on G̃ describes a structure of a Lie
group for which the projection p : G̃→ G is a local isomorphism (i.e. a homomor-
phism and a local diffeomorphism).

Proof. The unit and inverses are also pointwise. The diagram

G̃× G̃ //

��

G̃

local diffeomorphism

��

G×G
smooth

// G

shows that the dotted arrow (the multiplication in G̃) is smooth. �



9. LOCALLY ISOMORPHIC LIE GROUPS 25

There is an action of π1G on G̃, π1G× G̃→ G̃ given by

([α], [γ]) 7−→ [α] · [γ] = [α ∗ γ]

which respects the projection p : G̃→ G. Let Γ ⊆ π1G be a subgroup and consider

pΓ : G̃/Γ→ G

where G̃/Γ is the space of orbits of the restriction of the action to Γ. Locally

U × π1G
� � //

��

G̃

p

��

U �
�

// G

and the action of Γ is by left multiplication in π1G. Thus the projection pΓ from
G̃/Γ to G is locally of the form

U × (π1G/Γ)→ U

and in particular is a covering of G.

Theorem 9.2. Let G be a connected Lie group. Then the mapping

{subgroups Γ ⊆ π1G} −→
{

local isomorphisms ρ : G′ → G
with G′ any connected Lie group

}
/iso

Γ 7−→ (pΓ : G̃/Γ→ G)

is a bijection with inverse ρ 7−→ im(π1ρ : π1G
′ → π1G).

Proof. The image of π1pΓ consists of those loops that lift to loops in G̃/Γ.
These are precisely those in Γ. In the opposite direction any ρ fits into the diagram

G̃ //

&&

p

��

G′

ρ

��

G̃/Γ

∼=
88

pΓ

��

G

with Γ = im(π1ρ). The top arrow exists by universality of G̃. The dotted arrow
exists since loops in Γ lift to loops in G′. It is an isomorphism of Lie groups. �

Remark. We will show in the tutorial that π1G ↪→ G̃ is a homomorphism and
the action of π1G on G̃ is by left translations, i.e. G̃/Γ is a quotient of G̃ by (a
central subgroup) Γ.

Example 9.3 (The universal covering of a commutative connected Lie group
G). Since LieG = Rn with zero bracket it is also the Lie algebra of the simply

connected Lie group Rn (with vector addition) and thus G̃ = Rn. Therefore G ∼=
Rn/Γ where Γ is some discrete subgroup of Rn. We will show now that Γ = Zk ⊆ Rn
in some coordinates on Rn.

First reduction is to the case n = k, namely we have span Γ = Rk ⊆ Rn and Γ
is still discrete in Rk. We must show that Γ = Zk in some coordinates on Rk.

We start an induction by k = 1 which we proved in the tutorial. For the
induction step we may assume that Γ ⊆ R×Rk = Rk+1 is such that the intersection
Γ ∩ R 6= 0 with the first coordinate axis is nonzero. Since it is also discrete it is
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generated by some a0. In Rk = Rk+1/R consider its subgroup Γ/〈a0〉. We show
by contradiction that it is discrete. Namely assume the existence of a sequence
αn = (βn, γn) ∈ Γ with γn → 0 in Rk. By adding a suitable multiple of a0 to
each αn we may assume that βn ∈ [−a0/2, a0/2] and by extracting a subsequence
we may further assume that αn converges. But then αn+1 − αn ∈ Γ converges to
0, a contradiction with Γ being discrete. By the induction hypothesis Γ/〈a0〉 =
〈ã1, . . . , ãk〉. We choose for each ãi an element ai ∈ Γ representing it. Then the
suitable basis in which Γ = Zk+1 is formed by (a0, a1, . . . , ak).

0 // Za0
//

∼=
��

Z{a0, a1, . . . , ak} //

��

Z{ã1, . . . , ãk} //

∼=
��

0

0 // Γ ∩ R // Γ // Γ/(Γ ∩ R) // 0

Corollary 9.4. The only compact connected commutative Lie group of di-
mension k is the torus Tk = (S1)k.

Example 9.5. For n ≥ 3 we have π1 SO(n) ∼= Z/2. Therefore SO(n) possesses

a two-sheeted universal covering which is denoted by Spin(n) = S̃O(n). We will
show geometrically that π1 SO(3) = Z/2 in the tutorial. For higher n we have a
fibration

SO(n)→ SO(n+ 1)→ Sn

whose long exact sequence of homotopy groups contains the following portion

0 = π2(Sn)→ π1(SO(n))
∼=−→ π1(SO(n+ 1))→ π1S

n = 0

10. Problems

Problem 10.1. An algebra is a vector space A together with a bilinear map
· : A × A → A. Let A be now an associative algebra and define [ , ] : A × A → A
by [a, b] = a · b− b · a. Show that with this operation A forms a Lie algebra.

A special case of the previous is the algebra End(V ) of endomorphisms of a
vector space V together with their compositions. The induced Lie algebra is denoted
by gl(V ). The bracket of two endomorphisms ϕ,ψ is

[ϕ,ψ] = ϕ ◦ ψ − ψ ◦ ϕ

Problem 10.2. Let A be an algebra. A linear map D : A → A is called a
derivative if for all a, b ∈ A

D(a · b) = D(a) · b+ a ·D(b)

Show that derivatives form a Lie subalgebra Der(A) ⊆ gl(A).

Problem 10.3. Let C∞M = C∞(M,R) denote the algebra of all smooth
functions on M . Then every vector field X on M determines a mapping

C∞M −→ C∞(M)

f 7−→ Xf = df(X)

Show that this mapping is a derivative (in the algebraic sense). Also show that all
derivatives of C∞M are of this form.
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Let us now describe the Lie bracket of vector fields from this point of view:
[X,Y ] is simply the vector field corresponding to the bracket of the two derivatives
X and Y of C∞M . This means that [X,Y ]f = XY f − Y Xf and this formula
determines a unique vector field [X,Y ].

It also holds that algebra homomorphisms C∞N → C∞M are in bijection with
smooth maps M → N . One may then rewrite the f -relatedness of vector fields X
and Y as

C∞N
f∗
//

Y
��

C∞M

X
��

C∞N
f∗
// C∞M

It is then a simple matter to show that Xi ∼f Yi implies [X1, X2] ∼f [Y1, Y2].

Problem 10.4. Compute the Lie algebra of the additive Lie group Rn.

Problem 10.5. Compute the Lie algebra of the Lie group GL(n,R) from the
definition.

Problem 10.6. Compute the Lie algebra of the Lie group GL(n,R) from the

formula [A,B] = ∂2

∂s∂t

∣∣∣
(s,t)=(0,0)

ϕ(t)ψ(s)ϕ(t)−1ψ(s)−1.

Problem 10.7. Compute the Lie algebra of the Lie group S3 = Sp(1) of unit
quaternions and show that it is isomorphic to R3 with the vector product ×.

Problem 10.8. Let B : Rn × Rn → R be a bilinear form and denote by

G(B) = {A ∈ GL(n,R) | ATBA = B} ⊆ GL(n,R)

the closed subgroup of all automorphisms preserving the form B. Compute the Lie
algebra of G(B).

Problem 10.9. Compute the Lie algebra of SO(n,R).

Problem 10.10. Let A be an algebra and denote by Aut(A) the group of all
algebra automorphisms of A. Compute its Lie algebra.

Problem 10.11. Determine all Lie algebras of dimension 2 over R.

Problem 10.12. Prove that the element
(−2 0

0 −1

)
of GL(2,R) lies in the com-

ponent of the unit E but not in the image of exp.

Problem 10.13. Let

G =


1 a b

0 1 c
0 0 1

 ∈ GL(3,R)

∣∣∣∣∣∣ a, b, c ∈ R


denote the Heisenberg group. Show that the bracket on Lie(G) is non-trivial and
exp is a global diffeomorphism.

Problem 10.14. Show that for G = S3 = Sp(1) the map exp is not a local
diffeomorphim at all points of g.

Problem 10.15. Show that discrete subgroups of R are exactly those of the
form Za for some positive real number a. Deduce that the only Lie groups of
dimension 1 are R and T = R/Z.



10. PROBLEMS 28

Problem 10.16. Show that a discrete normal subgroup of a connected Lie
group must Lie in the centre.

Problem 10.17. Let f : M → G be a smooth map from a manifold M to a Lie
group G. Denote by δlf the g-valued 1-form called the left logarithmic derivative
of f given by

δlf(x,X) = (λf(x)−1)∗f∗X

(with (x,X) denoting a tangent vector X ∈ TxM). For example

δlid(a,A) = (λa−1)∗A = ω(A)

the Maurer-Cartan form. Compute δlλb, δlρb, δlµb, δlνb and δl(f · g−1).

As a corollary, for a connected manifold M two maps f, g : M → G satisfy
δlf = δfg if and only if f = c · g for some c ∈ G. There exists also a criterion for
determining whether a g-valued one-form is a left logarithmic derivative of a map
into G. This generalizes the integral calculus of functions.

Problem 10.18. Let G̃ be the universal covering of G. Show that π1G ⊆ G̃ is
a discrete and normal subgroup thus lying in the centre of G̃.

Problem 10.19. Show that the image of the adjoint representation Ad :
Sp(1) → GL(3,R) is SO(3,R) and that its kernel is the subgroup {±1}. Thus
Sp(1) is the 2-fold (universal) covering of SO(3,R).

Problem 10.20. Let ϕ : Sp(1) × Sp(1) → SO(4,R) be the map sending (a, b)
to the orthogonal transformation of the quaternions x 7→ axb−1. Show that this
map is a 2-fold (universal) covering.

Problem 10.21. Compute the centre of SO(n,R) or even better the centralizer
CSO(n,R) GL(n,R)+. Try to determine all connected Lie groups with Lie algebra
so(n,R).

Problem 10.22. Try to determine the first few terms in the Baker-Campbell-
Hausdorff formula for

log(expX · expY ) : g× g→ g

where log is the (locally defined) inverse to exp.

A semidirect product of groups is a split short exact sequence

1 // K // G
p
// H //

i

ii 1

The subgroup K ⊆ G is normal being a kernel of p. The map f : H
i−→ G

int−−→
Aut(K) given by f(x)(y) = xyx−1 is a group homomorphism. For a ∈ G there are
uniquely determined k ∈ K and h ∈ H such that a = k · i(h). Namely h = p(a)
and k = a · i(h)−1. Therefore as sets G ∼= K×H and the multiplication is given by

(k1, h1)·(k2, h2) = k1·i(h1)·k2·i(h2) = k1·f(h1)(k2)·i(h1h2) = (k1·f(h1)(k2), h1·h2)

The resulting group is denoted by K oH = K of H.

Problem 10.23. Show that GA(n,R) is a semidirect product GA(n,R) ∼=
Rn o GL(n,R) where the action of GL(n,R) on Rn is the standard one.

Problem 10.24. Let G be a Lie group. Show that µ∗ : TG×TG→ TG endows
TG with a structure of a Lie group.
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Problem 10.25. Show that TG is a semidirect product TG ∼= g o G and
identify the involved action of G on g.

Problem 10.26. Compute the Lie algebra of a semidirect product K of H.

Problem 10.27. Determine the Lie algebra of TG.



CHAPTER 2

Bundles

1. Bundles

The tangent bundle p : TM →M has the following property

(∀x ∈M)(∃U 3 x nbhd) : p−1(U) ∼= U × Rm

Definition 1.1. By a bundle (or fibre bundle) we understand a triple (E, p,M)
where E and M are smooth manifolds and p : E →M is a smooth surjective1 map
such that for each x ∈ M there exists its neighbourhood U and a diffeomorphism
ϕ : p−1(U) ∼= U × F with F some smooth manifold and such that

p−1(U)
ϕ

//

p
##

U × F

pr1
||

U

commutes. The space E is called the total space, M the base, p the projection,
Ex = p−1(x) the fibre over x ∈M and F the standard fibre.

Definition 1.2. The bundle pr1 : M×F →M is said to be trivial (or product).
The map ϕ : p−1(U) ∼= U × F is referred to as a local trivialization.

Theorem 1.3. Let H ≤ G be a closed subgroup of a Lie group G. Then the
projection G→ G/H is a bundle with standard fibre H.

Proof. This is exactly the proof of Theorem 6.3. �

Examples 1.4.

• TS2 is not globally trivial (“nelze učesati ježka”).
• The Möbius band R→ L→ S1 is also globally nontrivial.
• The Hopf bundle: let S3 ⊆ H = C2 be the group of unit quaternions. The

complex units S1 form a subgroup of S3 and the Hopf bundle is

S1 → S3 → S3/S1 ∼= CP1 ∼= S2

as S2 = C ∪ {∞}. Again the bundle is not trivial: π1S
3 = 0 while

π1(S1 × S2) ∼= π1S
1 × π1S

2 ∼= Z

More generally the Hopf bundle S1 → S2n+1 → CPn is nontrivial.

1In principle surjectivity is not essential.

30
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Let us consider a bundle p : E → M , i.e. we have a cover Uα ⊆ M and local

trivializations ϕα : p−1(Uα)
∼=−→ Uα × F . Denoting Uαβ = Uα ∩ Uβ we obtain

Uαβ × F

&&

p−1(Uαβ)
ϕα

∼=
oo

ϕβ

∼=
//

��

Uαβ × F

xx

Uαβ

composing to

ϕαβ : Uαβ × F
∼= //

$$

Uαβ × F

zz

Uαβ

Easily

• ϕαβ = (ϕβα)−1,
• ϕβγ ◦ ϕαβ = ϕαγ over Uαβγ = Uα ∩ Uβ ∩ Uγ (the cocycle condition) and
• Uαα = id.

On the other hand given a covering Uα and a collection of maps ϕαβ satisfying the
above conditions there exists a bundle p : Φ → M obtained from S =

⊔
α Uα × F

by passing to the quotient Φ = S/ ∼ by the relation

Uα × F 3 (x, a) ∼ (x, ϕαβ(a)) ∈ Uβ × F
whenever x ∈ Uαβ .

Definition 1.5. A bundle p : E →M is called a vector bundle if each fibre Ex
is given a vector space structure and local trivializations ϕ : p−1(U)

∼=−→ U×Rk could

be chosen in such a way that each Ex
∼=−→ {x} × Rk ∼= Rk is a linear isomorphism.

Examples 1.6.

• TM , T ∗M - the tangent and cotangent bundles,
• For a submanifold M ⊆ Rn the normal bundle is

ν(M) = {(x, v) | x ∈M,v ∈ TxM⊥ ⊆ Rn},
• Let p : E →M be any bundle. The vertical tangent bundle V E ⊆ TE is

“the kernel of p∗”, VyE = TyEp(y),
• Consider the Grassmann manifold

Gk(Rn) = O(n)/O(k)×O(n− k)

of linear subspaces of Rn of dimension k. Over Gk(Rn) we have a canonical
vector bundle γnk → Gk(Rn) where

γnk = {(V, v) ∈ Gk(Rn)× Rn | v ∈ V }.
For example γ2

1 is the Möbius band.

The transition maps ϕαβ : Uαβ × Rk → Uαβ × Rk take form

(x, v) 7→ (x, ψαβ(x) · v)

where ψαβ : Uαβ → GL(k) is a smooth map: the (i, j)-entry of ψαβ(x) is the i-th
coordinate of the second component of ϕαβ(x, ej). The cocycle condition ψβγψαβ =
ψαγ is expressed via multplication in GL(k).
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Remark. GL(k) ⊆ Diff(Rk). A general bundle has Diff(F ) as a “structure
group”.

Every bundle projection is a submersion: locally it is a projection. The converse
is not true.

Theorem 1.7 (Ehresmann). If p : E → M is a proper surjective submersion
then it is a bundle.

Proof. Let us identify some neighbourhood of x ∈M with a disc whose centre
is x. By properness, p−1(Dm) is compact and hence every vector field is complete
(when we take care of the boundary). Consider now ∂

∂xi
and lift it to a vector field

Xi on p−1(Dm), i.e. Xi is such that p∗(Xi) = ∂
∂xi

. This is possible locally by p
being a submersion and globally is achieved by a partition of unity. Define

ϕ : Dm × p−1(0) −→ p−1(Dm)

(t1, . . . , tm, y) 7−→ FlX1
t1 · · ·FlXmtm (y)

which is well-defined by the completeness - it lies over

Fl
∂/∂x1

t1 · · ·Fl
∂/∂xm
tm (0) = (t1, . . . , tm)

by the p-relatedness of Xi and ∂
∂xi

. It is easy to verify that ϕ is a local diffeomor-

phism at {0} × p−1(0), it is identity on {0} × p−1(0) and ∂
∂ti
ϕ = Xi there. Since

p−1(0) is compact, ϕ is a diffeomorphism onto its image on some neighbourhood
U × p−1(0). The surjectivity follows by integrating backwards, namely y is the

image of
(
p(y),FlXm−p(y)m

· · ·FlX1

−p(y)1
(y)
)

. �

2. Basic operations with bundles

Definition 2.1. Let p : E →M and p′ : E′ →M ′ be bundles. A pair of maps
f : E′ → E and f : M ′ →M is called a morphism if the diagram

E′
f
//

p′

��

E

p

��

M ′
f
// M

commutes or in other words if f preserves fibres, f(E′x) ⊆ Ef(x). This determines

f and is automatically smooth when f is. If moreover M = M ′ and f = idM then
f is said to be base-preserving.

Definition 2.2. A product of bundles p and p′ is p × p′ : E × E′ → M ×M ′
with standard fibre F × F ′.

Definition 2.3. An induced bundle (or pullback) from p along a smooth map
g : M ′ →M is the submanifold2

g∗E = {(z, y) ∈M ′ × E | g(z) = p(y)} ⊆M ′ × E

2This is so since g is transverse to any submersion p.
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together with the projection onto the first factor. We have a diagram

g∗E
pr2 //

pr1

��

E

p

��

M ′
g
// M

The universal property

E′

!!

!!

!!

g∗E
pr2 //

pr1

��

E

p

��

M ′
g
// M

can be expressed by saying that a morphism from E′ to E is the same as a base-
preserving morphism from E′ to the induced bundle f∗E.

If i : N → M is a submanifold inclusion then i∗E = E|N is the restriction of
E to N , i.e. i∗E ∼= p−1(N).

Definition 2.4. Let p : E → M and p′ : E′ → M be bundles over the same
base. Their fibre product is

E ×M E′ = ∆∗(E × E′) = (E × E′)|∆
where ∆ : M →M ×M is the diagonal.

E ×M E′ //

��

E

p

��

E′
p′

// M

It is the categorical product in the category of bundles over the fixed base M .

Theorem 2.5. If two maps g0, g1 : M ′ → M are homotopic then the induced
bundles g∗0E and g∗1E are isomorphic.

Proof. See Differential topology lecture notes. �

Theorem 2.6. Every bundle over Rn is trivial.

Proof. The identity map idRn on Rn is homotopic to the constant map 0. By
the previous theorem

E ∼= id∗RnE
∼= 0∗E ∼= Rn × p−1(0)

giving a global trivialization. �

Definition 2.7. A section of a bundle p : E →M is a smooth map s : M → E
for which p ◦ s = idM .

Examples 2.8.

• A section of TM is a vector field, a section of T ∗M is a 1-form.
• A section of a trivial bundle M × F →M is a smooth map M → F .
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Definition 2.9. A local section is a smooth map s : U → E satisfying p ◦ s =
idU where U ⊆M is an open subset.

Example 2.10. Local sections always exist (since F 6= ∅) global sections need

not. Define T̊M = TM −{(x, 0) | x ∈M}, the space of all nonzero vectors. Easily

T̊M is a bundle over M and a global section of T̊M is a nowhere zero vector field
which does not exist for example on S2.

Theorem 2.11. If the standard fibre is diffeomorphic to Rk then global sections
always exist.

Proof. Local sections are glued together via a partition of unity (which has
to be utilized in a chart). More precisely one inductively extends a section, starting
with a local section in a bundle chart... FINISH!!! �

Let s and s′ be sections of p : E → M and p′ : E → M respectively. They
determine a section (s, s′) of the fibre product E×ME′. A section s of p determines
a section g∗s of any induced bundle g∗E:

M ′ s◦g

!!

idM′

!!

g∗s

""

g∗E
pr2 //

pr1

��

E

p

��

M ′
g
// M

g∗s : z 7→ (z, sf(z))

More generally any map t : M ′ → E satisfying p ◦ t = g (a section of E along
g) induces a section of the induced bundle g∗E. In fact this describes a bijection
between sections along g and sections of the induced bundle.

Let now p : E → M and p′ : E′ → M ′ be vector bundles. A morphism
f : E′ → E is called linear if every f |E′x : E′x → Ef(x) is a linear map. Locally

U × Rk
f
//

��

V × Rl

��

U
f

// V

f(x, v) = (f(x), g(x)v)

where g : U → hom(Rk,Rl) is a smooth map as g(x)ij = f2(x, ej)i.
Let p : E → M be a vector bundle, {Uα} a cover of M and ϕαβ(x, v) =

(x, ψαβ(x)v) the transition maps with ψαβ : Uαβ → GL(V ) smooth into the group of
linear automorphisms of the standard fibre V . Let there be given a homomorphism
f : GL(V ) → GL(W ) (e.g. W = V ⊗k, SkV,ΛkV ). The compositions f ◦ ψαβ :
Uαβ → GL(W ) then yield back a vector bundle with standard fibre W which we
denote f(E). In the construction of the dual vector bundle we obtain from ϕαβ a
linear map

Uαβ × V ∗
ϕ∗αβ←−− Uαβ × V ∗

going in the wrong direction. This is remedied by considering its inverse. In general
we may pass from a homomorphism f : GL(V )op → GL(W ) to the composition

GL(V )
f−→ GL(W )op ν−→ GL(W ) and apply the previous construction to get a vector
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bundle f(E) with standard fibre W . Examples are E∗, Ē. The most general case
is that of a homomorphism

f : GL(U1)op × · · · ×GL(Uk)op ×GL(V1)× · · · ×GL(Vl) −→ GL(W )

which produces a vector bundle f(E1, . . . , Ek, F1, . . . , Fl) from arbitrary vector bun-
dles E1 . . . , Ek, F1, . . . , Fl with standard fibres U1, . . . , Uk, V1, . . . , Vl.

Example 2.12. The vector bundle hom(E,F ) has as fibres hom(E,F )x =
hom(Ex, Fx) and as a special case hom(E,R) = E∗ where R here stands for the
trivial bundle M×R→M . This example is obtained from the general construction
via the homomorphism

GL(U)op ×GL(V ) −→ GL(hom(U, V ))

(α, β) 7−→ (ϕ 7→ β ◦ ϕ ◦ α)

3. Jet bundles

Let us consider the algebra C∞(Rn) of smooth maps on Rn. By the inductive
use of the formula

g(x) = g(0) +

n∑
i=1

ai(x)xi

for a function g : Rn → R we derive

g = Trg +Rrg

a decomposition of g into its Taylor polynomial Trg of order r and a remainder
lying in the ideal mr+1

0 generated by the monomials xI = xi11 · · ·xinn of degree
|I| = i1 + · · · + in = r + 1. It is the (r + 1)-st power of the ideal m0 generated by
the coordinate functions. The association of the Taylor polynomial or order r gives
a surjective linear map

Tr : C∞(Rn)� Pr(Rn)

onto the vector space of all polynomials of order at most r on Rn. Clearly the kernel
is the ideal mr+1

0 and hence Pr(Rn) is naturally isomorphic to the quotient algebra
C∞(Rn)/mr+1

0 . The multiplication in this algebra is the truncated multiplication
of polynomials. Let f : Rm → Rn be a smooth map sending 0 to 0. Then f induces
by composition an algebra homomorphism

f∗ : C∞(Rn)→ C∞(Rm)

with the property f∗(m0) ⊆ m0 and thus f∗(mr+1
0 ) ⊆ mr+1

0 .

C∞(Rn)
f∗
//

Tr

��

C∞(Rm)

Tr

��

g � //
_

��

g ◦ f_

��

Pr(Rn)
f∗
// Pr(Rm) Trg

� // Tr(g ◦ f)

Therefore Tr(g◦f) only depends on Trg rather than on g. Since Pr(Rn) is generated
as an algebra by the coordinate functions x1, . . . , xn we have f∗(xi) = Tr(xi ◦ f) =
Tr(fi), the Taylor polynomial of order r of the i-th component fi. Therefore if f
and f ′ have the same Taylor polynomial of order r then f∗ = (f ′)∗ on Pr(Rn) and
thus Tr(g ◦ f) = Tr(g ◦ f ′) only depends on Trf .
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We have just proved that the Taylor polynomial of order r of a composition
g ◦ f of maps g and f depends only on their respective Taylor polynomials as long
as they preserve the origin. In particular we have

Theorem 3.1. The property of having the same Taylor polynomial of order r
for maps (Rm, 0) → (Rn, 0) does not depend on the coordinates (as long as their
changes preserve the origins).

Definition 3.2. Let M and N be two manifolds and f, f ′ : M → N two maps
defined in a neighbourhood of x ∈ M . We say that f and f ′ determine the same
r-jet at x (with r ∈ N) if f(x) = f ′(x) = y and for some (any) pair of charts ϕ on
M cenetered at x and ψ on N centered at y the maps ψ−1fϕ and ψ−1f ′ϕ have
the same Taylor polynomial of order r at the origin. We write jrxf for the class
determined by the map f and

Jr(M,N) = {jrxf | x ∈M,f : M → N defined in a neighbourhood of x}.

For X = jrxf we write αX = x for the source and βX = f(x) for the target of
the r-jet X. Without coordinates we can identify r-jets with source x and target y
with algebra homomorphisms

C∞(N)/mr+1
y −→ C∞(M)/mr+1

x

There are obvious canonical projections πrs : Jr(M,N)→ Js(M,N) for 0 ≤ s ≤ r.
For s = 0 we have J0(M,N) ∼= M ×N via the map (α, β). Therefore πr0 = (α, β).
We denote

Jrx(M,N) = α−1(x), Jr(M,N)y = β−1(y), Jrx(M,N)y = α−1(x) ∩ β−1(y)

the last being the fibre of Jr(M,N) over (x, y) ∈M ×N via (α, β).
For X ∈ Jrx(M,N)y and Y ∈ Jry (N,Q)z we define their composition Y ◦X ∈

Jrx(M,Q)z either as a composition of algebra homomorphisms or via representatives
Y ◦X = jrx(g ◦ f) if X = jrxf and Y = jryg.

Definition 3.3. We say that X ∈ Jrx(M,N)y is invertible if there exists X−1 ∈
Jry (N,M)x for which X−1 ◦X = jrxidM and X ◦X−1 = jry idN .

For r ≥ 1 we obtain X is invertible iff its linear part πr1X is invertible. In
particular for this to happen we must have m = n.

Let us denote Lrm,n = Jr0 (Rm,Rn)0 which we know can be identified with
homalg(Pr(Rn), Pr(Rm)) or with the set of polynomials of order at most r and
without constant term, X =

∑
1≤|I|≤r aIx

I . Here aI ∈ Rn are constant. The

composition of jets

Lrn,q × Lrm,n → Lrm,q

is the truncated composition of polynomials (i.e. the normal composition followed
by ignoring all the terms of order bigger than r). In particular it is smooth and

Grm = inv(Lrm,m)

is therefore a Lie group with respect to the composition of jets, invertible jets
forming an open subset (they are those where a1, . . . , am are linearly independent).
As a special case G1

m = GL(m).
Let us consider now X ∈ Lrm,n and consider a translation by v

λv : x 7→ x+ v
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The following are mutually inverse diffeomorphisms

Rm × Lrm,n × Rn
∼=−−→ Jr(Rm,Rn)

(u,X, v) 7−→ jr0λv ◦X ◦ jruλ−u
(u = αY, jrvλ−v ◦ Y ◦ jr0λu, v = βY )←− [ Y

Now we can define on Jr(M,N) a smooth structure so that the projection

(α, β) : Jr(M,N)→M ×N

becomes a bundle. We choose charts on U ⊆ M and V ⊆ N giving us an identifi-
cation

α−1U ∩ β−1(V ) ∼= U × Lrm,n × V

Declaring these to be diffeomorphisms we are left to show that the effect of another
choice of charts differs by a diffeomorphism preserving the projection onto U × V .
But this is rather easy to see using the concrete description of the involved maps.

A smooth map f : M → N induces a section jrf : M → Jr(M,N) sending

x 7→ jrxf of the bundle Jr(M,N)
α−→M .

Example 3.4. For r = 1 we have J1(M,N) ∼= hom(TM, TN) or rather
hom(p∗TM, q∗TN) with p : M ×N →M and q : M ×N → N the two projections.
The map in one direction is provided by j1

xf 7→ Txf and is a diffeomorphism by an
inspection in charts. As special cases J1

0 (R,M) ∼= TM and J1(M,R)0
∼= T ∗M .

We denote by T rkM = Jr0 (Rk,M)
β−→ M the bundle which we call the bundle

of k-dimensional velocities of order r. In particular T r1M is called the tangent
bundle of order r. A smooth map f : M → N induces a morphism of bundles
T rk f : T rkM → T rkN via the composition jr0g 7→ jr0(f ◦ g)

T rkM
T rk f //

β

��

T rkN

β

��

M
f

// N

Dually T r∗k M = Jr(M,Rk)0, the bundle of k-dimensional covelocities of order r. In
particular T r∗1 M is called the cotangent bundle of order r. The bundle T r∗k M is a
vector bundle with respect to the addition jrxϕ+jrxψ = jrx(ϕ+ψ) and multiplication
λ · jrxϕ = jrx(λϕ), λ ∈ R. On the other hand only local diffeomorphisms induce
morphisms of bundles:

T r∗k M
T r∗k f

//

α

��

T r∗k N

α

��

M
f

// N

jrxϕ 7→ jrf(x)(ϕ ◦ f
−1)

Remark. For any smooth f we have a map on the section spaces

Γ(T r∗k N)
f∗−−−→ Γ(T r∗k M)
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Let P rM = invJr0 (Rm,M) ⊆ T rmM with m = dimM denote the “bundle of
r-jets of maps (Rm, 0)→ (M,x)”. The group Grm = invJr0 (Rm,Rm)0 acts on P rM
from the right via the jet composition: for a map u : Rm → M and a change of
coordinates ϕ : Rm → Rm we have a new map u ◦ ϕ : Rm →M

P rM ×Grm −→ P rM

(jr0u, j
r
0ϕ) 7−→ jr0(u ◦ ϕ)

The situation is summarized in: P rM is a bundle, the action of Grm preserves the
fibres and is simply transitive on each of them: for jr0u and jr0v with u(0) = v(0)
there exists a unique a ∈ Grm for which jr0v = jr0u · a.

Example 3.5. For r = 1: P 1M = inv hom(Rm, TM) which at the fibre over
x ∈ M is the same as a basis of TxM (namely the image of the standard basis in
Rm). We say that P 1M is the bundle of frames in TM . We then think of P rM as
a bundle of higher order frames.

Definition 3.6. Let p : E → M be a bundle. The r-th jet prolongation JrE
is the space of all jets of local sections of p. It is a manifold and bundle over M .
One can either see this locally - a local section is equivalent to a map U → F and
thus JrE is locally in bijection with Jr(U,F ) but it is not quite obvious what the
transition maps look like. A global definition is via the pullback diagram

JrE
� � //

��

Jr(M,E)

p∗

��

M �
�

jrid
// Jr(M,M)

describing it as a restriction of Jr(M,E)→ Jr(M,M) along jrid. Locally

Jr(M,E) ∼= Jr(U, V )×U Jr(U,F ) −→ Jr(U, V )

which is a bundle and the restriction “forgets the first component” to get Jr(U,F ).

A prolongation of sections: s : M → E induces jrs : M → JrE but not every
section of JrE →M comes from a section of E →M .

Remark. A differential equation/inequation (relation) is a subset R ⊆ JrE.
A solution of R is a section s : M → E for which jrxs ∈ R for all x ∈M . A formal
solution is a section of JrE → M with image in R. The jet prolongation restricts
by definition to a map sol → fsol between the space of solutions and the space of
formal solutions with fsol being much bigger. Nevertheless this map is quite often
a homotopy equivalence.

4. Principal and associated bundles

Definition 4.1. Let us consider a bundle π : P → M and a Lie group G
having a right action r : P × G → P on P . We say that P is a principal bundle
with a structure group G if

• the action r preserves fibres, π(u · a) = π(u) and
• G acts on each fibre Px simply transitively, u, v ∈ Px ⇒ ∃!a ∈ G : v = u·a.

We write P (M,G) to mean that P is a principal bundle over M with structure
group G. We also say that P is a principal G-bundle.



4. PRINCIPAL AND ASSOCIATED BUNDLES 39

Theorem 4.2. Let H ≤ G be a closed subgroup of a Lie group G. Then the
projection G→ G/H is a principal H-bundle.

Proof. This is contained in the proof of Theorem 6.3. �

Examples 4.3.

• The frame bundle P rM(M,Grm).
• Consider a vector bundle E → M with standard fibre Rk. Denote by
PE →M the following bundle over M

PE = inv hom(Rk, E) ⊆ hom(Rk, E) ∼= E ×M · · · ×M E︸ ︷︷ ︸
k times

In the last isomorphism we identify (u1, . . . , uk) with a unique linear map
sending ei to ui. Clearly this map is invertible iff u1, . . . , uk are linearly
independent. The right action of GL(k) is either via composition u · a =
u◦a or as (u·a)i =

∑
j ujaji. We obtain a principal bundle PE(M,GL(k))

of frames in the vector bundle E.

A local section s : U → P determines a trivialization π−1(U) ∼= U × G in the
following way

U ×G −→ π−1(U)

(x, a) 7−→ s(x) · a
This is easily a smooth bijection. We need to verify that it is a local diffeomorphism.
This is so because the restriction to U × {a} is a section and hence an immersion.
The restriction to {x} × G is an immersion by Theorem 6.5. The images of the
respective derivatives are complementary. Another feature of this trivialization is
that it is equivariant.

Alternatively we may thus characterize principal G-bundles as right G-spaces
P for which there exists in a neighbourhood of every point an equivariant diffeo-
morphism with Rm ×G.

Theorem 4.4. A principal bundle is trivial if and only if it admits a global
section.

Proof. Obvious from the preceding arguments. �

Definition 4.5. A manifold Mm is called parallelizable if it admits an m-tuple
of linearly independent (pointwise) vector fields.

Examples 4.6.

• S2 is not parallelizable since it does not admit even one linearly indepen-
dent (i.e. nowhere zero) vector field.

• Every Lie group is parallelizable via left translations: G×g→ TG is given
by (a,A) 7→ (λa∗)A.

Remark. Obviously M is parallelizable if and only if P 1M is trivial.

Theorem 4.7. The bundle P rM is trivial if and only if M is parallelizable.

Proof. A section of P rM determines by composition M → P rM
πr1−→ P 1M a

section of P 1M and hence M is parallelizable. Assume on the other hand P 1M ad-
mits a global section. The projection P rM → P 1M is a bundle with standard fibre
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Rk, the polynomials of degree at most r with zero linear part which is easily seen
locally as the canonical projection πr1 : Grm → G1

m is a surjective homomorphism of
Lie groups hence isomorphic to a projection Grm → Grm/ kerπr1 which is a bundle by
Theorem 4.2. We know that such bundles always admit sections. The composition
M → P 1M → P rM is then a section of P rM and hence it is trivial. �

The local description of principal bundles via charts and transition maps sim-
plifies as follows

ϕαβ : Uαβ ×G −→ Uαβ ×G
(x, a) = (x, e)a 7−→ ϕαβ(x, e)a = (x, ψαβ(x)a)

with ψαβ : Uαβ → G smooth. In other words the transition map is a left multiplica-
tion by the map ψαβ . Again we have ψαα = id and ψβγψαβ = ψαγ , the maps form
a so-called G-valued cocycle. In the opposite direction from a G-valued cocycle one
can construct a principal G-bundle.

We will now address the question of when two principal G-bundles P, P ′ are
isomorphic. Let they be given by transtion maps ψαβ and ψ′αβ respectively. Then

f : P
∼=−→ P ′ is locally given by

fα : Uα ×G −→ Uα ×G
(x, a) = (x, e)a 7−→ fα(x, e)a = (x, gα(x)a)

For a different chart ϕβ we have a comparison diagram

Uαβ ×G

ϕα

��

fα //

ϕαβ

��

Uαβ ×G

ϕ′α

��

ϕ′αβ

��

Uαβ ×G

ϕβ
{{

fβ
// Uαβ ×G

ϕ′β $$
P

f
// P ′

In the small square we see that (x, a) at top left is mapped to (x, gα(x)ψαβ(x)a) at
bottom right via bottom left corner and to (x, ψ′αβ(x)gβ(x)a) via top right corner.

Thus we have ψ′αβ = gαψαβg
−1
β .

Theorem 4.8. Let {Uα} be a cover of M such that both P and P ′ are trivialized
over each Uα. Then P ∼= P ′ if and only if there exist gα : Uα → G such that
ψ′αβ = gαψαβg

−1
β (in this case we say that the cocycles are equivalent).

Definition 4.9. Let p : E →M be a bundle. A subbundle of E is a subspace
E′ ⊆ E for which there exist local trivializations of E which also trivialize E′:

p−1(U) ∼= U × F

E′ ∩ p−1(U) ∼=

⊆

U × F ′

⊆

Definition 4.10. Let H ⊆ G be a Lie subgroup. A subbundle Q ⊆ P of a
principal bundle P is called a reduction of P to the subgroup H if for each u ∈ Q
we have u · a ∈ Q ⇐⇒ a ∈ H.

Examples 4.11.
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• A reduction to the trivial subgroup {e} ⊆ G is the same as a section of
P , that is a trivialization of P .

• Consider a Riemannian manifold (M, g). Then P 1M = PTM is a princi-
pal GL(m)-bundle possessing a reduction to O(m):

PTM = inv hom(Rm, TM) ⊇ iso(Rm, TM),

the subspace of isometries. They are clearly closed under the action of
O(m) and more over the action is transitive so that we obtain a reduction
to O(m).

In the opposite direction let Q ⊆ inv hom(Rm, TM) be a reduction to
O(m). It defines a metric on M in the following way: every u ∈ Qx is an
isomorphism u : Rm → TxM and we declare it an isometry or in other
words we transport by u the standard metric from Rm. The result does
not depend on q.

More generally metrics on a vector bundle p : E →M are in bijection
with reductions of PE to O(k).

• Consider an arbitrary Lie subgroup G ≤ GL(m). A G-structure on a
manifold M is a reduction of P 1M to the subgroup G. Similarly for
subgroups G ≤ Grm of higher order frame bundles. A reduction is then
called a G-structure of r-th order.

Definition 4.12. Let P (M,G) and Q(N,H) be two principal bundles. A
bundle morphism f : P → Q is called a morphism of principal bundles with respect
to a homomorphism ϕ : G→ H of Lie groups if

(∀u ∈ P )(∀a ∈ G) : f(u · a) = f(u) · ϕ(a)

If ϕ = id then we speak simply of a morphism of principal bundles or a G-morphism.

Examples 4.13.

• A reduction Q ⊆ P can be equivalently described as follows: the em-
bedding Q → P is a morphism of principal bundles with respect to the
embedding H → G.

• Let f : M → N be a local diffeomorphism. Then

Jr0 (Rm,M) = T rmM
T rmf−−−−→ T rmN

restricts to f∗ : P rM → P rN , a morphism of principal bundles.

Let P (M,G) be a principal bundle and consider a left action ` : G×F → F of
G on F .

Definition 4.14. A bundle p : E → M with a standard fibre F is said to
be an associated bundle to P if to each u ∈ Px there is given a diffeomorphism
ũ : F → Ex (a so-called frame map determined by the frame u on E) such that the
total frame map

ρ : P × F −→ E

(u, z) 7−→ ũ(z)

is smooth and ũ · a = ũ◦ `a. In terms of the total frame map ρ(u ·a, z) = ρ(u, a · z).
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Remark. The idea is that we think of the principal bundle as consisting of
coordinates choices each of which gives us an identification of the standard fibre
F with the geometric fibre Ex. Hence P parametrizes these possible identifica-
tions allowing us to make constructions in coordinates in such a way that they
automatically do not depend on the choice. EXPLAIN BETTER!

Example 4.15. Let p : E →M be a vector bundle and PE = inv hom(Rm, E)
the frame bundle of E, a principal GL(m)-bundle. We will show that E is associated
to PE. For that we need an action of GL(m) on the standard fibre of E. This being
Rm we will use the standard action of GL(m). Each u ∈ (PE)x is by definition an
invertible map Rm → Ex and this is our frame map ũ. The equivariancy condition
is then obvious since

ũ · a = u ◦ a = ũ ◦ `a.

Also the total map PE × Rm → E is smooth since it sends (u, v) 7→ u(v).

Example 4.16. The bundle β : Jr(M,N) → N is associated to P rN . The
standard fibre is Jr(M,Rn)0 and the left action of Grn = invJr0 (Rn,Rn)0 is by
composition. The total frame map is (as P rM = invJr0 (Rn, N))

invJr0 (Rn, N)× Jr(M,Rn)0 −→ Jr(M,N)

(u,X) 7−→ u ◦X

Again the equivariancy is verified easily.

Example 4.17. Analogously α : Jr(M,N)→M is associated to P rM via the
action of Grm on Jr0 (Rm, N), a ·X = X ◦ a−1 and (α, β) : Jr(M,N) → M × N is
associated to P rM × P rN .

Theorem 4.18. For a given principal bundle P (M,G) and a G-space F there
exist an associated bundle. Any two such are canonically isomorphic.

Proof. Let us start with any associated bundle E and its total frame map

ρ : P × F → E

By definition ρ factors through (P×F )/ ∼ with ∼ denoting the equivalence relation
(u · a, z) ∼ (u, a · z). It is a simple matter to show that the resulting map

ρ̃ : P × F/ ∼→ E

is a bijection: ρ(u, z) = ρ(u′, z′) implies that π(u) = π(u′) and hence u′ = u · a so
that ρ(u′, z′) = ρ(u, a · z′) and hence z = a · z′ since ũ is a diffeomorphism.

We denote the quotient space P [F ] = P ×G F the latter expressing a similarity
to the tensor product of modules over a ring. Now we will verify that P [F ] bears
a canonical smooth structure (as a quotient of P × F ) for which the projection
P [F ]→M is a bundle with standard fibre F . This is done locally:

π−1(Uα)[F ]
∼=−−→ (Uα ×G)×G F

∼=−−→ Uα × F
[(x, a), z] 7−→ (x, az)

[(x, e), z]←− [ (x, z)
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the first arrow being the trivialization ϕα × id. We use these to put a smooth
structure on P [F ]. We are left to exhibit the effect of changing a trivialization:

(x, z)
_
��

Uαβ × F //

∼=

Uαβ × F∼=

(x, ψαβ(x) · z)

[(x, e), z]
� 22

(Uαβ ×G)×G F // (Uαβ ×G)×G F [(x, ψαβ(x)), z]
_
OO

These are clearly smooth but we see how the associated bundle P [F ] is constructed

from local charts using the transition maps Uαβ
ψαβ−−−−→ G

`−−→ Diff(F ).
It remains to show that P [F ] is really associated to P . But this is provided by

the quotient map P × F −→ P ×G F = P [F ]. �

Remark. From now on when we speak about “the associated bundle” we mean
the canonical bundle P [F ] constructed in the proof.

A particular case is that of a bundle associated to a principal G-bundle P via
a representation ρ : G → GL(W ) of G on a vector space W . In this case P [W ] is
canonically a vector bundle with standard fibre W .

Let us consider two principal bundles P (M,G) and Q(N,G) and a G-morphism

P
f
//

��

Q

��

M
f
// N

with respect to ϕ : G→ H. Let E →M be associated to P and D → N associated
to Q with the same fibre F .

Definition 4.19. We say that a bundle morphism g : E → D over the same f
as above is a morphism associated to f if for each u ∈ P the diagram

F

ũ

~~

f̃(u)

  

Ex gx
// Dx

commutes.

Theorem 4.20. A morphism g : P [F ]→ Q[F ] associated to f is unique,

g = f [F ] : [u, z] 7→ [f(u), z]

�

Remark. In a similar way one can consider a morphism f × h : P [F ]→ Q[L]
with respect to a homomorphism ϕ : G → H of groups and a G-map h : F → L
between a G-space F and an H-space L.

Definition 4.21. By a natural bundle E over m-dimensional manifolds we
understand a rule (a functor) which associates to each m-dimensional manifold M
a bundle pM : EM →M and to each local diffeomorphism f : M → N a morphism
of bundles Ef : EM → EN over f in such a way that
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• localization: for any open subset U ⊆M we have EU = EM |U = p−1
M (U),

• functoriality: EidM = idEM and E(g ◦ f) = Eg ◦ Ef .

Remark. From the two properties it follows that Ef is also a local diffeomor-
phism. The association f 7→ Ef is called a lifting of local diffeomorphisms.

Examples 4.22.

• The tangent and the cotangent bundles.
• T rk , T r∗k or more generally Jr(−, N) and Jr(M,−).
• For a left action ` of the group Grm on a manifold F we can construct a

natural bundle over m-dimensional manifolds as

EM = P rM [F ]→M (f : M → N) 7→ (Ef = P rf [F ])

Theorem 4.23 (Palais-Terng). For every natural bundle there exists r ≥ 0, a
smooth manifold F and a left action ` : Grm × F → F so that EM = P rM [F ] and
Ef = P rf [F ].

5. Further properties of principal and associated bundles

Let P (M,G) be a principal bundle and F a left G-space. A map σ : P → F is
called equivariant if σ(u · a) = a−1 · σ(u).

Consider a section s : M → P [F ] = P ×G F of the associated bundle. For each
u ∈ P there is a unique z = σ(u) ∈ F so that s(x) = [u, z] where x = π(u). This
defines a smooth map σ : P → F which is equivariant by

[u, σ(u)] = s(x) = [u · a, σ(u · a)] = [u, a · σ(u · a)]

Another point of view is that each u ∈ Px gives an identification ũ : F → Ex and
σ(u) is simply (ũ)−1s(x). This also explains why σ should be equivariant.

If on the other hand σ : P → F is equivariant then in the diagram

u � // [u, σ(u)]

P //

��

P ×G F

M

;;

there exists a (unique) factorization since M = P/G and u, u · a are carried both
to the same point in P ×G F . This factorization is a section of P [F ].

Theorem 5.1. The above construction describes a bijection between sections
of the associated bundle P [F ] and equivariant maps P → F .

Example 5.2. Let P = P 1M and F = Rm with the standard action of GL(m).
Hence P 1M [Rm] = TM and a section X : M → TM (i.e. a vector field) determines
an equivariant map ξ : P 1M → Rm, the so-called frame form. It sends a basis
(u1, . . . , um) of TxM to the coordinates of X(x) in this basis, u · ξ(u) = X(x).

Example 5.3. Morphisms of principal bundles P → Q are exactly equivariant
maps. By the preceding they are in bijection with sections of P [Q]→M .
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Let H ≤ G be a closed subgroup. The action of G on itself via left translations
passes to the quotient G/H. The associated bundle is

P [G/H] = P ×G G/H
∼=−−→ P/H

[u, aH] 7−→ (ua)H

[u, eH]←− [ uH

Theorem 5.4. There is a canonical bijection between sections of P [G/H] and
reductions of P to H.

Proof. Let a section s : M → P [G/H] determine an equivariant map σ : P →
G/H. Easily σ is a submersion on every fibre and thus Q = σ−1(eH) is the desired
reduction.

Let, on the other hand, Q ⊆ P be a reduction to H. Then in the diagram

Q �
�

//

��

P // P/H

M

66

the dotted factorization exists, sinceM = Q/H, providing a section. DETAILS! �

Example 5.5. Let G ≤ GL(m) be the stabilizer of e1 ∈ Rm, the group of
matrices of the form ( 1 ∗

0 ∗ ). Then GL(m)/G ∼= Rm − {0} and thus reductions of

P 1M to G are in bijection with sections of T̊M = TM−0, the tangent bundle with
the zero section removed. These are clearly nowhere zero vector fields.

6. Problems

Problem 6.1. Determine P [∗] and P [G].

Problem 6.2. Let P be a principal G-bundle that admits a reduction Q to
the subgroup H ⊆ G. Show that P ∼= Q ×H G as principal G-bundles where the
right G-action on Q×H G is [u, a]b = [u, ab].

Problem 6.3. Bundles associated to P are precisely those associated to Q via
an action of G.

Problem 6.4. Show that GL(m)/O(m) ∼= R
m(m−1)

2 and apply this to the case
of reductions to O(m) ⊆ GL(m).

One possibility is to note that the mapping exp induces a diffeomorphism be-
tween the manifold of all symmetric matrices and all positively definite matrices
(regardless of the fact that these are not Lie algebra/group pair).

Problem 6.5. Show that πrr−1 : Jr(M,N)→ Jr−1(M,N) is an affine bundle.

This may be solved on the models: Lrm,n → Lr−1
m,n is an affine bundle (with a

fibre-preserving affine action of Grm ×Grn).

Problem 6.6. Show that T (G/H) ∼= G×H g/h where the action of H on g/h
is induced by the adjoint action of H on g.

Problem 6.7. Show that each sphere Sm is stably parallelizable, i.e. that there
exists an isomorphism TSm ⊕ Rk ∼= Rm+k for k � 0.
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Problem 6.8. Show that TRPm is stably isomorphic to the direct sum of m
copies of the canonical line bundle over RPm.

Problem 6.9. Show that the canonical bundle over the Stiefel manifold Sk(Rn)
of orthonormal k-frames in Rn is associated to the trivial representation of O(n−k)
on Rk while its orthogonal complement is associated to the standard representation
of O(n− k) on Rn−k.

Problem 6.10. Show that the Stiefel manifold Sk(Rn) is parallelizable for
k > 2.

The main idea is that TSk(Rn) ∼= O(n)×O(n−k)o(n)/o(n−k) and the O(n−k)-
representation o(n)/o(n−k) is a direct sum of a trivial representation of dimension
k(k−1)/2 and k copies of the standard representation Rn−k. Then one observes that
the sum of a trivial representation of dimension k and the standard representation
induces a trivial bundle. Similarly for the Grassmann manifold Gk(Rn) but this
time none of the two bundles is trivial.

Problem 6.11. Let E →M be a vector bundle associated to a principal GL(k)-
bundle P . Define the orientation bundle (a 2-sheeted covering) P [GL(k)/GL+(k)]
(which is isomorphic to (ΛkE − 0)/R+). Show that if M is connected E possesses
an orientation if and only if this orientation covering is trivial.



CHAPTER 3

Connections

1. Connections

Let f : M → N be a smooth map which we think of as a section (id, f) of
the trivial bundle M ×N →M . The derivative of f is obtained by differentiating
the section and composing with the canonical projection TM × TN → TN . For a
bundle which is not trivial there is no obvious way of projecting onto the tangent
space of the fibre. This projection is the content of a connection on the bundle.

Definition 1.1. Let p : E → M be a bundle. A connection on p is a smooth
linear projection v : TE → V E onto the vertical subbundle V E =

⋃
x∈M TEx =

ker(p∗ : TE → TM).

We call v the vertical projection. An associated horizontal projection is h =
id− v. There is a short exact sequence of bundles over E

0→ V E → TE → p∗TM → 0

A vertical projection, i.e. a retraction of TE onto V E, is equivalent to a section of
the projection TE → p∗TM . This is our second definition of a connection.

Definition 1.2. A connection on p : E →M is a “lifting map” Γ : E×MTM =
p∗TM → TE which is smooth, linear and satisfies p∗(Γ(y,X)) = X.

Equivalently Γ(y,−) is a 1-jet of a section M → E. The mapping y 7→ Γ(y,−)
is then a section E → J1E.

Definition 1.3. A connection on p : E →M is a smooth section Γ : E → J1E
of the jet prolongation J1E → E.

Remark. The bundle J1E → E is affine since J1(M,E)→M ×E is a vector
bundle, hence so is its pullback along (p, id) : E → M × E and the condition
j1
yp ◦ j1

xs = j1
xid is affine.

Theorem 1.4. Every bundle admits (globally) a connection.

For our next formulation observe that the lifting map is completely determined
by its image, a subbundle of TE.

Definition 1.5. A connection on p : E →M is a smooth distribution Γ on E
which at each point y ∈ E is complementary to the vertical distribution VyE.

47



1. CONNECTIONS 48

Definition 1.6. A vector field ξ : E → TE is called projectable is there exists
a vector field ξ : M → TM such that the diagram

TE
p∗ // TM

E
p
//

ξ

OO

M

ξ

OO

commutes, i.e. such that ξ is p-related to ξ. Loosely speaking from the top one sees

only one vector over each point x ∈M . In coordinates xi on M and yp on the fibre

ξ =
∑

ξi(x) ∂
∂xi︸ ︷︷ ︸

ξ

+
∑

ξp(x, y) ∂
∂yp

Definition 1.7. Let X : M → TM be a vector field and X̃ : E → TE given
by X̃(y) = Γ(y,X) using the lifting map of a connection. Then X̃ is a projectable
vector field on E over X. We call this vector field the Γ-lift of X (or the horizontal
lift when Γ is understood from the context).

When the section E → J1E is given by

dyp =
∑

F pi (x, y)dxi

the horizontal lift is X̃ =
∑
Xi ∂

∂xi +
∑
F pi (x, y)Xi ∂

∂yp

Definition 1.8. Let p : E →M be a vector bundle. Then so is J1E →M . A
connection Γ : E → J1E is called linear if it is a linear morphism of vector bundles.

In coordinates the function F pi (x, y) must be linear in y. We write1

F pi (x, y) =
∑
q

Γpqi(x)yq.

Thus in this case dyp =
∑
i,q Γpqi(x)yqdxi. The functions Γpqi are almost exactly the

classical Christofell symbols.
We are now able to write formally the definition of the derivative of a section.

Consider an arbitrary connection Γ on a bundle p : E →M and a section s : M →
E. We define

∇Γs(x) : TxM → Vs(x)E

X 7→ s∗(X)− X̃(s(x))

The result lies in the vertical subbundle since both s∗X and X̃(s(x)) are lifts of X.
In the first case this follows from the section property. Equivalently ∇Γs(x) is the
vertical projection v(s∗X) of the derivative s∗X. Using an easy adjunction

∇Γs(x) ∈ Vs(x)E ⊗ T ∗xM = (V E ⊗ p∗(T ∗M))s(x)

For short we write V E ⊗ T ∗M instead of V E ⊗ p∗(T ∗M). It is a bundle over E
and by composing with p also over M .

Definition 1.9. The section ∇Γs : M → V E ⊗ T ∗M is called the covariant
derivative of s with respect to the connection Γ.

1THE QUESTION IS WHAT IS WRONG WITH iq???
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In coordinates for s given by yp = sp(x) we have s∗x =
∑

∂sp

∂xi · dx
i ∂
∂yp and

further

Γ(s(x),−) =
∑

F pi (x, s(x)) · dxi ∂
∂yp

yielding

∇Γs(x) =
∑(

∂sp

∂xi (x)− F pi (x, s(x))
)

dxi ∂
∂yp

Definition 1.10. Let γ : R→M be a path on M defined in some neighbour-
hood of 0. A section of E along γ is a map s : R→ E for which p(s(t)) = γ(t)

E

p

��

R

s

>>

γ
// M

≡

γ∗E //

��

E

p

��

R

s

EE

γ
// M

or equivalently a section of the pullback bundle.

Definition 1.11. We say that the section s(t) along a path γ(t) is parallel if
ṡ(t) ∈ Γ(s(t)) for all t. We will see shortly that there is an induced connection on
γ∗E and the condition says that the covariant derivative is 0.

In coordinates for γ given by xi(t) and s(t) by (xi(t), yp(t))

ṡ(t) =
∑

dxi

dt
∂
∂xi +

∑
dyp

dt
∂
∂yp

s is parallel if and only if

dyp

dt =
∑

F pi (x(t), y(t))dxi

dt

From the theory of differential equations we know that for each yp(0) there
exists locally a unique solution, i.e. every choice of s(0) extends to a unique parallel
section along γ(t). Moreover this notion does not depend on reparametrization of
γ - if s(t) is parallel along γ(t) then s(t(τ)) is parallel along γ(t(τ)).

Let us consider now a vector bundle p : E → M . We know that for a vector
space W we have TW = W ×W . For the vertical bundle V E this means V E ∼=
E×M E. An isomorphism from E×M E to V E is given by (u, v) 7→ d

dt

∣∣
t=0

(u+ tv).

Further V E ⊗ T ∗M ∼= (E ×M E) ⊗ T ∗M ∼= E ×M (E ⊗ T ∗M) and for a section
s : M → E we write

∇Γs = (s,∇Γs)

where ∇Γs is now a section of E ⊗ T ∗M →M .

Definition 1.12. The section ∇Γ is called the covariant differential of s.

In coordinates for a linear connection as above ∇Γs(x) is∑(
∂sp

∂xi − Γpqis
q
)

dxi ∂
∂yp

For a vector field X : M → TM we might evaluate the covariant differential
on X to obtain

∇Γ
Xs(x) = (∇Γs(x))(X(x)) : M → E

Definition 1.13. We call this section the covariant derivative of the section s
with respect to the vector field X.
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∇Γ
Xs =

∑(
∂sp

∂xi − Γpqis
q
)
Xi · ∂

∂yp

In this way we obtain a map

∇Γ : XM × C∞E −→ C∞E

(X, s) 7−→ ∇Γ
Xs

Theorem 1.14. The following equalities hold

(1) ∇Γ
X(s1 + s2) = ∇Γ

Xs1 +∇Γ
Xs2,

(2) ∇Γ
X(f · s) = (Xf) · s+ f · ∇Γ

Xs, (the Leibniz rule)
(3) ∇Γ

X1+X2
s = ∇Γ

X1
s+∇Γ

X2
s,

(4) ∇Γ
f ·Xs = f · ∇Γ

Xs.

Proof. We compute (2) from the coordinate expression

∇Γ
X(f · s)(x) =

∑(
∂
∂xi (f · s

p)− Γpqifs
q
)
Xi · ∂

∂yp

=
∑(

∂f
∂xi · s

p + f · ∂s
p

∂xi − f · Γ
p
qis

q
)
Xi · ∂

∂yp

= (Xf) · s+ f · ∇Γ
Xs

�

Theorem 1.15 (The Koszul principle). Let ∇ : XM×C∞E → C∞E be a map
satisfying the conditions (1)-(4). Then there exists a unique linear connection Γ on
E for which ∇ = ∇Γ.

Proof. Locally E ∼= U × V where V is a vector space, C∞E = C∞(U, V ).
Let v ∈ V and we think of it as a constant map U → V , i.e. a section x 7→ (x, v)
whose derivative at X ∈ TxU is (X, 0). Thus we are forced to put

X̃(x, v) = (id, v)∗X − (0,∇Xv) = (X,−∇Xv)

in order to ensure at least ∇Xv = ∇Γ
Xv. This formula on the other hand describes

a bilinear map E ×M TM → TE, i.e. a linear connection Γ on E. It remains to
show ∇ = ∇Γ. But a general section is locally of the form

s(x) =
∑

ai(x)vi

and thus the formula (2) yields

∇Γ
Xs(x) =

∑(
(Xai)vi + ai∇Γ

Xvi
)

which reduces the general case to v. �

Remark. Let U×V
∼=−−→ U×V be an isomorphism of the trivial vector bundle

over U . It is given by a smooth map A : U → GL(V ) as (x, v) 7→ (x,A(x) · v). The
ordinary derivative ds of a map s : U → V is changed to

d(A · s) = A · ds+ dA · s
with the first part being the ordinary derivative transformed by the vector bundle
morphism and the second term amounts to a map E ×M TM → E,

((x, v), (x,X)) 7→ dA(x,X) · v
a linear connection. We will see now that only certain connections (so-called flat
ones) arise in this way.
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Let us investigate now for an arbitrary bundle p : E → M whether a given
connection in the form of a distribution is integrable (i.e. involutive). For vector

fields X,Y : M → TM we consider their horizontal lifts X̃, Ỹ : E → TE. Since X̃
and Ỹ are p-related to X and Y , also [X̃, Ỹ ] is p-related to [X,Y ]. In other words

[X̃, Ỹ ] is a lift of [X,Y ]. Is Γ is to be involutive it is necessary that [X̃, Ỹ ] = [̃X,Y ].

As also the vector fields of the form X̃ generate Γ it is at the same time a sufficient
condition. We have proved

Theorem 1.16. A connection Γ (considered as a distribution) is involutive if

and only if [X̃, Ỹ ] = [̃X,Y ].

Definition 1.17. The mapping CΓ : E×M Λ2TM → V E given by the formula

CΓ(y,X, Y ) = ([̃X,Y ]− [X̃, Ỹ ])(y) is called the curvature of the connection Γ. By
a dualization we think of it as a section CΓ : E → V E ⊗ Λ2T ∗M .

Remark. To make this definition correct we have to prove that the defining
expression does not depend on the extension of X and Y to local vector fields. We
will do this in the coordinates

X =
∑

Xi ∂
∂xi , Y =

∑
Y i ∂

∂xi , [X,Y ] =
∑(

Xj ∂Y i

∂xj − Y
j ∂Xi

∂xj

)
∂
∂xi

The horizontal lifts are given by

X̃ =
∑

Xi ∂
∂xi + F pi X

i ∂
∂yp , Ỹ =

∑
Y i ∂

∂xi + F pi Y
i ∂
∂yp

and finally

[̃X,Y ] =
∑

(Xj ∂Y i

∂xj − Y
j ∂Xi

∂xj ) ∂
∂xi + F pi (Xj ∂Y i

∂xj − Y
j ∂Xi

∂xj ) ∂
∂yp .

On the other hand

[X̃, Ỹ ] =
∑(

Xj ∂Y i

∂xj − Y
j ∂Xi

∂xj

)
∂
∂xi +

∑
∂Fpi
∂xj (XjY i −XiY j) ∂

∂yp

+
∑

F pi

(
Xj ∂Y i

∂xj − Y
j ∂Xi

∂xj

)
∂
∂yp +

∑
F qj

∂Fpi
∂yq (XjY i − Y jXi) ∂

∂yp

giving our final formula

CΓ(y,X, Y ) =
∑

∂Fpi
∂xj (XjY i −XiY j) ∂

∂yp +
∑

F qj
∂Fpi
∂yq (XjY i − Y jXi) ∂

∂yp .

Using the convention dxi ∧ dxj = dxi ⊗ dxj − dxj ⊗ dxi we rewrite it as

CΓ(y) =
∑(

∂Fpj
∂xi + F qi

∂Fpj
∂yq

)
dxi ∧ dxj ∂

∂yp

This computation shows that CΓ indeed depend only on the values of the vector
fields X and Y at the point p(y) and is thus correctly defined.

For a linear connection on E = TM we get the classical theory of connections
on a manifold. The curvature is in this case a tensor of type (1, 3), i.e. a section

M −→ TM ⊗ (T ∗M)⊗
3

(or in fact M −→ TM ⊗ T ∗M ⊗ Λ2T ∗M). The classical
definition is ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. One can verify that this agrees with
our (more general) definition up to the change of sign and indices of the Christoffel
symbols Γkij as mentioned before.

Theorem 1.18. A connection Γ is involutive if and only if the parallel transport
does not locally depend on the path.
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Proof. When Γ is involutive there is an integral manifold Ly through each

point y ∈ E. The composition ϕy : Ly ↪→ E
p−→M is a local diffeomorphism and the

parallel transport of γ is simply obtained by composition γ̃ = ϕ−1
y ◦ γ the endpoint

depending only on γ(1). The converse is also true. �

The integrability of Γ says that locally in E one can find charts of the form
U × V such that the projection p becomes the projection U × V → U and such
that the distribution is TxU × {0}. To extend this trivialization globally we need
the following notion.

Definition 1.19. A connection Γ is called complete if the parallel transport
exists globally.

A sufficient condition is for example that the fibre is compact. Also a linear
connection is always complete (a proof in the tutorial).

Theorem 1.20. If a connection Γ is complete and involutive then there exist
local trivializations p−1(U) ∼= U × F such that Γ(x, y) = TxU × {0}.

Proof. The trivialization is given by the following construction. Choose a
basis X1, . . . , Xm of the base M and use their lifts X̃1, . . . , X̃m to define

Rm × F −→ E

(t = (t1, . . . , tm), y) 7−→ FltX̃1 (y) = PtFltX(x)(y, 1)

where we denote for simplicity tX = t1X1 + · · · + tmXm. The right hand side
is only defined when FltX(x) is defined on the interval [0, 1] but such t form a
neighbourhood of 0, independently of y. �

2. Principal connections

Let us consider a principal bundle P (M,G). We take A ∈ g which we may
express as A = d

dt

∣∣
t=0

exp(tA). The fundamental vector field on P is

A∗(u) = (r(u,−))∗(A) = d
dt

∣∣
t=0

(u · exp(tA)) ∈ VuP
The reason it lies in the vertical subbundle is that u · exp(tA) is a curve in Pπ(u).
Globally we get a map

P × g −→ V P

(u,A) 7−→ A∗(u)

and it is clearly an isomorphism of vector bundles, i.e. a trivialization of V P .
A connection on P thought of as a vertical projection v : TP → V P then yields

a 1-form ωΓ : TP
v−→ V P ∼= P × g→ g. The defining equation is ωΓ(X)∗ = vX and

the vertical projection is obtained uniquely from a g-valued 1-form ω provided that
ω(A∗) = A for all A ∈ g (expressing that the map v is really a projection onto the
vertical subbundle, vA∗ = A∗).

Theorem 2.1. The following conditions are equivalent for a connection Γ on
a principal bundle, where we abbreviate Xa = (ra)∗(X) for a vector X ∈ TP (this
in fact defines an action of G on TP )

(1) v(Xa) = (vX)a,
(2) h(Xa) = (hX)a,

(3) X̃(ua) = X̃(u)a,
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(4) the horizontal distribution is equivariant, Γ(ua) = Γ(u)a,
(5) ωΓ(Xa) = Ad(a−1)ωΓX,
(6) the section Γ : P → J1P satisfies Γ(u) = j1

xs =⇒ Γ(ua) = j1
x(sa).

A connection satisfying these conditions is called principal.

Proof. (1) and (2) are equivalent since v+h = id and id is equivariant. (2) is
also equivalent to (3) since they both say that the action of G preserves horizontal
vectors (it preserves lifts by definition). For point (4) note that the condition (1)
is automatically satisfied on vertical vectors and on horizontal ones (those in the
kernel) it is plainly (4).

The most interesting is (5), we compute

v(Xa) = (ω(Xa))∗

(vX)a = (ωX)∗a =
(

d
dt

∣∣
t=0

u · exp(t · ωX)
)
· a = d

dt

∣∣
t=0

u · exp(t · ωX)a

= d
dt

∣∣
t=0

(ua) · (a−1 exp(t · ωX)a) = d
dt

∣∣
t=0

(ua) exp(Ad(a−1)(t · ωX))

= d
dt

∣∣
t=0

(ua) exp(t ·Ad(a−1)ωX) = (Ad(a−1)ωX)∗

Thus v(Xa) = (vX)a iff ω(Xa) = Ad(a−1)ωX.

For (6) observe that the lift X̃(u) can be expressed as X̃(u) = s∗X. Therefore

X̃(u)a = (s∗X)a = (sa)∗X and this equals X̃(ua) iff sa represents Γ(ua). �

Corollary 2.2. For every g-valued 1-form ω on P satisfying

(1) ω(ua) = Ad(a−1)ω(u)
(2) ωA∗ = A

there exists a unique principal connection Γ on P whose connection form is ω.

Proof. Γ = kerω. �

Let us consider a left G-space F and the associated bundle E = P [F ] = P×GF .
Let Γ be a principal connection on P .

Definition 2.3. An associated connection ΓF : E → J1E is defined as follows.
Suppose that Γ(u) = j1

xs. Then

ΓF ([u, y]) = j1
x[s, y]

where [s, y] : M → P ×G F is the mapping x 7→ [s(x), y].

We have to verify that the definition does not depend on the choice of the
representatives. Firstly [s, y] is the composition

M
(s,y)−−−−→ P × F proj−−−−→ P ×G F

and so it only depends on the 1-jet of s. It remains to verify that starting with
[ua, y] or [u, ay] yields the same results. But Γ(ua) = j1

x(sa) by principality and
thus the two jets in question are j1

x[sa, y] and j1
x[s, ay].

We will now describe the associated connection in terms of the horizontal lifts.
Let X ∈ TxM and compute

X̃[u, y] = [s, y]∗X = [s∗X, 0] = [X̃(u), 0]
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The bracket is not meant to be the Lie bracket. To explain the notation:

M
(s,y)

// P × F
proj

// P ×G F
TM

(s∗,0)
// TP × TF

“[ , ]”
// T (P ×G F )

X � // (X̃(u), 0) � // [X̃(u), 0]

We will now bring the equivalence of vector bundles and principal GL(k)-
bundles further. We now know that a principal connection induces a (linear as
we will see shortly) connection on the vector bundle. To get back consider a vector
bundle E →M and a linear connection Γ : E → J1E on it. The total space of the
frame bundle PE is naturally an open subset

PE ⊆ E ×M · · · ×M E

in the k-fold fibre product of E with itself. Let u = (u1, . . . , uk) ∈ PE be a frame

in Ex and let us represent Γ(ui) = j1
xsi. Define Γ̃(u) = j1

x(s1, . . . , sk). Easily Γ̃ is
a connection on PE. We will verify now that it is principal. The GL(k)-action on
PE is given by the matrix multiplication-like formula

ua = (u1, . . . , uk) · (aij) = (
∑

uiai1, . . . ,
∑

uiaik)

By linearity Γ(
∑
uiaij) = j1

x(
∑
siaij) and thus

Γ̃(ua) = (j1
x(
∑

siai1), . . . , j1
x(
∑

siaik)) = j1
x((s1, . . . , sk) · (aij))

where (s1, . . . , sk) represents Γ̃(u). We have proved

Theorem 2.4. The connection Γ̃ is principal. �

If on the other hand Γ̃ is a principal connection on PE then we will show that
the associated connection Γ̃Rk is linear: let u ∈ E ∼= PE ×GL(k) Rk be represented

by u = [(u1, . . . , uk), (α1, . . . , αk)], i.e. u =
∑
αiui. Then

Γ̃Rk(u) = j1
x[s, (α1, . . . , αk)] = j1

x(
∑

αisi)

where s = (s1, . . . , sk) and this expression is clearly linear in the αi.

Theorem 2.5. The associations Γ 7→ Γ̃ and Γ̃ 7→ Γ̃Rk give a bijection between
linear connections on E and principal connections on PE.

3. The covariant differential on associated bundles

A section s of the associated bundle P [F ]→ M can be described via an equi-
variant map σ : P → F using the diagram

F

P × F

OO

��

P

(id,σ)
77

σ

22

[id,σ]
//

π

��

P ×G F

M

s

77
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Now for X ∈ TxM we have s∗X = [id, σ]∗X̃ = [X̃, σ∗X̃] and so

∇Γs(X) = v(s∗X) = [X̃, σ∗X̃]− [X̃, 0] = [0, σ∗X̃]

since [X̃, 0] is the horizontal lift of X. The moral is that the covariant differential
is no more than “a derivative in the direction of horizontal vectors”.

Remark. Let σ : P → F be equivariant and Y : P → TP an invariant vector
field, i.e. we require Y (ua) = Y (u)a, the most important example being Y = X̃.
Then the composition

σ∗Y : P
a−−→ TP

σ∗−−−→ TF

is equivariant since σ∗Y (ua) = σ∗(Y (u)a) = a−1(σ∗Y (u)) where again the action
is via (`a−1)∗. Schematically

G× TF //
� _

0×id

��

TF

TG× TF
`∗

// TF

Therefore by the general theory σ∗Y determines a section of the associated bundle

P [TF ] = P ×G TF ∼= V (P [F ]) −→M

[u, γ̇] ∼ d
dt

∣∣
t=0

[u, γ]

where V denotes the vertical subbundle. This section is exactly the covariant
differential when Y = X̃ which is seen from

(0u, σ∗X̃)
� // [0, σ∗X̃] = ∇Γs(X)

TP × TF // T (P ×G F ) = TE

P // P × TF
?�

OO

// P ×G TF = V E
?�

the inclusion of the vertical subbundle

OO

u
� // (u, σ∗X̃)

The part of the diagram on the right is the restriction of T (P ×GF ) ∼= TP ×TG TF
from the base TM to the zero section M .

In fact σ∗ : TP → TF is already appropriately equivariant and hence deter-
mines a section of TP [TF ] = TE → TM which is “surprisingly” just s∗. Here
TP → TM is a principal TG-bundle and TF is naturally a TG-space. To sum-
marize we have explained the following passages between equivariant maps and
sections of associated bundles.

σ : P → F ←→ s : M → E

σ∗ : TP → TF ←→ s∗ : TM → TE

σ∗X̃ : P → TF ←→ ∇Γs(X) : M → V E

We have expressed the covariant derivative as an ordinary derivative in the
direction of horizontal vectors. The derivative along vertical vectors is already
determined by equivariancy.



3. THE COVARIANT DIFFERENTIAL ON ASSOCIATED BUNDLES 56

Lemma 3.1. σ∗A
∗(u) = −`A(σ(u)), where `A is the fundamental vector field

corresponding to A ∈ g on the G-space F . In particular the derivative along vertical
vectors does not depend on σ∗u but only on σ(u).

Note. As σ∗A
∗ is not equivariant it does not induce a section of V E.

Proof. This is an easy computation

σ∗A
∗(u) = d

dt

∣∣
t=0

σ(u · exp(tA)) = d
dt

∣∣
t=0

exp(−tA) · σ(u) = −`A(σ(u))

�

Now we will specialize to vector bundles. Let ρ : G → GL(V ) be a linear
representation so that P [V ] is a vector bundle. We replace σ∗ by dσ, i.e. by the

composition TP
σ∗−−−→ TV

ωV−−−→ V where ωV is the Maurer-Cartan form on V (or

more simply just translation to 0, TV ∼= V × V pr2−−−→ V ). Evaluating at X̃ we

obtain dσ(X̃) : P → V which is again equivariant and thus induces a section of
P [V ], namely the covariant derivative ∇Γ

Xs.

Remark. The differential dσ is not TG-equivariant but merely G-equivariant.
Hence one has to pass to a G-reduction of TP → TM which is plainly HP thought
of as a horizontal subbundle (any principal connection produces a choice of such).

dσ|HP : HP → V ←→ (id,∇Γs) : TM → HE = TM ×M E

dσ(X̃) : P → V ←→ ∇Γ
Xs : M → E

We will now generalize this form of the covariant differential to forms of higher
degree. We start a bit more generally with a smooth manifold M and a vector
space W .

Definition 3.2. A W -valued k-form on M is a smooth antisymmetric multi-
linear map

ϕ : TM ×M · · · ×M TM −→W or ϕ : ΛkTM −→W

We write ϕ ∈ Ωk(M ;W ).

Let ϕ =
∑
ϕjej where ϕj ∈ Ω(M) and (ej) a basis of W . We define

dϕ =
∑

(dϕj)ej

which is a W -valued (k + 1)-form that does not depend on the choice of the basis
since a change of basis is linear as is the differential.

Let ρ : G→ GL(W ) be a representation and P (M,G) a principal bundle.

Definition 3.3. We say that ϕ ∈ Ωk(P ;W ) is of type ρ if

ϕ(A1a, . . . , Aka) = ρ(a−1)ϕ(A1, . . . , Ak)

If this is the case we write ϕ ∈ Ω(P ; ρ).

Example 3.4. The form ωΓ of a principal connection Γ is of type Ad

Definition 3.5. We say that ϕ is horizontal if ϕ(A1, . . . , Ak) = 0 whenever
one of Ai is vertical. In this way ϕ can be thought of as a map

ΛkHP = Λk(TP/V P ) −→W
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Theorem 3.6. Horizontal k-forms of type ρ are in bijection with P [W ]-valued
k-forms on M , i.e. vector bundle morphisms

ΛkTM
ϕ

//

��

P [W ]

��

M

Proof. A horizontal k-form ϕ : ΛkTP →W of type ρ induces, as we observed,
a G-map ΛkHP → W or equivalently a G-map ϕ̃ : P ×M ΛkTM → W . We have
seen how to identify any equivariant map P → W with a section of P [W ] and in
the present situation we just carry ΛkTM over to obtain ϕ : ΛkTM → P [W ]:

ϕ(X1, . . . , Xk) = [u, ϕ̃(u,X1, . . . , Xk)] = [u, ϕ(X̃1(u), . . . , X̃k(u))]

wehre u ∈ P is any point lying over the same point as all the vectors Xi. �

Remark. When the representation ρ is trivial, ∀a ∈ G : ρ(a) = id, then

ϕ(X̃1(u), . . . , X̃k(u)) does not depend on the choice of u over x and defines a map

ΛkTM →W . This corresponds to ΛkTM → P [W ] ∼= M ×W pr−→W .

Let ϕ ∈ Ωk(P, ρ) then ϕ ∈ Ωk+1(P, ρ) is of the same type. The horizontality
on the other hand needs not be preserved.

Definition 3.7. An exterior covariant differential of a W -valued k-form on P
is a (k + 1)-form

Dϕ(X0, . . . , Xk) = dϕ(hX0, . . . , hXk)

Clearly Dϕ is horizontal. If ϕ is moreover equivariant (of type ρ) then we get
a diagram

Ωk(P, ρ)
d // Ωk+1(P, ρ)

h∗

��

Ωkhor(P, ρ)
?�

OO

D //
OO

∼=
��

Ωk+1
hor (P, ρ)
OO

∼=
��

Ωk(M,P [W ]) // Ωk+1(M,P [W ])

with h∗ψ(X0, . . . , Xk) = ψ(hX0, . . . , hXk).

Remark. The dotted arrow can be described explicitly: either write locally
ϕ =

∑
sidfi,1 ∧ · · · ∧ dfi,k and then Dϕ =

∑
∇si ∧ dfi,1 ∧ · · · ∧ dfi,k or

Dϕ(X0, . . . , Xk) =
∑
i

(−1)i∇Xiϕ(X0, . . . , X̂i, . . . , Xk)

+
∑
i<j

(−1)i+jϕ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk)

Consider a principal connection Γ on P and its curvature

CΓ : P ×M Λ2TM −→ V P

defining a g-valued 2-form Ω on P by the formula

Ωu(Y, Z) := ωCΓ(u, π∗Y, π∗Z)
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Theorem 3.8. Ω = Dω, i.e. the curvature Ω is a covariant derivative of the
form of the connection.

Proof. We first express Ω using the defining equation for ω:

Ωu(Y,Z)∗ = CΓ(u, π∗Y, π∗Z) = −v[π̃∗Y , π̃∗Z] = −v[hY, hZ]

Therefore Ωu(Y, Z) = −ω[hY, hZ]. Now we compute

Dω(Y,Z) = dω(hY, hZ) = (hY )ω(hZ)︸ ︷︷ ︸
0

−(hZ)ω(hY )︸ ︷︷ ︸
0

−ω[hY, hZ] = Ω(Y, Z)

�

4. The structure equation

Let U, V,W be vector spaces and f : U⊗V →W a linear map. Let ϕ : TM → U
and ψ : TM → V be 1-forms. Consider the antisymmetrization of

TM ⊗ TM ϕ⊗ψ−−−−→ U ⊗ V,

a 2-form ϕ ∧ ψ : Λ2TM → U ⊗ V . By composing with f we obtain a 2-form
f(ϕ,ψ) : Λ2TM →W , explicitly

f(ϕ,ψ)(X,Y ) = f(ϕ(X)⊗ ψ(Y ))− f(ϕ(Y )⊗ ψ(X))

Applying this construction to the Lie algebra bracket g⊗ g→ g and ω ∈ Ω1(M, g)

[ω, ω](X,Y ) = [ωX,ωY ]− [ωY, ωX] = 2[ωX,ωY ]

On a principal bundle with a principal connection Γ we have the form of the con-
nection ω ∈ Ω1(P,Ad).

Theorem 4.1 (The structure equation). dω + 1
2 [ω, ω] = Ω.

Corollary 4.2 (The second Bianchi identity). dΩ = [Ω, ω]. In particular
DΩ = 0.

Proof. Applying a linear map f to d(ϕ ∧ ψ) = dϕ ∧ ψ − ϕ ∧ dψ one obtains

d(f(ϕ,ψ)) = f(dϕ,ψ)− f(ϕ,dψ)

Thus using the structure equation

dΩ = d(dω + 1
2 [ω, ω]) = 1

2 [dω, ω]− 1
2 [ω,dω] = [dω, ω]

since ω ∧ dω = tw ◦ dω ∧ ω and [ , ] is anticommutative, [ , ] ◦ tw = −[ , ]. Using
the structure equation again

dω, ω] = [Ω− 1
2 [ω, ω], ω] = [Ω, ω]

since [[ω, ω], ω] = 0 by the Jacobi identity:

[[ω, ω], ω](X,Y, Z) = [[ω, ω](X,Y ), ωZ]− [[ω, ω](X,Z), ωY ] + [[ω, ω](Y, Z), ωX]

= 2([[ωX,ωY ], ωZ]− [[ωX,ωZ], ωY ] + [[ωY, ωZ], ωX]) = 0.

The last part follows from DΩ = h∗dΩ = [h∗Ω, h∗ω] and h∗ω = 0. �
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The proof of the structure equation. First we deal with a Lie group
G thought of as a principal G-bundle over a point. The vertical projection in this
case is the identity and thus there exists a unique connection. Since

A∗(a) = d
dt

∣∣
t=0

a · exp(tA) = (λa)∗A

the unique connection form is ωG(a,X) = (λa−1)∗X. This is the canonical g-valued
1-form on G called the Maurer-Cartan form. The structure equation reduces in this
case to

Theorem 4.3 (Maurer-Cartan equation). dωG + 1
2 [ωG, ωG] = 0.

Note. The curvature must be zero since TM = 0.

Proof. Observe that any X ∈ TaG extends to a left-invariant vector field
λωGX and denote for short ωGX = A and ωGY = B. Thus

dωG(X,Y ) = dωG(λA, λB) = λA(ωGλB)− λB(ωGλA)− ωG[λA, λB ]

= λA(const)− λB(const)− ωGλ[A,B] = −[A,B] = − 1
2 [ωG, ωG](X,Y ).

�

Let us now proceed to the general case with P a principal G-bundle over M and
a principal connection on P . For A ∈ g the fundamental vector field A∗ : P → V P
is given by

A∗(u) = d
dt

∣∣
t=0

u · exp(tA)

The derivative at a general t0 is

d
dt

∣∣
t=t0

u · exp(tA) = d
dt

∣∣
t=t0

u · exp(t0A) · exp((t− t0)A) = A∗(u · exp(t0A))

In particular FlA
∗

t = u · exp(tA) or in other words FlA
∗

t = rexp(tA).

Lemma 4.4. For arbitrary horizontal vector field Y on P , [A∗, Y ] is also hori-
zontal.

Proof. We determine the Lie bracket by

[A∗, Y ](u) = d
dt

∣∣
t=0

(FlA
∗

−t )∗Y (FlA
∗

t (u)) = d
dt

∣∣
t=0

(rexp(tA))∗Y (u · exp(tA))

Here Y (u · exp(tA)) is horizontal by assumption and the action preserves horizon-
tality. Therefore the curve lies in HuP and so does its derivative. �

The proof of the structure equation splits into three cases by bilinearity

• both X and Y vertical: then Ω(X,Y ) = 0 as Ω is horizontal. The restric-
tion ω|TPx of the connection form to the fibre is the Maurer-Cartan form
ωG and the Maurer-Cartan equation finishes this case.

• X = A∗ vertical and Y horizontal: still Ω(X,Y ) = 0 by horizontality.
The left hand side is

dω(A∗, Y ) = A∗(ωY︸︷︷︸
0

)− Y (ωA∗︸︷︷︸
const.

)− ω [A∗, Y ]︸ ︷︷ ︸
horizontal

= 0

1
2 [ω, ω](A∗, Y ) = [ωA∗, ωY︸︷︷︸

0

] = 0
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• both X and Y horizontal: then 1
2 [ω, ω](X,Y ) = 0 and the structure equa-

tion says

dω(X,Y )
?
= Dω(X,Y ) = dω(hX, hY )

which is satisfied by the horizontality of X and Y .

�

Lemma 4.5. A differential k-form ϕ on P projects to a k-form ψ on M (i.e. ϕ =
π∗ψ) if and only if the following two conditions are satisfied

(1) ϕ is horizontal and
(2) ϕ(X1a, . . . ,Xka) = ϕ(X1, . . . , Xk), i.e. ϕ is of the type given by the trivial

representation e : G→ GL(1), a 7→ e = id.

Proof. This is a special case of the bijection Ωkhor(P, ρ) ∼= Ωk(M,P [W ]) for
W = R with the trivial action so that P [W ] = M × R. �

Now we will construct k-forms on M from the curvature Ω. We denote by
Ik(G) the set of all symmetric multilinear maps

f : g× · · · × g −→ R
satisfying f(Ad(a)A1, . . . ,Ad(a)Ak) = f(A1, . . . , Ak). In other words f is equivari-
ant with respect to the trivial action of G on R. The curvature form Ω : Λ2TP → g
then induces

Λ2TP ⊗ · · · ⊗ Λ2TP
Ω⊗···⊗Ω−−−−−−−→ g⊗ · · · ⊗ g

f−−→ R
Antisymmetrizing we obtain f(Ω) : Λ2kTP → R.

Theorem 4.6. The (2k)-form f(Ω) on P projects to a (2k)-form f(Ω) on M .

Proof. Easily f(Ω) is horizontal since Ω is and

f(Ω)(X1, . . . , X2k) =
∑

f(Ω(Xσ(1), Xσ(2)), . . . ,Ω(Xσ(2k−1), Xσ(2k)))

the sum being taken over (2, . . . , 2)-shuffles. The equivariancy follows from Ω being
of type Ad and f being equivariant. �

Definition 4.7. The form f(Ω) is called the Chern-Weil form.

Lemma 4.8. When an r-form ϕ on P projects to an r-form ϕ on M then
dϕ = Dϕ for any connection on P .

Proof. First we express

Dϕ(X0, . . . , Xr) = Dϕ(X̃0, . . . , X̃r) = dϕ(X̃0, . . . , X̃r)

To compute dϕ we use ϕ(X0, . . . , Xr) = ϕ(X̃0, . . . , X̃r) and differentiate

dϕ(X0, . . . , Xr) =
∑

(−1)iXi · ϕ(X0, . . . , X̂i, . . . , Xr)

+
∑

(−1)i+jϕ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j . . . , Xr)

=
∑

(−1)iX̃i · ϕ(X̃0, . . . ,
̂̃Xi, . . . , X̃r)

+
∑

(−1)i+jϕ( ˜[Xi, Xj ], X̃0, . . . ,
̂̃Xi, . . . ,

̂̃Xj . . . , X̃r)

This is exactly dϕ(X̃0, . . . , X̃r) when ˜[Xi, Xj ] is replaced by [X̃i, X̃j ]. But since the
difference is a vertical vector and ϕ is horizontal this makes no difference. �
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Theorem 4.9. All Chern-Weil forms f(Ω) are closed.

Proof. By the previous lemma df(Ω) = df(Ω) = Df(Ω) and

Df(Ω) = D(f ◦ (Ω ∧ · · · ∧ Ω)) =
∑

f ◦ (Ω ∧ · · · ∧ Ω ∧ DΩ︸︷︷︸
0

∧Ω ∧ · · · ∧ Ω) = 0

with DΩ = 0 by the Bianchi identity. �

Lemma 4.10. Let ϕ be a horizontal 1-form of type ρ. Then

Dϕ(X,Y ) = dϕ(X,Y ) + ω(X) · ϕ(Y )− ω(Y ) · ϕ(X)

where the dot stands for the infinitesimal action A · w = ρ∗(A)(w) with ρ∗ : g →
gl(W ) the derivative of ρ. We may write simply

Dϕ = dϕ+ ω · ϕ

Proof. Again we split the proof into three cases.

• both X and Y horizontal. Then Dϕ(X,Y ) = dϕ(X,Y ) and ω(X) = 0 =
ω(Y ).

• both X = A∗, Y = B∗ vertical. Then Dϕ(X,Y ) = 0 and

dϕ(A∗, B∗) = A∗ ϕ(B∗)︸ ︷︷ ︸
0

−B∗ ϕ(A∗)︸ ︷︷ ︸
0

−ϕ[A∗, B∗] = −ϕ[A,B]∗ = 0

As ϕ(A∗) = 0 = ϕ(B∗) the equality holds trivially.

• X = A∗ vertical and Y = Z̃ horizontal. Still Dϕ(X,Y ) = 0 and

dϕ(A∗, Z̃) = A∗ϕ(Z̃)− Z̃ ϕ(A∗)︸ ︷︷ ︸
0

−ϕ[A∗, Z̃]

In the last term

[A∗, Z̃] = d
dt

∣∣
t=0

(rexp(−tA))∗Z̃(u · exp(tA)) = d
dt

∣∣
t=0

Z̃(u) = 0

so that

dϕ(A∗, Z̃) = A∗ϕ(Z̃) = d
dt

∣∣
t=0

ϕ(Z̃(u · exp(tA)) = d
dt

∣∣
t=0

ϕ(Z̃(u) · exp(tA))

= d
dt

∣∣
t=0

ρ(exp(−tA))ϕ(Z̃(u)) = −ρ∗(A) · ϕ(Z̃(u))

Since A = ω(X) this equals −ω(X) · ϕ(Y ). As ω(Y ) · ϕ(X) = 0 the
equality holds.

�

We are now aiming at the independence of the cohomology class of the Chern-
Weil form under the choice of the principal connection. Therefore let Γ0 and Γ1

be two principal connections with associated forms ω0 and ω1. Put α = ω1 − ω0 ∈
Ω1

hor(P,Ad), horizontal by ω1(A∗) = A = ω0(A∗). Then a covariant derivative with
respect to some principal connection ω is

Dα = dα+ [ω, α]

since α is of type ρ = Ad and ρ∗ = ad = [ , ]. We consider a 1-parameter family of
connections

ωt = ω0 + tα = (1− t)ω0 + tω1

(note that principal connections form an affine space in Ω1(P, g) as both conditions
- being of type Ad and the reproduction of vertical vector fields - are affine). We
denote by Ωt the curvature associated to ωt and Dt the covariant differential.



4. THE STRUCTURE EQUATION 62

Lemma 4.11. d
dtΩt = Dtα.

Proof. To explain the formula Ωt(u) ∈ hom(Λ2TuP, g) and the derivative is
taken in this vector space. Differentiate the structure equation

Ωt = dωt + 1
2 [ωt, ωt]

to obtain
d
dtΩt = d

dtd(ωt) + 1
2 [ d

dtωt, ωt] + 1
2 [ωt,

d
dtωt]

= d( d
dtωt) + 1

2 [α, ωt] + 1
2 [ωt, α] = dα+ [ωt, α] = Dtα

�

Definition 4.12. Define a horizontal (2k − 1)-form on P

f(α,Ωt, . . . ,Ωt︸ ︷︷ ︸
k−1

) = f ◦ (α ∧ Ωt ∧ · · · ∧ Ωt) : Λ2k−1TP −→ R

It projects onto a (2k − 1)-form f(α,Ωt, . . . ,Ωt) ∈ Ω2k−1(M). Let

Φ = k ·
∫ 1

0

f(α,Ωt, . . . ,Ωt) ∈ Ω2k−1(M)

Theorem 4.13. It holds dΦ = f(Ω1) − f(Ω0) so that the forms f(Ω0) and
f(Ω1) determine the same class in the de Rham cohomology.

Proof. Since f(Ω1)− f(Ω0) =
∫ 1

0
d
dtf(Ωt) dt we compute

d
dtf(Ωt, . . . ,Ωt) =

∑
f(Ωt, . . . ,

d
dtΩt, . . . ,Ωt) = k · f( d

dtΩt,Ωt, . . . ,Ωt)

= k · f(Dtα,Ωt, . . . ,Ωt) = k ·Dtf(α,Ωt, . . . ,Ωt)

= k · d(f(α,Ωt, . . . ,Ωt))

Thus

f(Ω1)−f(Ω0) =

∫ 1

0

k·d(f(α,Ωt, . . . ,Ωt)) dt = d

(∫ 1

0

k · f(α,Ωt, . . . ,Ωt) dt

)
= dΦ

�

Theorem 4.14 (reformulation). For each f ∈ Ik(G) the de Rham class of the
Chern-Weil form f(Ω) does not depend on the connection Γ. �

Example 4.15. Consider the example G = GL(k), i.e. the example of vector
bundles of dimension k. Here g = gl(k) and Ad(a)(A) = aAa−1. The trace of
a matrix is a map tr : gl(k) → R satisfying tr(aAa−1) = tr(A). Therefore tr ∈
I1(GL(k)) and yields a class [ tr(Ω)] ∈ H2(M). In the tutorial we will show that
I1(GL(k)) = 〈tr〉. There exist higher traces

tr
j

: gl(k)⊗ · · · ⊗ gl(k) −→ R

X1 ⊗ · · · ⊗Xj 7−→ tr(X1 · · ·Xj)

which exhibits a cyclic symmetry. Fully symmetrizing we get sym(trj) ∈ Ij(GL(k)).
“A bit of representation theory” implies that all Chern-Weil forms are generated
by trj via the wedge product and linear combinations.

We will show now that for j odd these classes are zero. This will follow from the
fact that every principal GL(k)-bundle P admits a reduction Q to O(k). This means
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that for the connection induced from a principal connection on Q the curvature
Ω takes values in o(k) (this will be shown at the tutorial), the algebra of anti-
symmetric matrices. Since an odd power of an anti-symmetric matrix is again
anti-symmetric the trace tr2i−1(Ω) must be zero.

For complex vector bundles there are non-zero classes in all even dimensions
up to the dimension of the vector bundle.

5. The canonical form on P 1M (solder form)

Let π : P 1M → M be the bundle of frames on M , P 1M = PTM 3 u =
(u1, . . . , um) a basis of TxM , x = π(u). It is a principal GL(m)-bundle whose fibre
can be described as inv hom(Rm, TxM). The action of GL(m) on P 1M is then given
as precomposition. Alternatively (u1, . . . , um)a = (

∑
uiai1, . . . ,

∑
uiaim).

Definition 5.1. The canonical form on P 1M is the Rm-valued 1-form θ de-
fined by

π∗X = θ1(X)u1 + · · ·+ θm(X)um

In other words, the components of θ(X) are the coordinates of π∗X in the basis
u. Using the frame map ρ : P 1M × Rm → TM , (u, α) 7→

∑
αiui the definition

becomes
ρ(u, θ(X)) = π∗(X)

Theorem 5.2. θ ∈ Ω1
hor(P, id) where id : GL(m) → GL(m) is the standard

representation of GL(m) on the vector space Rm.

Proof. The horizontality is obvious since π∗X = 0 for a vertical vector X.
Since the action preserves fibres we have

(ua) · θ(Xa) = π∗(Xa) = π∗X = u · θ(X)

implying aθ(Xa) = θ(X) as both are coordinates of π∗X in the basis u. Finally
θ(Xa) = a−1θ(X). �

Lemma 5.3. Under the identification

XM = C∞TM = C∞P 1M [Rm] ∼= mapGL(m)(P
1M,Rm)

a vector field X corresponds to θ(X̃).

Proof. The section of P 1M [Rm] corresponding to u 7→ θ(X̃(u)) sends x to

[u, θ(X̃(u))] ∼ u · θ(X̃(u)) = X(x)

where u ∈ P 1Mx is arbitrary and∼ denotes the identification P 1M [Rm] ∼= TM . �

Definition 5.4. Let Γ be a principal connection on P 1M . The covariant
differential Dθ is called the torsion form of the connection Γ.

Theorem 5.5. Dθ = 0 if and only if the connection Γ has no torsion.

Proof. We will show that the section corresponding to Dθ(X̃, Ỹ ) is

∇XY −∇YX − [X,Y ]

for any vector fields X and Y on M . But

Dθ(X̃, Ỹ ) = X̃(θỸ )− Ỹ (θX̃)− θ[X̃, Ỹ ]

where θỸ = Y by the last lemma and hence X̃(θỸ ) = ∇XY . By horizontality of θ

the last term can be simplified θ[X̃, Ỹ ] = θ[̃X,Y ] = [X,Y ]. �
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For the next theorem denote by dot the following pairing

− · − : gl(m)⊗ Rm → Rm

Theorem 5.6 (The first structure equation). It holds Dθ = dθ+ω ·θ where ω ∈
Ω1(P 1M, gl(m)) is the form of the connection and θ ∈ Ω1(P,Rm) is the canonical
form.

Proof. We have shown this more generally, Dϕ = dϕ+ ρ∗ω · ϕ. �

Remark. By differentiating covariantly once more we obtain

D2θ = h∗d(dθ + ω · θ) = h∗(dω · θ + ω · dθ) = h∗dω · h∗θ = Dω · θ = Ω · θ
We have not used any specific property of θ and thus for ϕ ∈ Ωkhor(P, ρ) it holds
generally that D2ϕ = ρ∗Ω · ϕ. In particular the covariant differential does not
generally square to zero.

6. The second tangent space TTM

What is TTM = T (TM)? Locally one has

TTRm = T (Rm × Rm) = Rm × Rm︸ ︷︷ ︸
base

×Rm × Rm︸ ︷︷ ︸
fibre

Let us write the coordinates as (x,X, Y, α). For σ : R2 → Rm with coordinates s
and t on R2 we have

∂
∂t

∣∣
t=0

σ : R −→ TRm

s 7−→ (σ(s, 0), ∂∂tσ(s, 0))

Differentiating again we obtain ∂
∂s

∣∣
s=0

∂
∂t

∣∣
t=0

σ ∈ TTRm with coordinates

(σ(0), ∂∂tσ(0), ∂∂sσ(0), ∂2

∂s∂tσ(0))

We have a well defined map TTRm → TTRm by
∂
∂s

∣∣
s=0

∂
∂t

∣∣
t=0

σ 7−→ ∂
∂t

∣∣
t=0

∂
∂s

∣∣
s=0

σ

which plainly swaps the middle coordinates but in this form it clearly does not
depend on coordinates and thus induces a map

κ : TTM → TTM

on the second tangent bundle of any manifold M .
Let˜: TM ×M TM → TTM be a lifting map of a linear connection on TM .

Locally ((x,X), (x, Y )) 7→ (x,X, Y, (ΓkijX
iY j)). We can use κ to introduce a new

lifting mapˆvia the diagram

(x, Y,X, (ΓkijY
iXj)) (x,X, Y, (ΓkjiX

iY j))

TTM
κ // TTM

TM ×M TM

˜

OO

TM ×M TM
exoo

ˆ

OO

((x, Y ), (x,X)) ((x,X), (x, Y ))

with ex denoting exchanging the two factors.
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Theorem 6.1. ˆ= κ ◦̃ ◦ ex prescribes a linear connection on TM , the so-called
conjugate connection Γ̄. In coordinates Γ̄kij = Γkji.

Let us denote the “translation” map by

tr : V TM ∼= TM ×M TM
pr2−−−→ TM

(x,X, 0, Z) 7−→ (x, Z)

Lemma 6.2. For any vector fields X,Y ∈ XM

tr(TY ◦X − κ ◦ TX ◦ Y ) = [X,Y ]

Proof. In coordinates X : x 7→ (x,X), Y : x 7→ (x, Y ) so that

TY ◦X : x 7−→ (x, Y,X,
∑

Xj ∂Y i

∂xj
∂
∂xi )

TX ◦ Y : x 7−→ (x,X, Y,
∑

Y j ∂X
i

∂xj
∂
∂xi )

TY ◦X − κ ◦ TX ◦ Y : x 7−→ (x, Y, 0, [X,Y ])
tr−−→ (x, [X,Y ])

where e.g. the last coordinate of TY ◦X is the derivative of Y along X. �

Theorem 6.3. The following holds

(1) ∇̄XY = ∇YX + [X,Y ],

(2) the section corresponding to Dθ(X̃, Ỹ ) is ∇XY − ∇̄XY .

Proof. Once (1) is proved, (2) follows fromDθ(X̃, Ỹ ) = ∇XY −∇YX−[X,Y ].

To prove (1) we observe that by definition

∇YX = tr(v(TX ◦ Y )) = tr(TX ◦ Y − Ỹ (X)) = tr(κ ◦ TX ◦ Y − κ(Ỹ (X)))

using tr ◦κ = tr and analogously

∇̄XY = tr(TY ◦X − Ŷ (X)) = tr(TY ◦X − κ(Ỹ (X)))

Subtracting the two formulas reduces the theorem to the previous lemma. �

7. Morphisms of connections

Let pi : Ei → M , i = 1, 2 be two bundles and also qi : Di → N . Further let
fi : Ei → Di be bundle morphisms over the same base map f : M → N . We obtain

f1 × f2 = f1 ×f f2 : E1 ×M E2 → D1 ×N D2

the so-called fibre product of f1 and f2.
Let now˜: E ×M TM → TE be a lifting map for a connection Γ on E → M

andˆ: D ×N TN → TD a lifting map for a connection ∆ on D → N , f : D → E a
bundle morphism over f : N →M .

Definition 7.1. Connections ∆ and Γ are calles f -related if the diagram

TD
f∗ // TE

D ×N TN

ˆ

OO

f×f∗
// E ×M TM

˜

OO

commutes. In other words f is required to preserve horizontal vectors, i.e. f∗X̂(y) =

f̃∗X(f(y)) or f∗∆(y) ⊆ Γ(f(y)).
We also say that f is a morphism of connections ∆ and Γ.
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Definition 7.2. An induced connection g∗Γ on the pullback bundle g∗E

g∗E
ḡ
//

��

E

��

N
g
// M

is determined by the requirement that the horizontal distribution g∗Γ is the preim-
age of the horizontal distribution Γ, i.e. g∗Γ(x, y) = (ḡ∗(x,y))

−1Γ(y).

Theorem 7.3. The distribution g∗Γ gives a connection on g∗E.

Proof. By the diagram

(X,Y )
� //

_

��

Y_

��

X � // g∗X = p∗Y

for (X,Y ) ∈ g∗Γ(x, y) necessarily Y = g̃∗X(y) so that for each X ∈ TxN there is a
unique Y ∈ TyE with (X,Y ) ∈ g∗Γ(x, y). �

Another characterization of g∗Γ is via the jets of sections: a section s : M → E
representing the horizontal subspace of Γ, i.e. Γ(sg(x)) = j1

g(x)s, induces a section

g∗s : N → g∗E

N

id
!!

s◦g

##

g∗s
// g∗E //

��

E

��

N
g
// M

and g∗Γ(x, sg(x)) = j1
x(g∗s). In this way one obtains the horizontal spaces at all

points.

Theorem 7.4. The connections g∗Γ and Γ are ḡ-related.

Proof. Follows immediately from the definition. �

Theorem 7.5. In the diagram

D
f̃

//

f

))

��

f∗E //

��

E

��

N N
f
// M

the connections ∆ and Γ are f -related if and only if ∆ and f∗Γ are f̃ -related.

Proof. Easy. �
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Theorem 7.6. If ∆ and Γ are f -related then the following diagram commutes

V D
f∗ // V E

D ×N Λ2TN
f×Λ2f∗

//

C∆

OO

E ×M Λ2TM

CΓ

OO

We say that C∆ and CΓ are f -related.

Proof. Let y ∈ D, X,Y ∈ Tq(y)N where q : D → N is the bundle projection.
Suppose first that it is possible to extend X and Y to vector fields X and Y that
are f -related to vector fields X ′ and Y ′ on M . Then

CΓ(f(y), X ′, Y ′) = −v[X̃ ′, Ỹ ′](f(y))

But X̂ and Ŷ are f -related to X̃ ′ and Ỹ ′ so that [X̂, Ŷ ] is also f -related to [X̃ ′, Ỹ ′]

and also [̂X,Y ] is f -related to ˜[X ′, Y ′]). Subtracting we obtain that C∆(−, X, Y )
is f -related to CΓ(−, X ′, Y ′) which is exactly the commutativity of the diagram
from the theorem.

In general the extensions X ′ and Y ′ might not exist. They do exist for f an
immersion and a submersion. But it is possible to decompose f into a composition
of such, namely

D
f̃
//

��

f∗E //

��

pr∗2E //

��

E

��

N N
(id,f)

// N ×M
pr2
// M

The graph (id, f) of f is obviously an immersion while the projection pr2 is a
submersion. The extensions are easy to construct. �

8. Problems

Problem 8.1. Show that a linear connection is complete.

Problem 8.2. Show that for a vector bundle E → M the vector space C∞E
of all smooth sections of E is naturally a bundle over C∞M . Further show that
if E and F are two vector bundles over M then there is a bijection between linear
morphisms E → F and C∞M -linear homomorphisms C∞E → C∞F .

Problem 8.3. Show that if ϕ : C∞E1 × C∞E2 −→ C∞F is bilinear over
C∞M then the value of ϕ(s1, s2) at x depends only on s1(x) and s2(x) and this
dependence describes a bilinear morphism E1 ×M E2 −→ F of bundles over M .

One may reduce to the previous problem by showing that

C∞E1 ⊗C∞M C∞E2
∼= C∞(E1 ⊗M E2)

Problem 8.4. Apply the previous problem to the curvature

CΓ : C∞(p∗TM)× C∞(p∗TM) −→ C∞V E
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Problem 8.5. Show that an exterior derivative of a 1-form ϕ ∈ Ω1(M) satisfies

dϕ(X,Y ) = Xϕ(Y )− Y ϕ(X)− ϕ[X,Y ]

for any two vector fields X,Y ∈ XM . Generalize to higher degrees.

Problem 8.6. An exterior derivative of a form ϕ ∈ Ωk(P, ρ) of type ρ is also
of type ρ. The same holds for the covariant derivative.

Problem 8.7. Show that I1(GL(k)) = 〈tr〉.
Decomposition into symmetric and antisymmetric matrices yields an easy re-

duction to linear forms on symmetric matrices which are O(k)-invariant. Since each
is equivalent to a diagonal one this gives the result.

Problem 8.8. Let Q ⊆ P be a reduction of a principal G-bundle P to H ⊆ G.
Prove the following two characterizations of principal connections on P induced
from principal connections on Q:

• Γ is a principal connection tangent to Q, i.e. Γ|Q ⊆ TQ,
• ω is a principal connection whose restriction ω|Q to Q takes values in h.

Problem 8.9. Show that the canonical form θ : TP 1M → Rm corresponds to
id : TM → TM .

Problem 8.10. Show that under the identification of sections s ∈ C∞(P [W ])

and equivariant maps σ : P →W we get that ∇Xs corresponds to Dσ(X̃). Maybe
not a good problem. . .

Problem 8.11. Let E,F be two vector bundles associated to P (M,G) and let
s ∈ C∞E and t ∈ C∞F be two sections. Then ∇X(s⊗ t) = ∇Xs⊗ t+ s⊗∇Xt.

Problem 8.12. Let P →M be a principal GL(k)-bundle and Q ⊆ P a reduc-
tion to O(k) which is equivalent to a scalar product g ∈ C∞(E ⊗ E)∗. Let Γ be a
principal connection of P . Show that the following conditions are equivalent.

• Γ reduces to Q,
• ∇g = 0 (g is then called covariantly constant),
• the parallel transport on E preserves the scalar product.

Problem 8.13. Let P (M,G) be a principal bundle with a principal connection
ω and let ρ : G→ GL(W ) be a representation, E = P ×GW the associated vector
bundle. Describe the curvature CΓW of the associated bundle in terms of Ω.

Problem 8.14. Describe for X,Y ∈ XM and s ∈ C∞E the expression

∇X∇Y s−∇Y∇Xs−∇[X,Y ]s

in terms of the equivariant map σ : P →W corresponding to s.

Problem 8.15. Let ι : Q ↪→ P be an inclusion of a reduction Q of P to a
subgropu H ⊆ G. Let ΓQ be a reduction of a principal connection ΓP on P . Show
that ΓQ and ΓP are ι-related and that ΩQ is a restriction of ΩP to Q. Deduce that
ΩP |Q takes values in h.

As a consequence for a principal GL(k)-connection ω the curvature is trace-free,
tr Ω = 0, when the connection reduces to O(k). Namely any element of P may be
expressed as u · a with u ∈ Q and a ∈ GL(k). Then

tr Ω(X̃(u · a), Ỹ (u · a)) = tr(a−1Ω(X̃(u), Ỹ (u))a) = tr Ω(X̃(u), Ỹ (u)) = 0

since Ω(X̃(u), Ỹ (u)) is an antisymmetric matrix and as such has zero trace.



CHAPTER 4

Riemannian geometry

1. Interpretation of Riemannian geometry

Let us start with a motivation which I presented in the tutorials. Let P →M be
a principal GL(k)-bundle, Q ⊆ P a reduction to O(k) and Γ a principal connection
on P . The question arises how to recognize whethet Γ is associated to a principal
connection on Q here we think of P as Q ×O(k) GL(k) to make sense of this. In
such a situation we say that the connection Γ reduces to Q. In this special case a
reduction to O(k) is the same as a choice of a scalar product

g : E ⊗ E → R

on the associated bundle E = P ×GL(k) Rk.

Theorem 1.1. The following conditions are equivalent

(1) Γ reduces to Q,
(2) ∇g = 0 (we say that g is covariant constant),
(3) the parallel transport on E preserves the scalar product.

Lemma 1.2. Let E1 and E2 be two vector bundles associated to P (M,G), s1 ∈
C∞E1, s2 ∈ C∞E2 two sections. Then

∇X(s1 ⊗ s2) = ∇Xs1 ⊗ s2 + s1 ⊗∇Xs2

Proof. Let si be associated to an equivariant map σi : P → Vi, i.e. si(π(u)) =
[u, σi(u)]. We have an isomorphism

(P ×G V1)⊗ (P ×G V2)
∼=−−→ P ×G (V1 ⊗ V2)

[u, v1]⊗ [u, v2] 7−→ [u, v1 ⊗ v2]

under which the section s1 ⊗ s2 becomes σ1 ⊗ σ2 : P → V1 ⊗ V2 since

(s1 ⊗ s2)(π(u)) = [u, σ1(u)]⊗ [u, σ2(u)] = [u, (σ1 ⊗ σ2)(u)]

In our correspondence ∇Xsi becomes dσi(X̃) and thus ∇X(s1⊗ s2) corresponds to

d(σ1 ⊗ σ2)(X̃) = dσ1(X̃)⊗ σ2 + σ1 ⊗ dσ2(X̃)

because the coordinates of σ1⊗σ2 are products of coordinates of σ1 and of σ2. The
right hand side then corresponds to the formula from the statement. �

Proof of the theorem. We start with “(1) ⇒ (2)”. The scalar product
section g of (E ⊗ E)∗ ∼= Q ×O(k) (Rk ⊗ Rk)∗ corresponds to an equivariant map

γ : Q→ (Rk ⊗Rk)∗ which we now identify. Let u ∈ Qx be an orthonormal basis of

Ex thought of as a map u : Rk
∼=−→ Ex. Then

g(π(u)) = [u, γ(u)] : Ex ⊗ Ex
u−1⊗u−1

−−−−−−−→ Rk ⊗ Rk γ(u)−−−−→ R

69
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Thus γ(u) is the scalar product g expressed in the orthonormal basis u, i.e. γ(u) is
the standard scalar product (independently of u) and γ is constant. Thus dγ = 0
and hence ∇g = 0.

We now reformulate (2) slightly. Let ev : (Rk ⊗ Rk)∗ ⊗ Rk ⊗ Rk −→ R be the
evaluation map h ⊗ v ⊗ w 7→ (h(v ⊗ w). Then ev induces a (linear) morphism of
induced vector bundles

P ×GL(k) ((Rk ⊗ Rk)∗ ⊗ Rk ⊗ Rk) −→ P ×GL(k) R = M × R

For sections g, s1 and s2 we therefore obtain

∇X(g(s1 ⊗ s2)) = ∇X ev(g ⊗ s1 ⊗ s2) = ev∇X(g ⊗ s1 ⊗ s2)

= ev(∇Xg ⊗ s1 ⊗ s2 + g ⊗∇Xs1 ⊗ s2 + g ⊗ s1 ⊗∇Xs2)

= ∇Xg(s1 ⊗ s2) + g(∇Xs1 ⊗ s2) + g(s1 ⊗∇Xs2)

In other words

∇X〈s1, s2〉 = ∇Xg(s1 ⊗ s2) + 〈∇Xs1, s2〉+ 〈s1,∇Xs2〉

Now we are ready to prove “(2) ⇒ (3)”. For vectors v1, v2 ∈ Ex and a path
γ : R→M through x let us denote the parallel transport of vi along γ by γ̃i. The
definition gives ∇γ̇ γ̃i = 0 and thus

d
dt 〈γ̃1, γ̃2〉 = ∇γ̇〈γ̃1, γ̃2〉 = 〈∇γ̇ γ̃1, γ̃2〉+ 〈γ̃1,∇γ̇ γ̃2〉 = 0

The scalar product 〈γ̃1, γ̃2〉 is therefore constant which is exactly what (3) asserts.
Finally we prove “(3) ⇒ (1)”. Let x ∈ M and represent X ∈ TxM as the

velocity γ̇(0) of a path γ : R→ M . Choose an orthonormal basis u = (u1, . . . , uk)
of Ex. By (3) the parallel transports γ̃i of ui along γ form an orthonormal basis at

the points γ(t) on the path. The derivatives d
dt

∣∣
t=0

γ̃i are the horizontal lifts X̃(ui)
and they constitute a horizontal lift

X̃(u) = (X̃(u1), . . . , X̃(uk)) = d
dt

∣∣
t=0

(γ̃1, . . . , γ̃k)

ofX at u. Since the path takes place inQ, X̃(u) ∈ TuQ and therefore the connection
reduces to Q. �

A second exercise was to identify the curvature of the associated connection.
The idea is that this should be determined by the curvature of the principal con-
nection which is equivalent to the curvature form Ω. Thus one should be able to
express the curvature CΓW translated from V E to to the zero section E using Ω.
More precisely trCΓ is a bundle morphism

trCΓW : E ×M Λ2TM −→W

and as such is induced by an equivariant map

P ×M Λ2TM −→ map(W,W )

In fact we will see that the curvature is linear and map(W,W ) can be replaced by
hom(W,W ) = gl(W ).

Theorem 1.3. Let P (M,G) be a principal bundle equipped with a principal
connection ω, ρ : G→ GL(W ) a linear representation, E = P ×GW the associated
vector bundle. Then the curvature trCΓW (−, X, Y ) : E → E of the associated

connection is induced by the map P → gl(W ), u 7→ ρ∗Ω(X̃, Ỹ )(u).
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Proof. As we do not want to confuse the Lie bracket with points in E =
P ×GW (i.e. classes [u, v] of pairs (u, v) ∈ P ×W ) we will use the quotient map

q : P ×W −→ P ×GW = E

to denote the latter. The horizontal lifts X̂ on E are given by

X̂(q(u, v)) = q∗(X̃(u), 0v)

using the horizontal lift X̃ for P . We need to compute their Lie bracket. For this
we observe that via we have (X̃, 0) ∼q X̂ and (Ỹ , 0) ∼q Ŷ . Therefore

[(X̃, 0), (Ỹ , 0)] ∼q [X̂, Ŷ ]

Since q is a submersion this determines [X̂, Ŷ ]:

[X̂, Ŷ ](q(u, v)) = q∗(u,v)[(X̃, 0), (Ỹ , 0)] = q∗(u,v)([X̃, Ỹ ], 0)

Subtracting from [̂X,Y ](q(u, v)) = q∗(u,v)([̃X,Y ], 0) we get

CΓW (q(u, v), X, Y ) = q∗(CΓ(u,X, Y ), 0v) = q∗(Ω(X̃, Ỹ )∗(u), 0v)

The last step is to use A∗(u) = d
dt

∣∣
t=0

u · exp(tA) to simplify to

d
dt

∣∣
t=0

q(u · exp(t · Ω(X̃, Ỹ )(u)), v) = d
dt

∣∣
t=0

q(u, exp(t · Ω(X̃, Ỹ )(u)) · v)

When composed with the translation this can be written as

q(u, d
dt

∣∣
t=0

exp(t · Ω(X̃, Ỹ )(u)) · v)) = q(u, ρ∗(Ω(X̃, Ỹ )(u)) · v)

�

The last exercise was to express the section ∇X∇Y s −∇Y∇Xs −∇[X,Y ]s via
an equivariant map

Theorem 1.4. The following formula holds.

∇X∇Y s−∇Y∇Xs−∇[X,Y ]s = trCΓ(s,X, Y )

Proof. If s corresponds to σ then ∇Xs corresponds to X̃σ and the whole
formula to

(X̃Ỹ − Ỹ X̃ − [̃X,Y ])σ = ([X̃, Ỹ ]− [̃X,Y ])σ = −CΓ(−, X, Y )σ

Now we express the result using Ω to get

−CΓ(u,X, Y )σ = −
(
Ω(X̃, Ỹ )(u)

)∗
σ(u) = `Ω(X̃,Ỹ )(u)(σ(u)) = ρ∗(Ω(X̃, Ỹ )(u))·σ(u)

By the previous theorem this corresponds to the section

trCΓ(q(u, σ(u)), X, Y ) = trCΓ(s,X, Y )

�
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2. The curvatures of a Riemannian space

For a smooth manifold M a Riemannian structure is a section g : M → S2
+T
∗M

of the bundle of symmetric positive definite bilinear forms. We say that (M, g) is
a Riemannian manifold (a manifold M equipped with a Riemannian metric g).

Definition 2.1. A Levi-Civita connection ∇ on TM is characterized by its
three properties

(1) it is linear,
(2) torsion-free, i.e. Dθ = dθ + ω · θ = 0,
(3) ∇g = 0, i.e. ∇ comes from a connection on the subbundle Q1M ⊆ P 1M

of orthonormal frames.

Let us consider the curvature of the Levi-Civita connection

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

a section R of TM ⊗Λ2T ∗M ⊗ T ∗M with factors corresponding to the value of R,
the X and Y entries, and the Z entry. We have shown that the equivariant map
inducing R is

Q1M −→ Rm

u 7−→ Ω(X̃, Ỹ )(u) · θZ̃(u)

where θZ̃ is the map corresponding to Z. The map corresponding to g is the
constant map with value the standard scalar product.

Theorem 2.2. For X,Y, Z, U ∈ XM the following holds

g(R(X,Y )Z,U) = −g(R(X,Y )U,Z)

Proof. By what we have said the left hand side corresponds to

〈Ω(X̃, Ỹ ) · θZ̃, θŨ〉

As Ω takes values in the Lie algebra o(m) of all skew-symmetric matrices (anti-self-
adjoint maps) the result follows. �

The tensor field R of type (0, 4) sending

(X,Y, Z, U) 7−→ R(X,Y, Z, U) = −g(R(X,Y )Z,U)

is called the covariant form of the curvature tensor field R of type (1, 3). In coor-
dinates

R =
∑

Rijkl · dxi ⊗ dxj ⊗ dxk ⊗ dxl

and we have so far proved

Rijkl = −Rjikl Rijkl = −Rijlk

Theorem 2.3 (The first Bianchi identity). Rijkl +Rjkil +Rkijl = 0.

Proof. Our previous (more general) first Bianchi identity claimed D2θ = Ω·θ.
Since in our case Dθ = 0 we have

0 = (Ω · θ)(X̃, Ỹ , Z̃) = Ω(X̃, Ỹ ) · θZ̃ + Ω(Ỹ , Z̃) · θX̃ + Ω(Z̃, X̃) · θỸ

Multiplying by θŨ and converting to the section form yields the result. �
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Theorem 2.4. As an algebraic consequence of the previous identities

Rijkl = Rklij

Proof. Consider two instances of the first Bianchi identity

Rijkl +Rjkil +Rkijl = 0

Rijlk +Rjlik +Rlijk = 0

Subtracting we obtain

2Rijkl +Rjkil +Rkijl −Rjlik −Rlijk = 0

Changing the indices according to
( i j k l
k l i j

)
one gets

2Rklij +Rlikj +Riklj −Rljki −Rjkli = 0

and finally subtracting the last two equalities one obtains

2Rijkl − 2Rklij = 0

�

Remark. This should be expressible as an identity in the group algebra R[Σ4]
and its right ideal I generated by id + (12), id + (34) and id + (123) + (132). We
will show that ((13)(24)− id) ∈ I.

0 ≡ id + (123) + (132) = id + (12)(23) + (21)(13) ≡ id− (23)− (13) mod I

Multiplying by (12)(34) on the right yields

0 ≡ (12)(34)− (1342) + (1234) ≡ id− (14)− (24)

On the other hand multiplying the first equality by −(24) we get

0 ≡ −(24) + (13)(24) + (23)(24) ≡ (13)(24)− (24)− (23)

while the second multiplied by −(13) leads to

0 ≡ (13)(24)− (13)− (14)

Together

2 · id ≡ (13) + (23) + (14) + (24) ≡ 2 · (13)(24)

and ((13)(24) − id) ∈ I. This should be interpreted as follows: there is an action
algebra homomorphism

R[Σ4]→ End(⊗4W ∗)

and R ∈ ⊗4W ∗ is annihilated by the above generators of I. This means that the
kernel of the homorphism of right R[Σ4]-modules

R[Σ4]
R·−−−−−→ End(⊗4W ∗)

contains those and thus must contain also I.

Definition 2.5. For a linear connection on M we define its Ricci tensor field
of type (0, 2) by the formula

Rij =
∑
k

Rkijk

i.e. R(X,Y ) is the trace of R(−, X)Y : TM → TM .

Theorem 2.6. The Ricci tensor field of the Levi-Civita connection is symmetric
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Proof. Let ui be an orthonormal basis of TxM . Then tr(R(−, X)Y ) equals∑
i

g(R(ui, X)Y, ui) =
∑

g(R(Y, ui)ui, X) =
∑

g(R(ui, Y )X,ui)

which is tr(R(−, Y )X). �

Definition 2.7. The function s =
∑
i,j g̃

ijRij is called the scalar curvature of
the Riemannian space.

s : M
Ricci−−−−→ T ∗M ⊗ T ∗M

∼=−−→ TM ⊗ T ∗M eval−−−→ R
Using an orthonormal frame ui we can write

s =
∑
i,j

g(R(ui, uj)uj , ui) =
∑
i,j

R(ui, uj , ui, uj)

Observe that the covariant form of the curvature is a section

M → Λ2T ∗M ⊗ Λ2T ∗M

For a pair of vectors u, v consider R(u, v, u, v). Changing the basis to (u′, v′) =
(u, v) ·A we obtain u′ ∧ v′ = detA · u ∧ v and thus

R(u′, v′, u′, v′) = (detA)2 ·R(u, v, u, v)

Theorem 2.8. Let p ⊆ TxM be a two-dimensional linear subspace, u, v ∈ p a
basis. Then the number

K(p) =
R(u, v, u, v)

g(u, u)g(v, v)− g(u, v)2

does not depend on the choice of the basis u, v of p.

Definition 2.9. The number K(p) is called the sectional curvature of (M, g)
in the direction of the two-dimensional subspace p.

Proof. We know that

g(u, u)g(v, v)− g(u, v)2 =

∣∣∣∣g(u, u) g(u, v)
g(u, v) g(v, v)

∣∣∣∣
equals the square of the volume of the parallelpiped determined by u, v. In particu-
lar by passage to (u′, v′) = (u, v) ·A this expression gets multiplied by (detA)2. �

Remark. If u, v ∈ p is an orthonormal basis then K(p) = R(u, v, u, v) since
the denominator is 1.

Information 2.10. (without proof) Using geodesics to transport the disc
D(r, p) cetred at 0 ∈ p and of radius r to M . We obtain a two-dimensional sub-
manifold V (r, p) = exp(D(r, p)) ⊆M . It holds

K(p) = 12 lim
r→0

πr2 − volV (r, p)

πr4

The normalization is chosen so that for the unit sphere K(p) = 1.

Definition 2.11. We say that a Riemannian space (M, g) has constant curva-
ture if its sectional curvature is the same at all points and in all directions.

Theorem 2.12 (Schur). Let (M, g) be a connected Riemannian space of di-
mension at least 3. If K(p) depends only on the point x then M has a constant
curvature.
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Proof. Later. �

Remark (The Cartan’s viewpoint). The curvature

Ω ∈ Ω2
hor(P, gl(m)) ∼= Ω2(M,End(TM))

corresponds to an equivariant map

P → hom(Λ2Rm, gl(m))

with its image in fact lying in the GL(m)-submodule homB(Λ2Rm, o(m)) of tensors
satisfying the Bianchi identities. This submodule happens to decompose into three
irreducible components and thus the curvature decomposes correspondingly. The
components are respectively the scalar curvature, the traceless Ricci and Weyl
curvature.

Theorem 2.13. Let (M, g) be a Riemannian manifold, Q1M the principal
O(m)-bundle of orthonormal frames. Then on Q1M there exists a unique torsion-
free principal connection. It is called the Levi-Civita connection.

Proof. We are searching for ω : T (Q1M) → o(m), it is already determined
on the vertical subbundle V (Q1M). To determine the horizontal distribution we
need to solve

0 = Dθ = dθ + ω · θ
expressing that ω is torsion-free. As Dθ is horizontal independently of θ this condi-
tion is automatically satisfied for vertical vectors. We use θ to make an identification
Hu(Q1M) ∼= Rm. In this way the above equation becomes

Λ2Rm
∼=←−− Λ2Hu(Q1M)

dθ+ω·θ−−−−−−→ Rm

The mapping ω 7→ dθ + ω · θ is affine with the associated linear map ω 7→ ω · θ.
We will now show that it is surjective. Then there exists a unique ω for which
ω · θ = −dθ verifying the theorem. At each u ∈ Q1M the map ωu 7→ ωu · θu
becomes under our identification the map

hom(Rm, o(m)) −→ hom(Λ2Rm,Rm)

α 7−→ (β : v ∧ w 7→ α(v)w − α(w)v)

Since the vector spaces have the same dimension it is sufficient to prove injectivity.
Denoting α(ei)ej =

∑
akijek we have the antisymmetry relation akij = −ajik and the

coordinates of the image β are simply

bkij = β(ei ∧ ej)k = (α(ei)ej)
k − (α(ej)ei)

k = akij − akji
Clearly the kernel consists precisely of those akij symmetric in the lower indices.

Thus akij = akji = −aijk and repeating this cyclic permutation three times

akij = −aijk = +ajki = −akij
In the end aki j = 0 and the map is injective.

The equivariancy of ω follows by uniqueness from

0 = r∗a(dθ + ω · θ) = d(r∗aθ) + r∗aω · r∗aθ = a−1dθ + r∗aω · a−1θ

(where we use equivariancy of θ) and

0 = a−1(dθ + ω · θ) = a−1dθ + Ad(a−1)ω · a−1θ

�
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3. Normal coordinates

Let ∇ be a linear connection on M . A path γ : I → M , where I ⊆ R is an
interval, is called geodesic if the tangent vector field γ̇ along γ is parallel. We will
now express this condition in coordinates using the classical Christoffel symbols

∇∂xi∂xj =
∑

Γkij∂x
k

If γ(t) is given in coordinates by functions xi(t) then γ̇ is given by dxi

dt (t) and the
differential equation describing geodesic paths becomes

d2xk

dt2 +
∑

Γkij
dxi

dt
dxj

dt = 0

We see immediately from the shape of the equation that the geodesic paths are
preserved by affine reparametrizations t = aτ + b, a 6= 0. For X ∈ TxM there exists
a unique geodesic path γ with γ̇(0) = X which we denote by γX .

Theorem 3.1. The rule expx(X) = γX(1) defines on some neighbourhood Ux
of 0 ∈ TxM a smooth map expx : Ux →M which is a local diffeomorphism at 0.

Proof. Let us denote the unit ball in TxM by Bx and observe that by com-
pactness the geodesic paths γX are defined on [−ε, ε] for X ∈ Bx. For X ∈ εBx
they are defined on [−1, 1] by affine reparametrization. Since

(expx)∗0(X) = d
dt

∣∣
t=0

expx(tX) = d
dt

∣∣
t=0

γX(t) = X

the derivative at 0 is (expx)∗0 = id. �

Definition 3.2. This map is called the exponential map of the connection ∇.

Remark.

• expx needs not be defined globally. For Rm with the classical connection
(the Levi-Civita connection of the standard metric) exp0 = idRm and thus
also for any open subset U ⊆ Rm. In this case exp0 is not defined globally.
For compact manifolds expx : TM →M is always defined globally.

• expx needs not be a global diffeomorphism, e.g. for Sm with the standard
connection the whole sphere of radius π centred at 0 ∈ TxSm is mapped
to the opposite point −x.

Definition 3.3. The local coordinate chart determined by expx for a linear
torsion-free connection ∇ on M is called the normal coordinate chart.

Theorem 3.4. In the normal coordinate chart at x it holds Γkij(x) = 0.

Proof. The geodesic going through x = 0 with speed X has a coordinate
expression ait. Then the differential equation for the geodesic becomes

0 = d2xk

dt2 +
∑

Γkij(x)dxi

dt
dxj

dt =
∑

Γkij(ta
i)aiaj

For t = 0 we get
∑

Γkij(0)aiaj = 0 for arbitrary ai. Since Γkij is symmetric in the

lower indices Γkij(0) prescribes a symmetric bilinear form with vanishing associated
quadratic form. Hence it must be zero itself. �

Let us compute the coordinate expression of the curvature tensor

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z
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We first compute

∇∂xi∇∂xj∂xk = ∇∂xi
∑

Γhjk∂x
h =

∑ ∂Γljk
∂xi ∂x

l +
∑

ΓhjkΓlih∂x
l

which in the normal coordinates is simply
∑ ∂Γljk

∂xi ∂x
l. Thus

Rlijk =
∂Γljk
∂xi −

∂Γlik
∂xj

Theorem 3.5 (First Bianchi identity). For any torsion-free connection it holds
Rlijk +Rljki +Rlkij = 0 or equivalently R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0.

Proof. We compute in the normal coordinates where

Rlijk =
∂Γljk
∂xi −

∂Γlik
∂xj

Rljki =
∂Γlki
∂xj −

∂Γlji
∂xk

Rlkij =
∂Γlij
∂xk
− ∂Γlkj

∂xi

Adding up all terms cancel by symmetry. �

We will now explain what is meant by ∇XR. Here R is a tensor of type (1, 3),
i.e. a section of P 1M ×GL(M) hom(⊗3Rm,Rm). Using the evaluation map

ev : hom(⊗3Rm,Rm)⊗ Rm ⊗ Rm ⊗ Rm −→ Rm

the corresponding linear map on the associated bundles is

ev : hom(⊗3TM, TM)⊗ TM ⊗ TM ⊗ TM −→ TM

The covariant derivative commutes with linear maps thus

∇X(R(Y, Z)U) = (∇XR)(Y,Z, U) +R(∇XY,Z)U +R(Y,∇XZ)U +R(Y,Z)∇XU

Theorem 3.6 (Second Bianchi identity). For every torsion-free linear connec-
tion it holds (∇XR)(Y, Z, U) + (∇YR)(Z,X,U) + (∇ZR)(X,Y, U) = 0.

Proof. In the normal coordinates we write the components of ∇R as Rlijk;h.
To compute them we plug

X = ∂xh Y = ∂xi Z = ∂xj U = ∂xk

into our formula for (∇XR)(Y, Z, U). At the origin

∇XY (0) =
∑

Γlhi(0)∂xl = 0

and similarly for the other covariant derivatives. Thus

Rlijk;h(0) = (∇XR)(Y,Z, U)(0) = ∇X(R(Y, Z)U)(0) = ∂
∂xh

(
∂Γljk
∂xi −

∂Γlik
∂xj

)
(0)

Summing with the cyclic permutations we obtain the result. �

Remark. To relate this version of the second Bianchi identity to the more
general one DΩ = 0 we will show that the tensor1

(∇XR)(Y,Z, U) +R(T (X,Y ), Z)U + cyclic permutations in X,Y, Z

1Thinking of ∇R as a section of T ∗M ⊗ Λ2T ∗M ⊗ T ∗M ⊗ TM the summation over cyclic
permutations corresponds to the antisymmetrization in the first three variables.
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corresponds to an equivariant map DΩ(X̃, Ỹ , Z̃) · θŨ . We have

R(Y,Z)U ∼ Ω(Ỹ , Z̃) · θŨ

which when differentiated along X̃ yields

∇X(R(Y,Z)U) ∼ X̃Ω(Ỹ , Z̃) · θŨ + Ω(Ỹ , Z̃) · X̃θŨ

R(∇XY,Z)U ∼ Ω(∇̃XY , Z̃) · θŨ

R(Y,∇XZ)U ∼ Ω(Ỹ , ∇̃XZ) · θŨ
R(Y,Z)∇XU ∼ Ω(Ỹ , Z̃) · X̃θŨ

Subtracting one obtains

(∇XR)(Y, Z, U) ∼ X̃Ω(Ỹ , Z̃) · θŨ − Ω(∇̃XY , Z̃) · θŨ − Ω(Ỹ , ∇̃XZ) · θŨ
For torsion one has T (X,Y ) = ∇XY −∇YX − [X,Y ] so that

R(T (X,Y ), Z)U ∼ Ω(∇̃XY , Z̃) · θŨ + Ω(Z̃, ∇̃YX, Z̃) · θŨ − Ω([X̃, Ỹ ]), Z̃) · θŨ
Adding up all the cyclic permutations (with respect to X,Y, Z only) of the last two
correspondences one gets∑

(∇XR)(Y,Z, U) +R(T (X,Y ), Z)U ∼
∑(

X̃Ω(Ỹ , Z̃)− Ω([X̃, Ỹ ]), Z̃)
)
· θŨ

On the right it is easy to recognize the formula for DΩ(X̃, Ỹ , Z̃) · θŨ .

Remark. We have derived a general form of the second Bianchi identity

(∇XR)(Y, Z, U) +R(T (X,Y ), Z)U + cyclic permutations in X,Y, Z = 0

Analogously one can prove for a general connection that

R(X,Y )Z + cyclic = T (T (X,Y ), Z) + (∇XT )(Y,Z) + cyclic

by showing that the right hand side corresponds to D2θ = Ω · θ which we know
that corresponds to the left hand side.

Lemma 3.7. Let V be a finite dimensional vector space and R0, R1 : ⊗4V → R
to linear maps satisfying

(a) Ri(x⊗ y ⊗ z ⊗ u) = −Ri(y ⊗ x⊗ z ⊗ u),
(b) Ri(x⊗ y ⊗ z ⊗ u) = −Ri(x⊗ y ⊗ u⊗ z),
(c) Ri(x⊗ y ⊗ z ⊗ u) +Ri(y ⊗ z ⊗ x⊗ u) +Ri(z ⊗ x⊗ y ⊗ u) = 0.

If R0(x⊗ y ⊗ x⊗ y) = R1(x⊗ y ⊗ x⊗ y) then R0 = R1.

Proof. We set R = R1−R0. Multiplying out 0 = R(x⊗ (y+u)⊗ z⊗ (y+u))
we obtain

0 = R(x⊗ y ⊗ x⊗ y) +R(x⊗ u⊗ x⊗ u) +R(x⊗ y ⊗ x⊗ u) +R(x⊗ u⊗ x⊗ y)

where the first two terms are zero hence so must be the sum of the last two.
According to Theorem 2.4 this sum equals 2R(x⊗ y ⊗ x⊗ u). Thus

R((x+ tz)⊗ y ⊗ (x+ tz)⊗ u) = 0

and taking derivative we obtain that
d
dt

∣∣
t=0

R((x+ tz)⊗ y ⊗ (x+ tz)⊗ u) = R(x⊗ y ⊗ z ⊗ u) +R(z ⊗ y ⊗ x⊗ u) = 0

Thus R is fully anti-symmetric in the first three indices and thus

R(x⊗ y ⊗ z ⊗ u) = R(y ⊗ z ⊗ x⊗ u) = R(z ⊗ x⊗ y ⊗ u)
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We can now rewrite (c) as 3R(x⊗ y ⊗ z ⊗ u) = 0 and R = 0, i.e. R0 = R1. �

Theorem 3.8 (Schur). Let (M, g) be a connected Riemannian space of dimen-
sion at least 3 such that K(p) depends only on the point x for which p ⊆ TxM .
Then M has constant curvature.

Proof. The tensor field R1(X,Y, Z, U) = g(X,Z)g(Y, U) − g(Y,Z)g(X,U)
satisfies (a), (b) and (c). At each point x ∈M it holds

K(x) =
R(X,Y,X, Y )

R1(X,Y,X, Y )

where we denote by K(x) the common value of K(p) for all p ⊆ TxM . By the
previous lemma R = K(x)R1 since they agree on tensors of type X ⊗ Y ⊗X ⊗ Y .
We want to show that K(x) is a constant function.

To determine in what sense is R1 constant we get back to the curvature tensor
of type (1, 3).

R1(X,Y )Z = g(Y,Z)X − g(X,Z)Y ∼ 〈θỸ , θZ̃〉θX̃ − 〈θX̃, θZ̃〉θỸ

This is summarized in the diagram

P 1M
θX̃⊗θỸ⊗θZ̃

// Rm ⊗ Rm ⊗ Rm

��

x⊗ y ⊗ z_

��

Rm 〈y, z〉x− 〈x, z〉y

showing that the map form of R1 is the constant map

P 1M → hom(⊗3Rm,Rm)

sending everything to the above x⊗y⊗z 7→ 〈y, z〉x−〈x, z〉y. In particular∇XR1 = 0
and thus

∇XR = ∇X(K ·R1) = XK ·R1 +K∇XR1 = XK ·R1

Now we use the second Bianchi identity

(∇XR)(Y, Z, U) + (∇YR)(Z,X,U) + (∇ZR)(X,Y, U) = 0

which in our case takes form

XK · (g(Z,U)Y − g(Y,U)Z) + Y K · (g(X,U)Z − g(Z,U)X)

+ZK · (g(Y,U)X − g(X,U)Y ) = 0

Take an orthonormal system X,Y, Z = U and substitute to obtain

XK · Y − Y K ·X = 0

Since X and Y are linearly independent XK = 0 = Y K. As they were also
arbitrary the derivative of K is zero and K is locally constant. By connectedness
it is globally constant. �

Theorem 3.9. For an arbitrary Riemannian space with constant curvature K

R(X,Y )Z = K(g(Y,Z)X − g(X,Z)Y )

Proof. See the proof of the last theorem. �
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4. The second fundamental form of a hypersurface

Theorem 4.1. Let (N, g) be a Riemannian manifold, M ⊆ N its submanifold,
∇N and ∇M the Levi-Civita connections on N and M . Then for all X ∈ TxM and
Y ∈ XM and any extension Ȳ ∈ XN of Y the following holds

∇MX Y ≡ ∇NX Ȳ mod νx

where νx is the orthogonal complement of TxM in TxN . In other words ∇MX Y is
the orthogonal projection of ∇NX Ȳ onto TxM .

Proof. Let us define ∇ by the formula from the statement, i.e. ∇XY is the
orthogonal projection of ∇NX Ȳ onto TxM . We will show that ∇ is metric and
torsion-free2. This will imply ∇M = ∇ by uniqueness.

∇X(g(Y, Z)) = X(g(Y,Z)) = X(g(Ȳ , Z̄))

and the other terms of (∇Xg)(Y,Z) are

−g(∇XY,Z) = −g(∇NX Ȳ , Z̄)

since the difference of ∇XY and ∇NXȲ is orthogonal to Z̄. Similarly

−g(Y,∇XZ) = −g(Y,∇NX Z̄)

and adding these three equalities we obtain

(∇Xg)(Y, Z) = (∇NXg)(Ȳ , Z̄) = 0

so that ∇ is metric.
Projecting the equality ∇N

X̄
Ȳ −∇N

Ȳ
X̄ = [X̄, Ȳ ] onto TxM we obtain

∇XY −∇YX = [X,Y ]

since [X̄, Ȳ ] is already tangent to M : in effect X is ι-related to X̄ (for ι : M ↪→ N
the inclusion), analogously for Y and thus the same holds for their bracket. �

The normal projection of ∇NX Ȳ only depends on the value of X and Y at x.
Before we start with the verification let us denote the normal projection by π and
B(X,Y ) = π∇NX Ȳ . Then we compute

B(X, fY ) = π∇NX(f̄ Ȳ ) = π(XF̄ · Ȳ︸ ︷︷ ︸
tangent

+f̄ · ∇NX Ȳ ) = f(x) · π(∇NX Ȳ ) = f(x)B(X,Y )

Thus B is tensorial. Moreover it is symmetric as

B(X,Y )−B(Y,X) = π([X̄, Ȳ ]) = π[X,Y ] = 0

so that B : S2TM → νM with the target being the normal bundle of M .

Definition 4.2. The tensor B is called the second fundamental form of the
submanifold M ⊆ N .

Let us consider a special case M ⊆ Em+1, a hypersurface in a Euclidean space
with its standard metric and orientation. An orientation of a manifold M is a
continuous choice of an orientation of TxM for all x ∈M . The normal bundle ν is
one-dimensional and the orientation of M determines an orientation of ν by declar-
ing u ∈ νx positive iff (u, e1, . . . , em) is positive in Em+1 with (e1, . . . , em) positive

2Verifying that it is a linear connection is easy.
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in TxM . The unique unit positive vector nx then provides a global trivialization of
ν

M × R −→ ν

(x, t) 7−→ t · nx
Let us denote by D the covariant derivative on Em+1 and ∇ the covariant derivative
on M . Then

B(X,X)x = 〈DXX,nx〉 · nx
where X ∈ TxM . We represent X by a path γ : R→M with γ̇(0) = X and extend
X to a vector field in such a way that X(γ(t)) = γ̇(t). Then

DXX = d
dt

∣∣
t=0

X(γ(t)) = d
dt

∣∣
t=0

γ̇(t) = γ̈(0)

and consequently B(X,X)x = 〈γ̈(0), nx〉 · nx.

Theorem 4.3. The normal acceleration γ̈(0), nx〉·nx depends only on γ̇(0) = X
and equals B(X,X). �

Definition 4.4. In the case of an oriented hypersurface M in Em+1 by the
second fundamental form we understand the map

h : S2TM → R h(X,Y ) = 〈B(X,Y ), nx〉

or in other words B(X,Y ) = h(X,Y )nx.

In a local coordinate chart f(u1, . . . , um) : Rm → M the basis of TxM is

formed by fi = ∂f
∂ui

. We denote fij = ∂2f
∂ui∂uj

. A path γ(t) on M ha a coordinate

expression ui = ui(t), we obtain γ̇(t) ∈ Tγ(t) the velocity, γ̈ = d2γ
dt2 the acceleration

and 〈d
2γ

dt2 , nx〉 the normal acceleration. Since γ(t) = f(u(t)) we may write

dγ
dt =

∑
fi(u(t))dui

dt

and thus

γ̈(t) =
∑

(fij

(
u(t)) · dui

dt
duj
dt + fi(u(t))d2ui

dt2︸ ︷︷ ︸
tangent to M

)
so that

〈γ̈, nx〉 =
∑
〈fij(u(t)), nx〉︸ ︷︷ ︸

hij

·duidt
duj
dt

Remark. The first fundamental form is gij = 〈fi, fj〉 or more geometrically
the scalar product g on M .

Let X,Y be vector fields on M ⊆ Em+1 and X̄, Ȳ their extensions to vector
fields on Em+1. Then DX̄ Ȳ = ∇XY + h(X,Y ) · n where n is the (choice of a) unit
normal vector field on M . The curvature of Em+1 is zero while the curvature for
the hypersurface M is

g(R(X,Y )Z,U) = g(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,U).

Theorem 4.5 (Gauss formula). For a hypersurface M ⊆ Em+1 it holds

g(R(X,Y )Z,U) = h(Y,Z)h(X,U)− h(X,Z)h(Y, U)
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Proof. By the metricity of the connection

g(∇X∇Y Z,U) = Xg(∇Y Z,U)− g(∇Y Z,∇XU)

= X̄〈DȲ Z̄, Ū〉 − 〈DȲ Z̄,DX̄ Ū〉+ h(Y, Z)h(X,U)

and similarly
g(∇[X,Y ]Z,U) = 〈D

[X,Y ]
Z̄, Ū〉 = 〈D[X̄,Ȳ ]Z̄, Ū〉.

Therefore g(R(X,Y )Z,U) equals

〈R(X̄, Ȳ )Z̄, Ū〉+ h(Y,Z)h(X,U)− h(X,Z)h(Y,U)

with the first term zero since the curvature of Em+1 vanishes. �

The sectional curvature in the direction of a plane p ⊆ TxM spanned by v1 and
v2 is defined by

K(p) =
−g(R(v1, v2)v1, v2)

g(v1, v1)g(v2, v2)− g(v1, v2)2

Consider now a surface M ⊆ E3 with a local parametrization f(u1, u2) : R2 → M
and compute the sectional curvature K(x) = K(TxM) by substituting ∂

∂u1
, ∂
∂u2

into
the Gauss formula

K(x) =
h( ∂

∂u1
, ∂
∂u1

)h( ∂
∂u2

, ∂
∂u2

)− h( ∂
∂u1

, ∂
∂u2

)2

g( ∂
∂u1

, ∂
∂u1

)g( ∂
∂u2

, ∂
∂u2

)− g( ∂
∂u1

, ∂
∂u2

)2
=
h11h22 − h2

12

g11g22 − g2
12

=
deth

det g

This is the classical Gauss curvature from the differential geometry of curves and
surfaces.

Corollary 4.6 (Theorema Egregium). The Gauss curvature belongs to the
inner geometry of a surface, i.e. it does not depend on the isometric embedding
M ↪→ E3.

Remark. The Gauss curvature is a product of the curvatures in the principal
directions - the eigenvectors of h.

5. The geodesic curves of a Riemannian space

Definition 5.1. Let f : N → M be a smooth map. A vector field along f is
a smooth map F for which the diagram

TM

��

N

F

==

f
// M

commutes. In other words it is a section of the pullback bundle f∗TM → N .

For a linear connection ∇ on M the induced connection on f∗TM will be
also denoted by ∇. Then ∇F : TN → f∗TM and for a vector field X ∈ XN ,
∇XF : N → f∗TM , i.e. ∇XF : N → TM is again a vector field along f .

TN
F∗ //

∇F

))

TTM
v // V TM

��

∼= TM ×M TM

pr2
ww

N

X

OO

∇XF
// TM
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Definition 5.2. Let γ : R → M be a path and v : R → TM a vector field
along γ. It is said to be transported parallelly along γ if ∇v = 0 or equivalently

∇γ̇v := ∇ d
dt

v = 0

Definition 5.3. A path γ(t) is geodesic if γ̇(t) is parallel along γ.

Remark (on Cartan’s point of view). Consider the principal bundle P 1M →
M of frames on M . There are two forms on P 1M , the connection form ω and the
canonical form θ. Combined together they provide

(ω, θ) : TP 1M → ga(m) = Rm o gl(m)

a trivialization of the tangent bundle TP 1M . Here ga(m) is the Lie algebra of
matrices of the form (

0 0
v A

)
,

i.e. the Lie algebra of the Lie group GA(m) of all affine isomorphisms of Rm. This
is an example of a Cartan connection of type (ga(m), gl(m)). Taking v ∈ Rm and
thinking of it as the matrix ( 0 0

v 0 ) in ga(m) we obtain a vector field (ω, θ)−1(v) on
P 1M , horizontal by definition. Let γ̃(t) be its integral curve and γ(t) = π ◦ γ̃(t).
Then d

dt γ̃ is a horizontal vector field along γ and hence is transported parallelly.

We will now show that γ is a geodesic. By definition θ( ˙̃γ) = v, the coordinates

of the projection π∗ ˙̃γ(t) = γ̇(t) in the basis γ̃(t) = (ui(t)). Since ui(t) are parallel
along γ(t) so is their constant linear combination γ̇(t) and thus ∇γ̇ γ̇ = 0.

Now we draw some consequences of the geodesicity of γ. Firstly

d
dt |γ̇(t)|2 = d

dtg(γ̇(t), γ̇(t)) = 2g(∇γ̇ γ̇(t), γ̇(t)) = 0

implying that |γ̇(t)| is constant. By a reparametrization we may assume that
|γ̇(t)| = 1. In this case we say that γ is parametrized by the arc length and use s
for the parameter instead of t.

Let now C be a curve, i.e. a 1-dimensional submanifold. Locally we parametrize
C by the arc length as γ : R→ C. The geodesic curvature of C is defined as

Kg(C) = |∇γ̇ γ̇|.

Definition 5.4. A curve C is called a geodesic if its parametrization by the
arc length is a geodesic curve, i.e. Kg(C) = 0.

Remark (the Frenet’s formulas). For a planar curve we define e1 = γ̇(s) the
tangent unit vector field along C and e2 (a choice of) the unit normal vector field.
Then ∇γ̇ γ̇ = ±Kg · e2 since

g(∇γ̇ γ̇, γ̇) = d
dsg(γ̇, γ̇) = d

ds1 = 0

and thus ∇γ̇ γ̇ is a vector field perpendicular to γ̇ and of length Kg.

For a connected Riemannian manifold (M, g) we define

d(x, y) = inf{`(γ) | γ : [0, 1]→M,γ(0) = x, γ(1) = y}

where `(γ) =
∫ b
a
|γ̇(t)| dt is the length of a (piecewise) smooth curve γ. Easily

d(x, y) ≥ 0 and d(x, z) ≤ d(x, y) + d(y, z) (when considering smooth curves only
one needs to use smoothing of the concatenation).
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Let us choose x ∈ M and using the scalar product gx on TxM we denote by
N(x, r) the open ball centred at 0x of radius r. For small r the exponential map
expx is defined on N(x, r) and is a diffeomorphism onto U(x, r) ⊆M .

Theorem 5.5. For any r > 0 for which expx : N(x, r) → U(x, r) is a diffeo-
morphism the following holds

(a) Every point y ∈ U(x, r) may be joined with x by a unique geodesic inside
U(x, r).

(b) The length of the geodesic from (a) is exactly d(x, y).
(c) U(x, r) is the set of all y ∈M for which d(x, y) < r.

Remark. It follows that d(x, y) = 0 iff x = y and d is a metric on M , U(x, r)
being the ball in this metric.

Proof. Firstly (a) follows from the fact that geodesics emanating from x are
exactly the images under expx of the rays from 0x. For (b) we will need the following
lemma in which we denote by g0 the Riemannian metric on TxM given by the scalar
product gx at each v ∈ TxM .

Lemma 5.6 (Gauss lemma). Let v ∈ TxM lie in the domain of expx. Then for
arbitrary w ∈ TxM

g0((v, v), (v, w)) = g(expx∗(v, v), expx∗(v, w))

i.e. expx∗ preserves the scalar product whenever one of the vectors is radial.

We will prove the lemma later. Let us denote by pr : TTxM → TTxM the
radial projection,

pr(v, w) =

(
v,
〈v, w〉
〈v, v〉

· v
)
.

Let γ : [0, 1]→ N(x, r) be a path and δ = expx ·γ its image in M . The length is

`(δ) =

∫ 1

0

|δ̇| dt

Decomposing γ̇(t) into the radial part and the complement the orthogonality is
preserved by expx∗ by Gauss lemma. In particular

|δ̇(t)|2 = | expx∗ γ̇(t)|2 = | expx∗ pr γ̇(t)|2 + | expx∗(γ̇(t)− pr γ̇(t))|2

≥ | expx∗ pr γ̇(t)|2 = |pr γ̇(t)|2

with equality only for γ̇(t) radial. Therefore

`(δ) ≥
∫ 1

0

|pr γ̇(t)| dt ≥
∣∣∣∣∫ 1

0

|pr γ̇(t)|or dt

∣∣∣∣
where we write |pr γ̇(t)|or for the oriented length (the sign being that of w/v)

|(v, w)|or = |pr(v, w)|or = dn(v, w)

where n : N(x, r)− {0x} → R+ is the norm | · |. Thus

`(δ) ≥
∣∣∣∣∫ 1

0

dn(γ̇(t)) dt

∣∣∣∣ = |n(γ(1))− n(γ(0))| = |γ(1)|

The equality occurs iff γ is radial and positively oriented hence a reparametrization
of a linear path in N(x, r). The path δ is then a reparametrization of a geodesic
taking care of paths staying inside U(x, r). But if δ left U(x, r) then its beginning
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would be a path from x to a point z of the same geodesic distance from x as that of
y. The length of this part of δ would then be at least this geodesic distance proving
(b). The very same argument proves (c). �

Definition 5.7. A space with a linear connection, i.e. a manifold M together-
with a linear connection on TM , is called complete if every geodesic path γ : I →M
extends to the whole R.

Remark. Equivalently the vector fields (ω, θ)−1(v) are complete.

Theorem 5.8. If (M, g) is complete as a metric space then it is complete with
respect to the Levi-Civita connection.

Proof. Let γ : (a, b) → M be a geodesic path parametrized by the arc
length and let bn be a sequence in (a, b) converging to b. By the previous theorem
d(γ(bn), γ(bm)) ≤ |bn− bm| and thus γ(bn) is Cauchy. Let x ∈M be its limit point.
In a neighbourhood of x every geodesic parametrized by the arc length is defined
on an interval of a uniform radius by compactness. Thus γ can be prolonged. �

We will later prove the reverse implication.
Let M be an oriented 2-dimensional Riemannian manifold. The sectional cur-

vature is a function K : M → R, K(x) = K(TxM). Further there is a volume
2-form volg = e∗1 ∧ e∗2 where e∗1, e

∗
2 is an oriented orthonormal basis of T ∗M .

Definition 5.9. The 2-form κ = K ·volg is called the curvature 2-form on M .

Consider on M a oneparameter family of curves γ : I × J → U ⊆M for which

• γ is a diffeomorphism I × J
∼=−→ U ,

• for each s ∈ J the curve γ(−, s) is parametrized by the arc length,
| ∂∂tγ(−, s)| = 1.

Let us denote γ̇(t, s) = ∂
∂tγ(t, s), a vector field on U . Then g(∇γ̇ γ̇, γ̇) = 0. We

denote by ν the unit vector field orthogonal to γ̇, namely that for which (γ̇, ν) is a
positive basis. On U define a 1-form ω = g(∇γ̇, ν), i.e. ω(X) = g(∇X γ̇, ν).

Lemma 5.10. dω = −κ.

Proof. It is enough to verify on the basis, dω(γ̇, ν) = −κ(γ̇, ν). To determine
the right hand side volg(γ̇, ν) = 1 and

K = R(γ̇, ν, γ̇, ν) = −g(R(γ̇, ν)γ̇, ν).

Putting together −κ(γ̇, ν) = g(R(γ̇, ν)γ̇, ν) while dω(γ̇, ν) is

γ̇ω(ν)− νω(γ̇)− ω[γ̇, ν]

= ∇γ̇g(∇ν γ̇, ν)−∇νg(∇γ̇ γ̇, ν)− g(∇[γ̇,ν]γ̇, ν)

= g(∇γ̇∇ν γ̇, ν)− g(∇ν∇γ̇ γ̇, ν)− g(∇[γ̇,ν]γ̇, ν) + g(∇ν γ̇,∇γ̇ν)− g(∇γ̇ γ̇,∇νν)

= g(R(γ̇, ν)γ̇, ν) + g(∇ν γ̇,∇γ̇ν)− g(∇γ̇ γ̇,∇νν)

and the last two terms are zero by the following argument. Since g(γ̇, γ̇) = 1 the
derivative ∇X γ̇ is orthogonal to γ̇ and thus ∇X γ̇ ‖ ν. Similarly ∇Y ν ‖ γ̇ and so

g(∇X γ̇,∇Y ν) = 0

for arbitrary vectors X,Y . �
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Let us denote by B(r) the open disc in R2 of radius r and by S(r) the circle of
radius r both centred at the origin.

Definition 5.11. We say that a curve C is simple closed if there exists a
diffeomorphism ϕ : B(1 + ε) → U ⊆ M onto a neighbourhood U of C such that
ϕ(S(1)) = C. The set ϕ(B(1)) is called the interior of the curve C.

Notation. For a curve C we have the curve integral
∫
C
f ds and for a 2-

dimensional region D we have
∫∫
D
f dσ both defined by multiplying a function f

by the respective volume form associated to the induced metric.

The oriented geodesic curvature is Kg = g(∇γ̇ γ̇, ν). This depends on the choice
on ν which we make in such a way that (γ̇, ν) is positively oriented.

Theorem 5.12 (Gauss-Bonet). Let C be a simple closed curve with the oriented
geodesic curvature Kg and let D be its interior. Then∫

C

Kg ds = 2π −
∫∫

D

K dσ

Proof. Let us choose ϕ : B(1 + δ)
∼=−→ U with ϕ(S(1)) = C and ϕ(B(1)) = D.

We may assume3 that in a small neighbourhood of the origin ϕ = expϕ(0). Around
the origin we consider a small circle Cε and on the annulus Dε we construct the
1-form ω corresponding to the (local) parametrization of C by the arc length

Dε = S1 × [ε, 1]→ U

By the Stokes theorem∫
C

ω −
∫
Cε

ω =

∫
Dε

dω = −
∫
Dε

κ = −
∫∫

Dε

K dσ

and also ∫
C

ω =

∫
S1

ω(γ̇) ds =

∫
S1

g(∇γ̇ γ̇, ν) ds =

∫
C

Kg ds

Clearly limε→0

∫∫
Dε
K dσ =

∫∫
D
K dσ and thus it remains to show that

lim
ε→0

∫
Cε

Kg(Cε) ds = 2π

The rough idea is that in the Euclidean plane Kg(Cε) = 1/ε and thus∫
Cε

Kg(Cε) ds =

∫ 2π·ε

0

1/ε dt = 2π.

As ε → 0 the geometry approaches the Euclidean geometry and thus the limit
formula holds. Now for a more precise proof.

First we need a lemma about describing the geodesic curvature when the
parametrization is not by the arc length.

Lemma 5.13. Let γ : S1 →M be an embedding. Then

Kg ◦ γ = g(∇γ̇ γ̇, ν)/|γ̇|2

3This is the classical disc isotopy theorem which we probably want to avoid.
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Proof. By definition

Kg ◦ γ = g(∇γ̇/|γ̇|(γ̇/|γ̇|), ν) = g(∇γ̇(γ̇/|γ̇|), ν)/|γ̇|
= g(1/|γ̇| · ∇γ̇ γ̇ + d

dt (1/|γ̇|) · γ̇, ν)/|γ̇|
and the proof is finished by observing that g(γ̇, ν) = 0. �

Then we can compute
∫
Cε
Kg(Cε) ds in the coordinate chart given by ϕ and

using the parametrization γε : S1 → R2, γ(z) = ε · z∫
Cε

Kg(Cε) ds =

∫
S1

g(∇γ̇ε γ̇ε, ν)/|γ̇ε|2 · |γ̇ε| ds

=

∫
S1

gij · γ̈iε/|γ̇ε| · νj ds+

∫
S1

gijΓ
i
klγ̇

k
ε γ̇

l
εν
j/|γ̇ε| ds

Easily the second term tends to zero while the first tends to the situation where4

gij = δij is constant and thus the integrand tends to 1, the limit being 2π. �

We will now interpret geometrically
∫
C
Kg ds. Let γ : [a, b] → M be a path

parametrized by the arc length and (u(t), v(t)) be a positive orthonormal basis at
γ(t) obtained by transporting u(a) and v(a) parallelly along γ(t). Express γ̇(t) in
this basis as

γ̇(t) = cosϕ(t) · u+ sinϕ(t) · v
Then ν(t) = − sinϕ(t) · u+ cosϕ(t) · v and we may compute

∇γ̇ γ̇ = ∇γ̇(cosϕ(t) · u) +∇γ̇(sinϕ(t) · v)

= d
dt (cosϕ(t)) · u+ cosϕ(t) · ∇γ̇u︸︷︷︸

0

+ d
dt (sinϕ(t)) · v + sinϕ(t) · ∇γ̇v︸︷︷︸

0

= ϕ̇(t) · (− sinϕ(t) · u+ cosϕ(t) · v) = ϕ̇(t) · ν
Therefore Kg = g(∇γ̇ γ̇, ν) = ϕ̇ and finally∫

C

Kg ds =

∫
C

γ̇ dt = ϕ(1)− ϕ(0) = ∠(γ̇(a), γ̇(b))

measured by transporting parallelly to any point along γ.
Let us consider now a curved triangle. We can use Gauss-Bonet formula after

smoothing the corners to obtain∫
C1

Kg ds+(π−α3)+

∫
C2

Kg ds+(π−α1)+

∫
C3

Kg ds+(π−α2) = 2π−
∫∫

D

K dσ

the terms π − αi being exactly the angle differences (in limit). We obtain

Theorem 5.14.
∫
∂∆

Kg ds = (α1 + α2 + α3 − π)−
∫∫

∆
K dσ.

When all the sides Ci of the triangle are geodesic then Kg = 0 and we obtain

Theorem 5.15. The sum of the internal angles in a geodesic triangle is

α1 + α2 + α3 = π +

∫∫
∆

K dσ.

When the curvature is constant the defect (α1 +α2 +α3−π) is proportional to
the area of the triangle. For the Euclidean geometry K = 0 and α1 + α2 + α3 = π.
For K = 1 we have triangles with defect up to 4π.

4Thus it is convenient to assume that the derivative ϕ∗0 at zero is an isometry.
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Lemma 5.16. Let γ : [a, b] → M be a piecewise smooth path such that `γ =
d(γ(a), γ(b)). Then γ is a reparametrization of a geodesic path.

Proof. We have proved this when γ(a) is sufficiently close to γ(b). For an
arbitrary γ the statement holds locally. But geodesics are described locally thus γ
must be itself a reparametrization of a geodesic. �

Theorem 5.17 (Hopf-Rinow). Let (M, g) be a connected geodesically complete
Riemannian space. Then arbitrary x, y ∈ M can be joined by a geodesic path γ
satisfying `(γ) = d(x, y). Such paths are called minimal geodesics.

Proof. Let us define the “shell” Sh(x, r) = expx(S(x, r)) where S(x, r) is a
sphere in TxM cetred at 0x and of radius r. We choose r small enough so that expx
is a diffeomorphism on the closed ball of radius r. Since Sh(x, r) is compact there
exists p ∈ Sh(x, r) such that d(p, y) is minimal. Then p = expx(r · v) with |v| = 1.
We will show that y = expx(d · v) where d = d(x, y). This will prove the theorem.
But first observe that d(p, y) equals exactly d(x, y) − r for it cannot be smaller as
that would give

d(x, y) ≤ d(x, p) + d(p, y) < r + (d(x, y)− r)

and it cannot be bigger either as that would contradict the minimality of d(x, p).
Now we will prove that the set

T = {t0 ∈ [0, d] | ∀0 ≤ t ≤ t0 : d(expx(t · v), y) = d− t}

equals [0, d]. Clearly T is closed in [0, d] and contains 0. It remains to show that
it is open by connectedness. Therefore let t0 ∈ T , p0 = expx(t0 · v) and again let
p1 be the closest to y of the points from Sh(p0, r0). We have shown in the first
paragraph that d(p1, y) = d(p0, y) − r0 = d − t0 − r0 and thus the concatenation
of the geodesic from x to p0 and that from p0 to p1 is a path having the minimal
length t0 + r0 = `(x, p1). By the previous lemma it must be a geodesic and in
particular p1 = expx((t0 + r0) · v). Since r0 was arbitrary (small) t0 + r0 ∈ T . �

Remark. For a simply connected geodesically complete Riemannian space of
non-positive sectional curvature the minimal geodesic is unique and the exponential
map expx : TxM →M is a diffeomorphism.

Corollary 5.18. A geodesically complete Riemannian space is complete as a
metric space.

Proof. Pick a point x ∈ M and let xn be a Cauchy sequence. The set
d(x, xn) is necessarily bounded by some r and hence xn lie in a compact subspace
expx(B(x, r)) which implies the convergence. �

6. Geodesic variations

Let F be a vector field along f as in

f∗TM
φ
//

��

TM

��

N
f

//

F

::

M
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and write ∇F for the covariant derivative using the induced connection f∗∇. We
will now compute the torsion T (f∗A, f∗B) in terms of the covariant derivative on
f∗TM . In terms of the equivariant maps we have

Dθ(f̃∗A, f̃∗B) = dθ(f̃∗A, f̃∗B) = dθ(φ∗Ã, φ∗B̃) = d(φ∗θ)(Ã, B̃)

= Ã(φ∗θ(B̃))− B̃(φ∗θ(Ã))− φ∗θ[Ã, B̃]

= Ã(θ(φ∗B̃))− B̃(θ(φ∗Ã))− φ∗θ[̃A,B]

= Ã(θ(f̃∗B))− B̃(θ(f̃∗A))− θ( ˜f∗[A,B])

which corresponds back to ∇Af∗B −∇Bf∗A− f∗[A,B]. We conclude that

0 = T (f∗A, f∗B) = ∇Af∗B −∇Bf∗A− f∗[A,B].

Analogously we obtain

R(f∗A, f∗B)F = ∇A∇BF −∇B∇AF −∇[A,B]F

Definition 6.1. Consider a path γ : [a, b] → M and let I ⊆ R be an open
interval containing zero. By a variation of γ we understand a smooth map V :
[a, b]× I →M satisfying V (t, 0) = γ(t).

Definition 6.2. A geodesic variation of a geodesic path γ is a variation V
such that V (−, s) is geodesic for each s ∈ I.

On [a, b] we use parameter t and on I parameter s. On the product [a, b] × I
we have vector fields ∂

∂t ,
∂
∂s . We denote

V∗
∂
∂t = ∂tV V∗

∂
∂s = ∂sV

For a vector field F : [a, b]× I → RM along V we denote

∇ ∂
∂t

F = DtF ∇ ∂
∂s

F = DsF

Our formula for torsion for vactor fields ∂
∂t

∂
∂s can be written as

Dt∂sV −Ds∂tV = 0

since [ ∂∂t ,
∂
∂s ] = 0. For a geodesic variation we compute

D2
t ∂sV = DtDt∂sV = DtDs∂tV = DsDt∂tV +R(∂tV, ∂sV )∂tV

Writing γ̇t = ∂tV we see that Dt∂tV = ∇γ̇t γ̇t = 0 and finally

D2
t ∂sV = R(γ̇t, ∂sV )γ̇t.

Definition 6.3. A vector field X along a geodesic path γ is called a Jacobi
field if ∇2

γ̇X = R(γ̇, X)γ̇.

The condition on a Jacobi field is a second order linear differential equation.
Thus a solution is determined uniquely by X(a) and ∇γ̇X(a). We have shown
above that for every geodesic variation V of γ the vector field ∂sV (t, 0) is a Jacobi
field. In the opposite direction we have.

Theorem 6.4. For every Jacobi field X along γ there exists a geodesic variation
V of γ such that ∂sV (t, 0) = X(t).
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Proof. We assume a = 0 for simplicity. Let β : I → M be any path with
β̇(0) = X(0). Put

γ(s) = Ptβ(γ̇(0) + s · (∇γ̇X)(0), s)

and V (t, s) = expβ(s)(t · γ(s)). Since V is a geodesic variation of γ the derivative

∂sV (t, 0) is a Jacobi field along γ and we will now show that it equals X(t). But
the initial conditions for ∂sV (t, 0) are

∂sV (0, 0) = ∂
∂s

∣∣
s=0

β(s) = X(0)

(Dt∂sV )(0, 0) = (Ds∂tV )(0, 0) = (Dsγ)(0)

= (∇β̇ Ptβ(γ̇(0), s))︸ ︷︷ ︸
0

(0) +∇β̇(s · Ptβ((∇γ̇X)(0), s))(0) = (∇γ̇X)(0)

i.e. the same as that for X and thus the vector fields must also agree. �

Example 6.5. Let γ : [a, b]→M be a geodesic path. Then both

γ(t+ s) and γ((1 + s)t)

are geodesic variations (for each s they are affine reparametrizations of γ). The
corresponding Jacobi fields are

∂sγ(t+ s)|s=0 = γ̇(t)

∂sγ((1 + s)t)|s=0 = t · γ̇(t) = γ̂(t).

Lemma 6.6. For each Jacobi field X along γ it holds

d2

dt2 g(X, γ̇) = 0.

Proof. We compute

d2

dt2 g(X, γ̇) = d
dt (g(∇γ̇X, γ̇) + g(X,∇γ̇ γ̇︸︷︷︸

0

)) = g(∇2
γ̇X, γ̇) + g(∇γ̇X,∇γ̇ γ̇︸︷︷︸

0

)

= g(R(γ̇, X)γ̇, γ̇) = 0

since the curvature tensor is antisymmetric in its last two variables. �

From the lemma it follows that g(X, γ̇) = α+βt. Assuming for simplicity that
|γ̇| = 1 we have g(γ̂, γ̇) = t. Therefore

g(X − αγ̇ − βγ̂, γ̇) = 0

We have proved

Theorem 6.7. Every Jacobi field X along a geodesic γ can be uniquely decom-
posed as

X = αγ̇ + βγ̂ + Y

where Y is a Jacobi field perpendicular to γ̇. �

We are now in the position to prove Gauss lemma asserting that

g(expx∗(v, v), expx∗(v, w)) = g0(v, w)

for all v, w ∈ TxM .
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Proof. Consider the geodesic variation expx(t(v + sw)) and its Jacobi field

X(t) = ∂s expx(t(v + sw))|s=0 = expx∗(tv, tw)

With γ(t) = expx(tv) the last lemma says that

g(X(t), γ̇(t)) = g(expx∗(tv, tw), expx∗(tv, v)) = t · g(expx∗(tv, w), expx∗(tv, v))

should be linear in t. Therefore g(expx∗(tv, w), expx∗(tv, v)) must be constant and

g(expx∗(v, w), expx∗(v, v)) = g((0, w), (0, v)) = g0(w, v)

�

Remark. The above Jacobi field is the only one with X(0) = 0.

Definition 6.8. We say that two points γ(α), γ(β) are conjugate if there exists
a nonzero Jacobi filed X satisfying X(α) = 0 = X(β).

Definition 6.9. For x ∈ M consider expx : Ux → M . A point y ∈ Ux (i.e. a
small vector in TxM) is said to be conjugate to x if the rank of expx∗ at y is less
than dimM .

Theorem 6.10. A point y ∈ Ux is conjugate to x if and only if x = expx 0 and
z = expx y are conjugate points of the geodesic expx(ty), t ∈ [0, 1].

Proof. For the implication “⇒” let w ∈ ker expx∗y. Then the Jacobi field
expx∗(ty, tw) of the geodesic variation expx t(y + sw) has zeroes for t = 0, 1.

For the reverse implication let X be a nonzero Jacobi field along expx ty satis-
fying X(0) = 0 = X(1). There exists a geodesic variation of the form expx(t ·y(s)),
with y(0) = y, generating X. Then

X(t) = ∂
∂s

∣∣
s=0

expx(t · y(s)) = expx∗(ty, tẏ(0))

and 0 = X(1) = expx∗(y, ẏ(0)). Moreover ẏ(0) 6= 0 as that would imply X ≡ 0. �

Theorem 6.11. If −g(R(γ̇, Y )γ̇, Y ) ≤ 0 for any vector field Y along γ then no
points of γ are conjugate. In particular if K(p) ≤ 0 then expx is a local diffeomor-
phism (on its domain).

Proof. We start with a computation

d
dtg(∇γ̇X,X) = g(∇γ̇X,∇γ̇X) + g(∇2

γ̇X,X) = |∇γ̇X|2 + g(R(γ̇, X)γ̇, X) ≥ 0

Integrating from a to b we obtain

g(∇γ̇X(b), X(b))− g(∇γ̇X(a), X(a)) ≥ 0

and the equality can occur only for a parallel vector field. But if X(a) = 0 = X(b)
then both terms are zero and thus necessarily X ≡ 0. �

Theorem 6.12. If M is a connected complete Riemannian space with non-
positive sectional curvature then every expx : TxM →M is a covering. In particular
when M is simply connected then expx is a global diffeomorphism.
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Proof. Let v, w ∈ TxM and consider the geodesic variation expx(t(v + sw))
and its Jacobi field X(t) = expx∗(tv, tw). In particular X(1) = expx∗(v, w). We
will now study the behaviour of |X(t)| for t > 0.

d
dtg(X,X)1/2 =

g(∇γ̇X,X)

|X|

d2

dt2 g(X,X)1/2 =
|∇γ̇X|2 + g(R(γ̇, X)γ̇, X)

|X|
− g(∇γ̇X,X)2

|X|3

=
(|X|2|∇γ̇X|2 − g(∇γ̇X,X)2)− |X|2R(γ̇, X, γ̇,X)

|X|3
≥ 0

In the numerator the first bracket is non-negative by the Cauchy-Schwarz inequality
while the second is non-positive by our assumption on the sectional curvature. For
t ≥ 0 let us denote f(t) = |X(t)| − t|w| and study its Taylor expansion. In local
coordinates we can write

X(t) = expx∗(tv, tw) = t · w(t)

where w is a curve with w(0) = w which we may assume to be non-zero. Thus

|X(t)| = t · |w(t)|
is smooth and hence so is f whose value and first derivative at zero are zero. By
continuity the second derivative on [0,∞) must be non-negative and thus the same
must be true for the first derivative and finally also for the value. For t = 1 this
means | expx∗(v, w)| = |X(1)| ≥ |w|. In other words expx∗ is non-contracting.

We will now show that expx : TxM → M possesses the path-lifting property.
Let γ : [a, b]→M be a path with γ(a) = expx y0. Denote by

T = {t ∈ [a, b] | γ|[a,t] can be lifted to γ̃ with γ̃(a) = y0}
We will show that T = [a, b] by connectedness. Clearly T is nonempty and open
since expx is a local diffeomorphism. Let tn → b0 ≤ b be a sequence with tn ∈ T
and denote by γ̃ : [a, b0)→ TxM a lift with γ̃(a) = y0. It exists by the uniqueness
of the lifts (thanks to the local diffeomorphism property). Then

|γ̃(tn)− γ̃(tm)| ≤ `(γ̃|[tn,tm]) ≤ `(γ|[tn,tm]) < ε

for n,m � 0 since expx is non-contracting and γ̇ is bounded. Thus γ̃(tn) is a
Cauchy sequence and converges to some y. As expx is a local diffeomorphism at y
the lift γ̃ can be prolonged.

It is a simple matter to deduce that a local diffeomorphism expx is a covering
from the path-lifting property. Namely a trivialization is produced from radial rays
in a coordinate chart. �

Remark. If M and N are two simply connected complete Riemannian mani-
folds of the same dimension and the same constant non-positive sectional curvature
then in the diagram

TxM ∼=

isometry
//

∼=expx

��

TyN

∼= expy

��

M ∼=
// N

the dotted arrow is an isometry. The same is true for positive curvature but the
vertical arrows are not isomorphisms. We will try to explain the situation by a
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computation. Let us denote the constant value of the curvature by K > 0. We
know that

R(X,Y )Z = K · (g(Y, Z)X − g(X,Z)Y )

If γ is a geodesic parametrized by the arc length and X is a Jacobi field perpendic-
ular to γ̇ then

∇2
γ̇X = R(γ̇, X)γ̇ = −K ·X

If we put K = ϕ2 then the solution of this equation is

X(t) = sin(ϕt) · Ptγ(w, t)

and we see that X(π/ϕ) = 0 for all w. Thus the whole sphere S(x, π/ϕ) is mapped
to a single point and expx induces a map

D(x, π/ϕ)/S(x, π/ϕ)
expx−−−−→M

which is a diffeomorphism on the interior of D(x, π/ϕ). Its metric properties are the
following: it preserves orthogonality of the radial rays to the spheres and preserves
the metric on the radial rays while on the sphere of radius r it multiplies it by
sin(ϕr). The point is that this behaviour only depends on the curvature K and
thus for two manifolds Sm and M in the diagram

Dm(π/ϕ)/Sm−1(π/ϕ)

∼= isometry

��

expy
// Sm(1/ϕ)

��

D(x, π/ϕ)/S(x, π/ϕ)
expx

// M

the dotted arrow, which is defined on the image of the interior of Dm, preserves
the metric. A similar map can be defined using a different point on the sphere and
together they provide a local isometry from Sm to M . It is a covering by the proof
of the last theorem and thus an isometry.


