
INVESTMENTS IN EDUCATION DEVELOPMENT

Soil ecotoxicology: soil bioassays

Dr. Jakub Hofman hofman@recetox.muni.cz

What is soil?

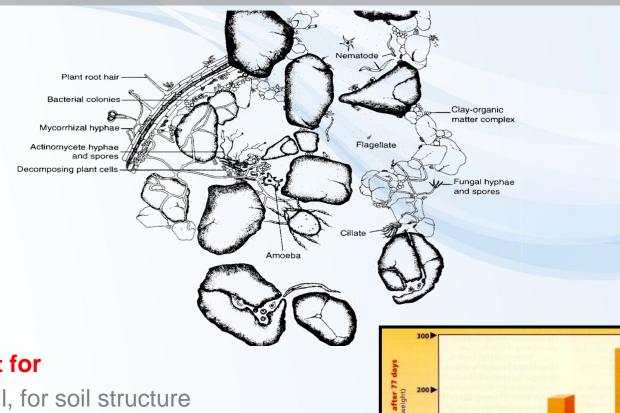
Soil Taxonomy, second edition.

 Soil is a natural body comprised of solids (minerals and organic matter), liquid, and gases that occurs on the land surface, occupies space, and is characterized by one or both of the following: horizons, or layers, that are distinguishable from the initial material as a result of additions, losses, transfers, and transformations of energy and matter or the ability to support rooted plants in a natural environment.

Why soil does matter?

- important part of nature
- non-renewable source
- non-replaceable functions of ter. ecosystems
- base for plant growth
- nutrient storage fertility production
- start and end of food chains
- biogeochemical cycles
- decomposition of organic matter, humification
- filtration, immobilization and degradation of pollutants
- water cycling
- biodiversity treasure

WE MUST PROTECT SOIL QUALITY



soil = biotic + abiotic = complex

bacteria protozoa fungi algae nematoda rotifera annelida arthropodes collembola mollusca

.

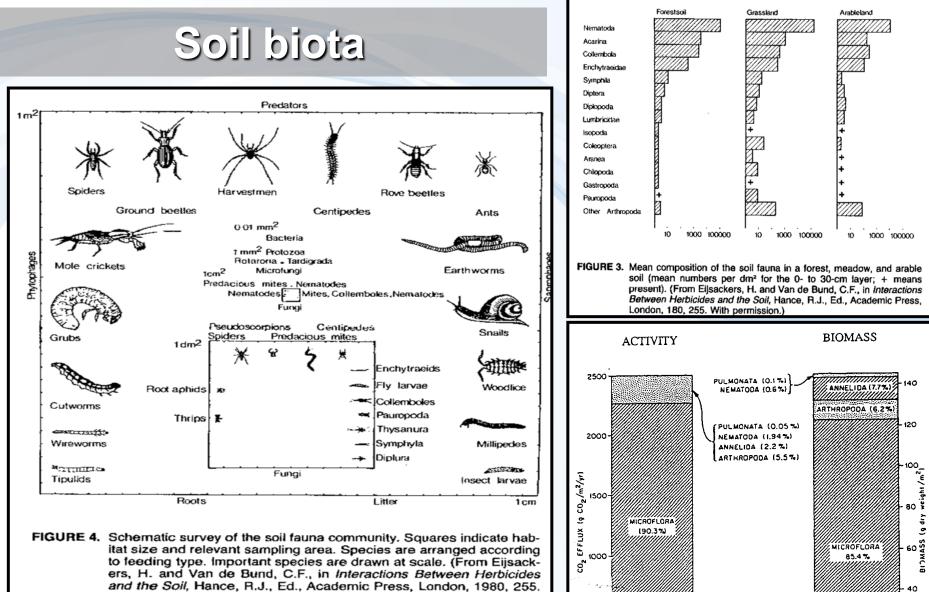
200

100

Sterile soil

Soil with bacteria Soil with

bacteria and


nematodes

Biomass (mg dry w

biota is important for

- formation of soil, for soil structure
- soil fertility
- organic residues decomposition, release nutrients
- element cycles
- air and water regime

500

n

20

With permission.)

Science 11 June 2004: Vol. 304. no. 5677, pp. 1616 - 1618

UNITED STATES erosion Decades of water crosion on tilled fields has degraded soil across the Midwert and Great Plains, although no-till agriculture has recently stermed losses

CENTRAL & EASTERN EUROPE compaction Soviet-era intensive tillage has left 11% of

topsoil acress Central and Eastern Europe too densely packed to allow sufficient water and natrients to reach plant roots.

WESTERN EUROPE sealing

in European cities.

Covering of sails with buildings and roads has put beyond use large sweths of prime soil.

IRAO pollution

During the first Gulf War, 40 million tons of Newelti soit were drenched with oil. Experts fear that soils in Iniq are being damaged by fuel and other chemicals spilled during the current conflict.

KAZAKHSTAN & UZBEKISTAN pollution, desertification Shrinkage of the Aral Sea, due to diversion of water from its tributaries, has exposed a seabed laced with fertilizers and pesticides. The tainted dust is picked up by the select and poisons farmland.

CHINA desertification The expansion of deserts due to farm ing and gracing stokes the country's famous datt storms.

1.6 billion tons of soil per year wash into the Yellow River from Chine's Loess Plateau, which has the highest rates of water erosion.

CHINA erosion

AUSTRALIA

wheat self.

- High phosphorus, nibrogen, and organic retention High organic matter
- Salinity/alkalinity

NOTE. Acid sulfate condition (0.09% of total map area) and steep lands (obsoured by erosion risk) are not shown.

Soil and Trouble

WHEN PEOPLE INTENSIVELY TILL FIELDS and clear-cut forests, they can damage or destroy topsoil that took centuries to accumulate. Just how vulnerable soils are depends on underlying conditions. Mismanaged soils in windswept lands can easily turn into desert, for example, and saline soils can become salt-encrusted wastelands.

This map shows the main barriers to productive farming, along with erosion risk, derived from climatic and soil conditions. Overlaid as cross-hatching are regions reported to a global survey of soil experts published in 1990. The hot spots illustrate examples of the worst soil degradation, from the most comcal forms, such as that caused by pollution from industrial chemicals and war.

An interactive version of this map appears online at www.sciencemag.org/cgi/content/ summary/304/5677/1614.

SOURCES: Adapted from Major Land Researce Constraints may created April 2004 top P. Reich and H. Sowaran of USDAMRCS Soil Samery Distance, World Soil Resources, Washington, D.C., Frank WSR Sail Clevelar Map and ReD Gold Map of the World, 1995. CLASOD data (L.R. Okdenaas et al., 1991) provided by K Sabartan, UFR. Data on compaction in Europe from SOVELIK (SRC (2000)

be highly or very highly degraded according to mon physical type-water erosion-to chemi-

High and very high levels of soil degradation per Global Assessment of Soil

> Degradation (GLASOD) Highly erodable by wind or water Few constraints

PHYSICAL DEGRADATION

CHEMICAL DEGRADATION

AMAZON Slah-and-burn erosion agriculture in the Amazon exposes poor tropical seils thet can sustain crops for only a few years before natrients wish Wily.

Climate Constraints

SUB-SAHARAN AFRICA nutrient depletion Fields rarely loft fallow and the scavenging of

vegetation and dung

have conspired to raine

High shrink/swell potential

Minor root restricting layer

Low water holding capacity

Low structural stability

Impeded drainage

Shellow solls

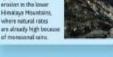
the soil of nutrients.

Physical Constraints

HIMALAYAS erosion

sporred widespread soil

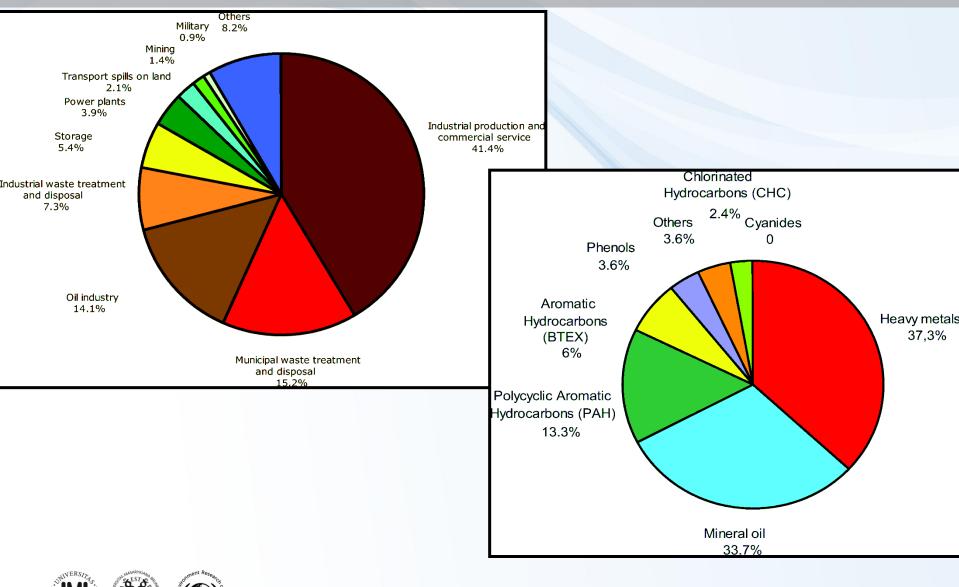
Overgracing and deforestation have


Chemical Constraints

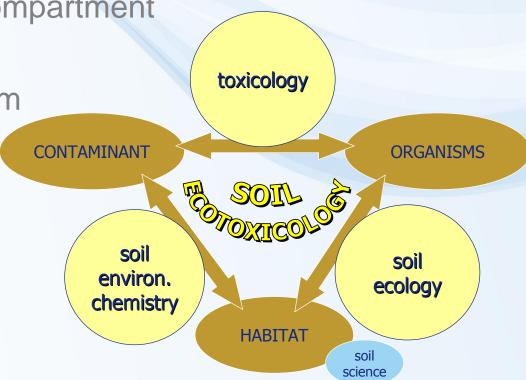
Soils have problems

- EU Thematic Strategy for Soil Protection (COM/2006/231) defines main threats for soils (sealing, erosion, compaction, salinisation, OM loss, contamination ...)
- 3,5 mil. contaminated sites in EU
- 0.5 mil. are seriously contaminated and need remediation
- Costs related to contaminated sites in EU: 2-17 bil. € (Impact assessment (SEC/2006/620))

Soil protection


- we must protect soil quality
 - policy
 - -legislation
 - science and education

- European Commission (2006a): Communication from the commission to the council, the european parliament, the european economic and social committee and the committee of the regions. Thematic strategy for soil protection. COM(2006)231.
- European Commission (2006b): Proposal for a directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending Directive 2004/35/EC. COM (2006) 232.


Contamination of soils

Soil ecotoxicology

FOCUS:

- soil as environmental compartment
- soil organisms
- exposure in solid medium

THE ENVIRONMENT (SOIL), WHERE RELATIONSHIP BETWEEN ORGANISM AND THE CHEMICAL EXISTS, MUST BE STUDIED TOO !!

Role of soil ecotoxicology in soil protection

FOCUS: Investigate relationships between soil organisms and contaminants

ROLE: Scientific basis of soil protection

Activities:

Provide **tools** - **bioassays** for routine praxis:

- Chemical and pesticides testing
- Testing wastes, sludge, contaminated sites
- Soil quality assessment

Research of:

- Fate and bioavailability
- Mixture toxicity
- Biodiversity ...

Soil environment is very different from aquatic

- Very different from aquatic ecotoxicology
- Solid matrices are heterogenous
- Soil contains all three phases SOLID, LIQUID (pore water) and GAS (soil air)
- Solid phase especially influences strongly FATE and BEHAVIOUR of chemicals
- Depending on soil and chemical properties and depending on TIME, chemical is DISTRIBUTED in soil, chemical SPECIATION occurs
- SORPTION is the crucial process and leads to changes of BIOAVAILABILITY – the key factor of soil ecotoxicology
- All this changes final TOXICITY and RISKS
- All this hampers EXTRAPOLATION possibilities

Exposure in soil matrix

FATE and behavior

in soil depends on:

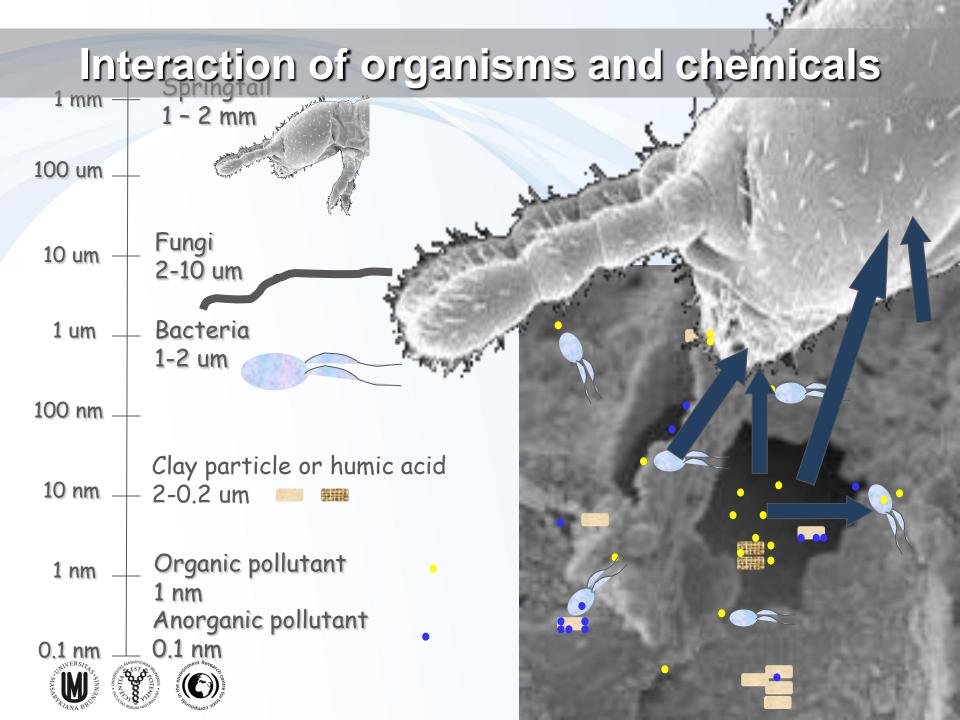
STOAVATUASTUM

Soil properties Chemical properties

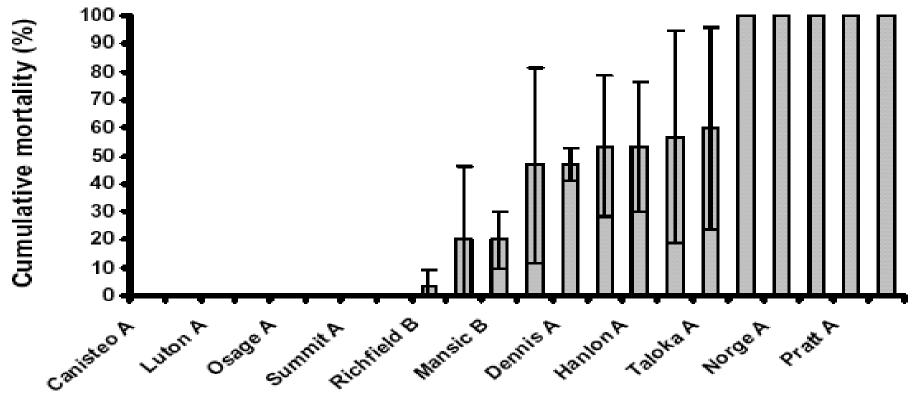
CHEMICAL in soil spatially distributed; chemical speciation

EXPOSURE depends on:

Fate of chemical in soil **Organism properties** (morphology, physiology, ecology ...)


ORGANISM

Chemical in organism Metabolism, elimination, effects



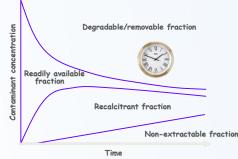
CHEMICAL

entry

Why to bother with bioavailability ?

Soil

Fig. 1. Cumulative mortality (mean of three replicates, ± 95% CI) of Eisenia andrei exposed to 2,000 mg Pb/kg spiked soils for 28 days.



Factors affecting bioavailability

Soil properties

- Soil composition, organic matter, texture, pH, CEC, moisture, temperature, structure - pores
- Chemical properties
 - Chemical structure, Kow, Sw, Koc, pKa, MW, H, pv
- Organisms properties
 - physiology (uptake, metabolism, elimination), morphology, ecology
- Time effects
 - Aging, sequestration
- Other chemicals (např. NAPL) and interactions

O Horizon An organic horizon composed primarily of recognizable organic material in various stages of decomposion.

A Horizon The surface horizon: Composed of various proportions of mineral materials and organic components decomposed beyond recognition.

E Horizon Zone of eluviation: Mineral horizon resulting from intense leaching and charac terized by a gray or grayish brown color.

B Horizon Zone of illuviation: Horizon enriched with minerals, e.g., clay, organic materials, or carbonates, leached from the A or E horizons.

C Horizon Horizon chracterized by unweathered minerals that are the parent material from which the soil was formed.

R Horizon Bedrock, -----

Why to bother with bioavailability ?

For correct risk assessment:

- Soil animals (individuals, communities)
- Organisms eating soil (e.g. children)
- Plants
- Prediction of biodegradation and remediation efficiencies
- Legislative framework
 - Not the total concentrations for limits!
- Extrapolation possibilities:
 - Between different soils
 - From aquatic to soil tests
 - From lab experiments to field situation

How to measure bioavailability ?

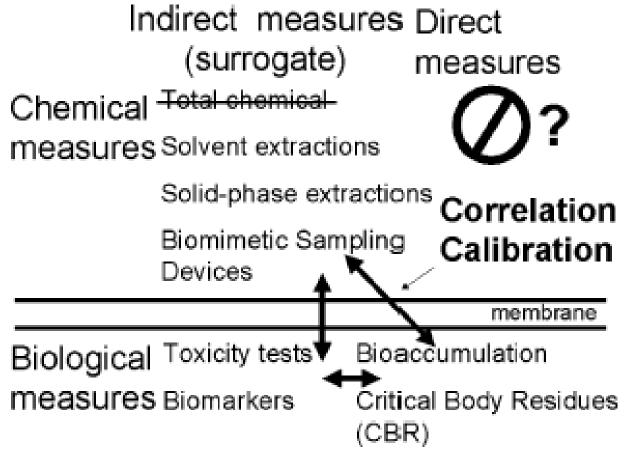
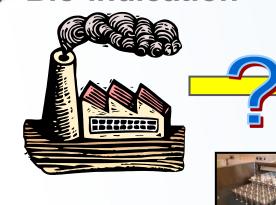
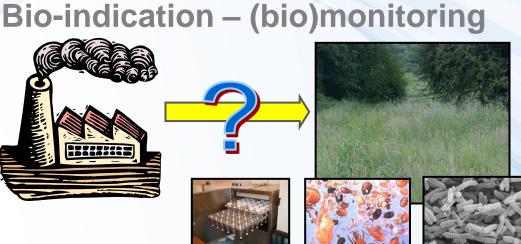
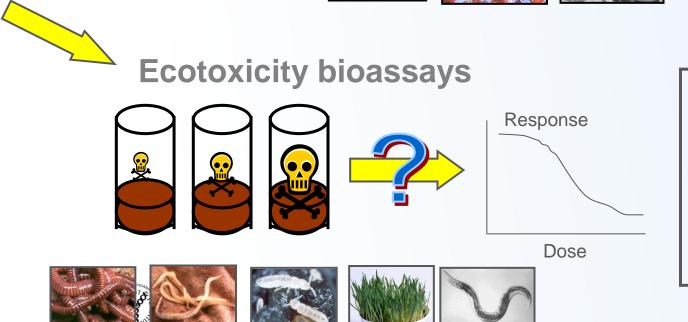




Fig. 3. Methods for measuring bioavailability.


Approaches of soil ecotoxicology

Goal

Define and describe relationship between biota conditions and contamination

Goal

Define safe concentration, describe risks

Microbes

Soil ecosystem	parameter	Microbial indicator
Function	C-cycling	Soil respiration
		Metabolic quotient (qCO2)
		Decomposition of organic matter
		Soil enzyme activity
	N-cycling	N-mineralization
		Nitrification
		Denitrification
		N-fixation
	General activities	Bacterial DNA synthesis
		RNA measurements
		Bacterial protein synthesis
		Community growth physiology
	Root-activity	Mycorrhiza
Biodiversity	General biomass	Microbial biomass: direct methods
		Microbial biomass: indirect methods
		Microbial quotient
		Fungi
		Fungi-bacteria ratio
		Protozoa
	Biodiversity	Structural diversity
		Functional diversity
		Marker lipids
		Suppressiveness to pathogens
	Bioavailability of	Biosensor bacteria
	contaminants	Plasmid-containing bacteria
		Biomarker species
		Incidence and expression of catabolic genes

Doelman, P. and Eijsackers, H.J.P. (2004): Vital Soil - Function, Value and Properties. Elsevier. 358 p. ISBN: 0-444-51772-3.

Invertebrates

Indicator system	Principle	Application	Reference
Nematode maturity	Nematodes classified	Can be applied to all	Bongers (1990),
index	on a "colonizer" -	soils; measures	Yeates and Bongers
	"persister" scale	general response to	(1999)
		stress (metals,	
		acidification,	
		eutrophication)	
Predatory mite	Mesostigmatid mites	Mostly limited to	Ruf (1998)
maturity index	classified according to	forest soils; measures	
	an r-K score	soil properties related	
		to mull/mor humus	
Earthworm life-history	Earthworms classified	Can be applied to all	Bouché (1977),
strategies	according to position	soils with sufficient	Paoletti (1999a)
	in the soil profile and	number of species;	
	burrowing behaviour	measures aspects of	
		humus type, pH and	
		cultivation (ploughing)	
			Bouché (1996)
REAL model for	Integrated data base of	Very wide application	bouche (1990)
earthworms	various aspects related		
	to the ecological and		
	agronomical role of earthworms		
The share of A	Scores related to	Applicable to	Graefe (1993),
Enchytraeid Reaktionzahl	responses to acidity	situations where	Beylich et al. (1995)
Reaktionzani	and humidity	effects on soil pH are	
	assigned to	manifested, for	
	enchytraeids	example cement	
		factories	
SIVPACS	Pollution responses of	Data base on species-	Spurgeon et al.
01111120	earthworms, isopods	specific responses not	(1996)
	and spiders,	yet operational; at the	
	comparable to	moment only applied	
	RIVPACS	to heavy metal	
		pollution	
Woodlice life-forms	Classification of	Composition of isopod	Paoletti and Hassell
	woodlice according to	fauna indicates effects	(1999)
×	body shape and	of soil cultivation in	
	movement pattern	agricultural	
		landscapes	

Doelman, P. and Eijsackers, H.J.P. (2004): Vital Soil - Function, Value and Everties. Elsevier. 358 p. ISBN: 0-444-51772-3.

Invertebrates

Indicator system	Principle	Application	Reference
Macro invertebrate	Enumeration of	Applied in orchards	Paoletti and
biodiversity	species richness of	and other agricultural	Somaggio (1996),
	earthworms, beetles,	ecosystems to indicate	Paoletti (1999b)
	isopods, spiders, ants,	land use and copper	
	millipedes,	pollution	
	centipedes, etc.		
Ant functional groups	Classification of ants	Wide application;	Andersen (1995)
	according to groups	used in evaluation of	
	reflecting	nature restoration and	
	susceptibility to stress	effects of mining	
Diptera feeding	Classification of	Reflects type of	Frouz (1999)
groups	dipteran larvae in five	organic materials in	
	feeding groups	soil; applicable to	
		organic soils	
Arthropod acidity	Classification of	Allows quantitative	Van Straalen and
index	arthropods (Collem-	estimation of soil pH	Verhoef (1997),
	bola, oribatids,	from invertebrate	Van Straalen (1998)
1	isopods) according to	community structure	
Oribatid mite life-	pH preference Classification of mites		
		Indicates intensity of	Siepel (1994), Siepel
history strategies	according to reproductive and	anthropogenic	(1996)
	dispersal strategies	influence and	
	dispersal strategies	successional stage of forests and grassland	
		ecosystems	
Life-forms of	Classification of	Indicates profile	Van Straalen et al.
Collembola	Collembola according	build-up and	(1985), Faber (1991)
	to morphological	ecological processes	(1900), 1 aber (1991)
	types reflecting	stratified according to	
	position in the soil	the profile; mostly	
	profile	applicable to forest	
		soils	
Dominance	Lognormal	General impression of	Hågvar (1994)
distribution of micro	distribution of	disturbance; applied	
arthropods	numbers over species	to effects of heavy	
		metals and acid rain	
		in forest and	
D. 1 . 1		grassland soils	
Biological Index of	System of scores	Provides indication of	Parisi (2001), Gardi
Soil Quality (BSQ)	assigned to groups of	biodiversity; wide	et al. (2002)
	soil micro arthropods	applicability	

Doelman, P. and Eijsackers, H.J.P. (2004): Vital Soil - Function, Value and perties. Elsevier. 358 p. ISBN: 0-

Pollutant group	Vulnerable animal	Remarks
	groups	
Polycylic aromatic	Isopods, Collembola	Little knowledge available. Large inter-species
hydrocarbons,		differences in metabolism. Metabolizers
azaarenes and		expected to be more sensitive than
derivates		accumulators.
Persistent	Vertebrates (Rodentia	Low toxicity to invertebrates. Effects appear
organochlorines	and Insectivora)	higher up in the food-chain Earthworms are
(PCBs, dioxins)		important in transfer.
Chlorinated	Earthworms	Toxicity due to general narcotic effects,
ethylenes,		probably small inter-species differences.
phenoles and		
benzenes		
Oil, BTEX	Earthworms	Toxicity partly due to changes in soil structure.
Alkyl benzene	Enchytraeids,	Field data scanty. Laboratory data suggest
sulfonates and	nematodes, earthworms	highest toxicity to pore water-dependent
other detergents		species.
Veterinary drugs,	No data available	Interactions in decomposer-micro-organism
antibiotics,		interactions expected, but not documented.
hormones		
Copper	Earthworms, slugs,	Copper toxicity to earthworms well
	snails, oribatid mites	documented.
Zinc .	Enchytraeids,	Toxicity of zinc does not follow the main
	nematodes, earthworms,	taxonomic groups of soil invertebrates. Many
	isopods, soft-bodied	groups contain sensitive as well as tolerant
	springtails	species.
Cadmium	Oribatid mites, spiders,	Cadmium seems to be most toxic to
	some springtails,	invertebrates that take up the metal with the
	vertebrates (shrews,	food. Due to food-chain accumulation effects
-	mole)	appear in predators and vertebrates.
Lead	Oribatid mites, shrews,	Differences between invertebrate species
	mole	relatively small. Main hazard of lead is higher
		up in the food chain.
Herbicides	No group in particular	Low toxicity of modern herbicides to animals.
		Effects are mostly secondary (avoidance of
		sprayed leaves, loss of food, increase of litter
		cover).
Fungicides	Earthworms,	Benzimidazoles, carbamates and organotins
	enchytraeids, isopods	are known for their considerable side-effects
		on animals

Invertebrates

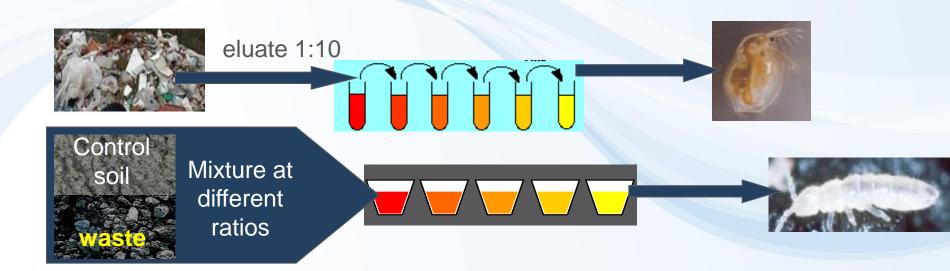
Doelman, P. and Eijsackers, H.J.P. (2004): Vital Soil - Function, Value and Properties. Elsevier. 358 p. ISBN: 0-444-51772-3.

Pollutant group	Vulnerable animal groups	Remarks
Insecticides	Many arthropod groups, in particular beetles, spiders, mesostigmatid mites and springtails	Animals with high surface activity are particularly vulnerable. Large differences between species due to species-specific exposures and metabolic capacities. Many secondary effects among detritivores due to suppression of predators.
Acidic precipitation	Snails, dipteran larvae, earthworms, some oribatid mites, some Collembola, some isopods	Large differences between species within each group. Earthworms generally avoid acid soils. Many Collembola and mites are acid tolerant, but some are very alkalophilic and suffer from acid precipitation.
Radiation	Earthworms, oribatid mites	Species-specific vulnerability due to exposure, rather than inherent differences in sensitivity. Permanent soil dwellers and soil ingesters receive high doses.

Note: this table only describes the general trends and ignores the many species-specific sensitivities related to metabolism, microhabitat choice and life-cycle

Use of soil bioassays in soil protection

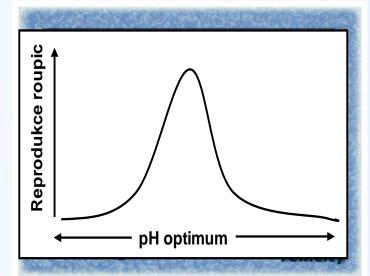
- Sofar, mostly for assessment of hazard of chemicals and pesticides
- Increase of use for evaluation of hazard of complex mixtures like wastes, sewage sludge, sediments, composts, fertilizers ...
- Great potential in the future for assessment of soil quality e.g. Before and after the remediation, contaminated sites assessment etc.


Why bioassays?

Chemical analyses are not able to identify risks properly because:

- 1) Real exposure is different bioavailability in particular situation
- 2) Pollutant mixture always in real ecosystems
- 3) Matrix itself has effects or interacts with effects of contaminants
- 4) Anylytical methods are limited vs. Wide spectrum of possibly toxic chemicals

Why soil bioassays?



Eluate tests are not able to predict solid phase exposure

<u>WHY ?</u>

- \rightarrow real bioavailability
- → effect of matrix involved

Are soil bioassays used now ?

Chemicals

EU: COMMISSION DIRECTIVE 2001/59/EC of 6 August 2001 adapting to technical progress for the 28th time Council Directive 67/548/EEC on the approximation of the laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances; Annex V. (earthworms, plants) **+ REACH!!!**

USA: TSCA; OPPTS (The Office of Prevention, Pesticides and Toxic Substances) (earthworms, microbes, plants)

OECD: Guidelines for the testing of chemicals (many)

ISO: many

Plant protection products

EU: COUNCIL DIRECTIVE 91/414/EEC of 15 July 1991 concerning the placing of plant protection products on the market; Annex II.

USA: TSCA - OPPTS (The Office of Prevention, Pesticides and Toxic Substances)

OECD: Guidelines for the testing of chemicals

ISO + EPPO, IOBC, SETAC, BBA

Bioassay standards - OECD

Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test	2006
Test No. 227: Terrestrial Plant Test: Vegetative Vigour Test	2006
Test No. 207: Earthworm, Acute Toxicity Tests	1984
Test No. 220: Enchytraeid Reproduction Test	2004
Test No. 222: Earthworm Reproduction Test (Eisenia fetida/Eisenia andrei)	2004
Test No. 228: Determination of Developmental Toxicity of a Test Chemical to Dipteran Dung Flies(Scathophaga stercoraria L. (Scathophagidae), Musca autumnalis De Geer (Muscidae))	2008
Test No. 232: Collembolan Reproduction Test in Soil	2009
Test No. 226: Predatory mite (Hypoaspis (Geolaelaps) aculeifer) reproduction test in soil	2008
Test No. 216: Soil Microorganisms: Nitrogen Transformation Test	2000
Test No. 217: Soil Microorganisms: Carbon Transformation Test	2000
Test No. 317: Bioaccumulation in Terrestrial Oligochaetes	2010
Test No. 304A: Inherent Biodegradability in Soil	1981

Bioassay standards - ISO

	Soil quality Sampling Part 6: Guidance on the collection, handling and storage of soil under aerobic conditions for the assessment of microbiological processes, biomass and diversity in the laboratory
ISO 14240-1:1997	Soil quality Determination of soil microbial biomass Part 1: Substrate-induced respiration method
	Soil quality Determination of soil microbial biomass Part 2: Fumigation-extraction method
ISO 16072:2002	Soil quality Laboratory methods for determination of microbial soil respiration
ISO 17155:2002	Soil quality Determination of abundance and activity of soil microflora using respiration curves
ISO 15685:2004	Soil quality Determination of potential nitrification and inhibition of nitrification Rapid test by ammonium
	oxidation
ISO 14238:1997	Soil quality Biological methods Determination of nitrogen mineralization and nitrification in soils and the
	influence of chemicals on these processes
ISO 23753-1:2005	Soil quality Determination of dehydrogenase activity in soils Part 1: Method using triphenyltetrazolium
	chloride (TTC)
ISO 23753-2:2005	Soil quality Determination of dehydrogenase activity in soils Part 2: Method using iodotetrazolium
	chloride (INT)
ISO/DIS 11063	Soil quality Method to directly extract DNA from soil samples
ISO/TS 29843-1:2010	Soil quality Determination of soil microbial diversity Part 1: Method by phospholipid fatty acid analysis
	(PLFA) and phospholipid ether lipids (PLEL) analysis
ISO/PRF TS 29843-2	Soil quality Determination of soil microbial diversity Part 2: Method by phospholipid fatty acid analysis
	(PLFA) using the simple PLFA extraction method
ISO/TS 10832:2009	Soil quality Effects of pollutants on mycorrhizal fungi Spore germination test
	Soil quality Measurement of enzyme activity patterns in soil samples using fluorogenic substrates in micro- well plates
	Soil quality Guidance on laboratory testing for biodegradation of organic chemicals in soil under aerobic conditions
	Soil quality Guidance on laboratory testing for biodegradation of organic chemicals in soil under anaerobic conditions
	Soil quality Laboratory incubation systems for measuring the mineralization of organic chemicals in soil under aerobic conditions

Bioassay standards - ISO

ISO 11269-1:1993	Soil quality Determination of the effects of pollutants on soil flora Part 1: Method for the
	measurement of inhibition of root growth
ISO 11269-2:2005	Soil quality Determination of the effects of pollutants on soil flora Part 2: Effects of chemicals on
	the emergence and growth of higher plants
ISO 17126:2005	Soil quality Determination of the effects of pollutants on soil flora Screening test for emergence
	of lettuce seedlings (Lactuca sativa L.)
ISO 22030:2005	Soil quality Biological methods Chronic toxicity in higher plants
ISO/CD 29200	Soil quality Assessment of genotoxic effects on higher plants Micronucleus test on Vicia faba

ISO 11268-1:1993	Soil quality Effects of pollutants on earthworms (Eisenia fetida) Part 1: Determination of acute toxicity using artificial soil substrate
ISO 11268-2:1998	Soil quality Effects of pollutants on earthworms (Eisenia fetida) Part 2: Determination of effects on reproduction
ISO 11268-3:1999	Soil quality Effects of pollutants on earthworms Part 3: Guidance on the determination of effects in field situations
ISO 11267:1999	Soil quality Inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants
ISO 16387:2004	Soil quality Effects of pollutants on Enchytraeidae (Enchytraeus sp.) Determination of effects on reproduction and survival
ISO 15952:2006	Soil quality Effects of pollutants on juvenile land snails (Helicidae) Determination of the effects on growth by soil contamination
ISO 20963:2005	Soil quality Effects of pollutants on insect larvae (Oxythyrea funesta) Determination of acute toxicity
ISO 17512-1:2008	Soil quality Avoidance test for determining the quality of soils and effects of chemicals on behaviour Part 1: Test with earthworms (Eisenia fetida and Eisenia andrei)
ISO/DIS 17512-2	Soil quality Avoidance test for determining the quality of soils and effects of chemicals on behaviour Part 2: Test with collembolans (Folsomia candida)
ISO 23611-1:2006	Soil quality Sampling of soil invertebrates Part 1: Hand-sorting and formalin extraction of earthworms
ISO 23611-2:2006	Soil quality Sampling of soil invertebrates Part 2: Sampling and extraction of micro-arthropods (Collembola and Acarina)
ISO 23611-3:2007	Soil quality Sampling of soil invertebrates Part 3: Sampling and soil extraction of enchytraeids
ISO 23611-4:2007	Soil quality Sampling of soil invertebrates Part 4: Sampling, extraction and identification of soil- inhabiting nematodes
ISO/DIS 23611-5	Soil quality Sampling of soil invertebrates Part 5: Sampling and extraction of soil macro-invertebrates
ISO/DIS 23611-6	Soil quality Sampling of soil invertebrates Part 6: Guidance for the design of sampling programmes with soil invertebrates

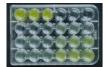
Bioassay standards – US EPA

850.2450 - Terrestrial (Soil-Core) Microcosm Test (PDF) (19 pp, 123K) 850.4000 - Background-Nontarget Plant Testing (PDF) (15 pp, 50K) 850.4025 - Target Area Phytotoxicity (PDF) (15 pp, 51K) 850.4100 - Terrestrial Plant Toxicity, Tier I (Seedling Emergence) (PDF) (8 pp, 29K) 850.4150 - Terrestrial Plant Toxicity, Tier I (Vegetative Vigor) (PDF) (8 pp, 28K) 850.4200 - Seed Germination/Root Elongation Toxicity Test (PDF) (8 pp, 29K) 850.4225 - Seedling Emergence, Tier II (PDF) (10 pp, 36K)

http://www.epa.gov/ocspp/pubs/frs/home/draftguidelines.htm

Solid material toxicity testing

ISO 15799 (2003): Guidance on the ecotoxicological characterization of soils and soil materials ISO 17616 (2008): Guidance on the choice and evaluation of bioassays for ecotoxicological characterization of soils and soil materials



Bioassays for soil like matrices

Retention function – Biotests with eluates

Ecotoxic contents

Luminescent bacteria test

Algal inhibition test

Genotoxic contents

9						

Umu-test

Habitat function - Biotests with solids

Site inherent test organisms

Added test organisms

Respiration test Nitrification test

Bacteria contact test

Earthworm avoidance test

Earthworm test Collembolan test

EU – test battery for wastes

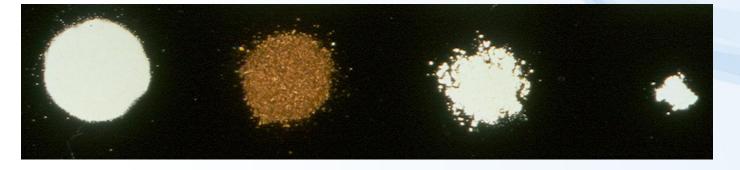
ISO 11268-1 (1997): Soil quality - Effects of pollutants on earthworms (*Eisenia fetida*). Part 1: Determination of acute toxicity using artificial soil substrate.

ISO 11269-2 (2004): Soil quality - Determination of the effects of pollutants on soil flora. Part II: Effects of chemicals on the emergence and growth of higher plants.

ISO 16387 (2004): Soil quality - Effects of pollutants on *Enchytraeidae* -Determination of effects on reproduction and survival.

ISO 11267 (1999): Soil quality - Inhibition of reproduction of *Collembola* (*Folsomia candida*) by soil pollutants

ISO 11268-2 (1998): Soil Quality - Effects of pollutants on earthworms (*Eisenia fetida*). Part 2: Determination of effects on reproduction


ISO 17512-1 (2008): Soil Quality – Avoidance test for evaluating the quality of soils and the toxicity of chemicals. Test with Earthworms (*Eisenia fetida/andrei*).

Exposure methods

- Tested chemical mixed with soil
 - Artificial soil (OECD, ISO)
 - Real soil (LUFA 2.2 ...)

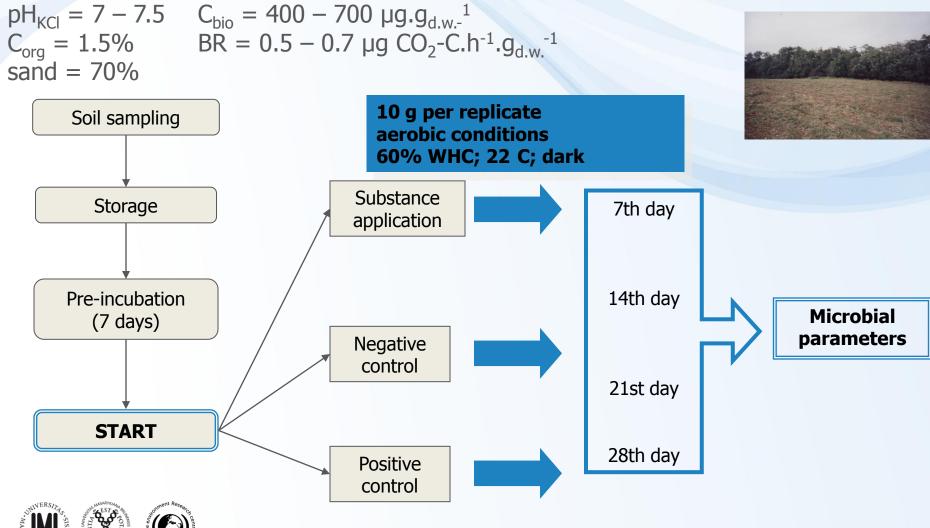
• Topic applications, injections, forced feeding ... not so relevant

What is artificial soil ?

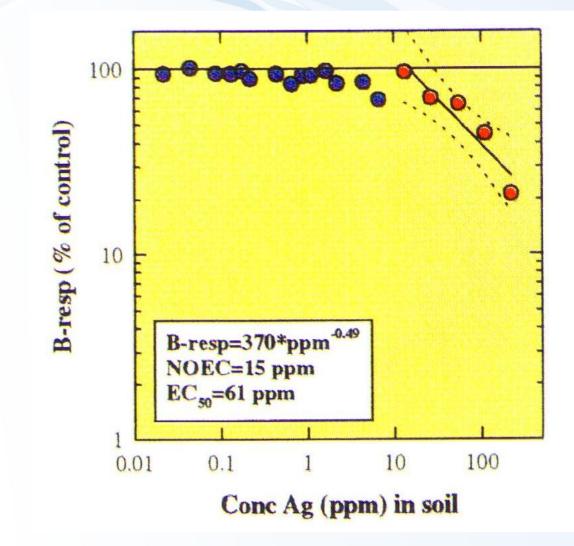
Soil component		Content expressed o % dry mass basis	
•	Sphagnum peat (air dried), finely ground and with no visible plant remains	10	
•	Kaolinite clay (air dried), containing not less than 30 % kaolinite	20	
•	Industrial quartz sand (air dried), predominantly fine sand with more than 50 % by mass of particle size 0,05-0,2 mm (amount dependent on calcium carbonate required)	70	
•	Calcium carbonate (CaCO ₃ , pulverised, analytical grade) to obtain an initial pH of 6.0 ± 0.5	0.3-1.0	

OECD 1984. Guideline for testing chemicals 207. Earthworm acute toxicity test.

- Is standard medium for many soil bioassays ...
- Is much more relevant than solution, agar, filter paper ...
- Should solve problem of high variability of natural soils ...
- Should resemble natural loamy soil ...
- Should enable the toxicity extrapolation to natural soils ...

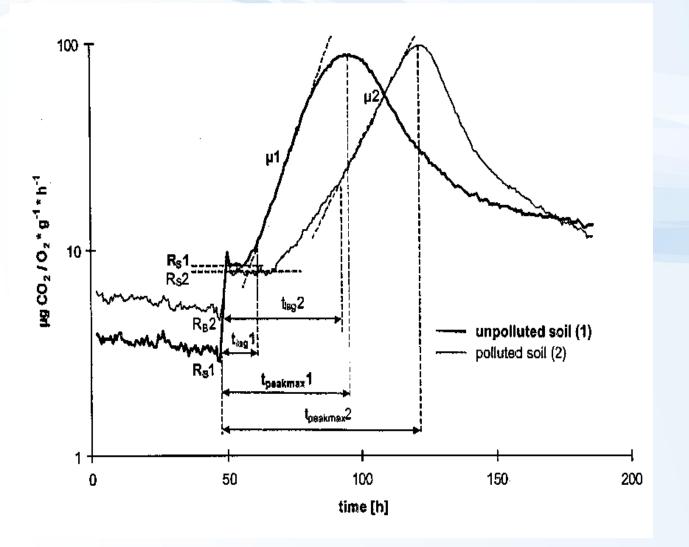

Soil microbial assays

- EPA (1996): OPPTS 850.5100 Soil microbial community toxicity test. Ecological effects test guidelines. United States Environmental Agency.
- EPPO (1994): Decision making scheme for the environmental risk assessment of plant protection products. EPPO Bulletin 24, Chapter 7, Soil Microflora.
- Lynch, M.R. (1995): Procedures for assessing the environmental fate and ecotoxicity of pesticides. SETAC, Brussels, Belgium.
- OECD (1999): Proposal for a new guideline 217. Soil microorganisms: Carbon transformation test. OECD guideline for the testing of chemicals. OECD.
- OECD (1999): Proposal for a new guideline 216. Soil microorganisms: Nitrogen transformation test. OECD guideline for the testing of chemicals. OECD.
- ISO 14238 (1997): Soil quality Determination of nitrogen mineralization and nitrification in soil and the influence of chemicals on these processes. International Organization for Standardization. Geneve, Switzerland.

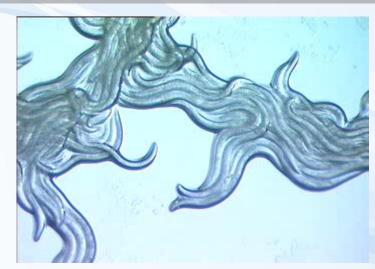


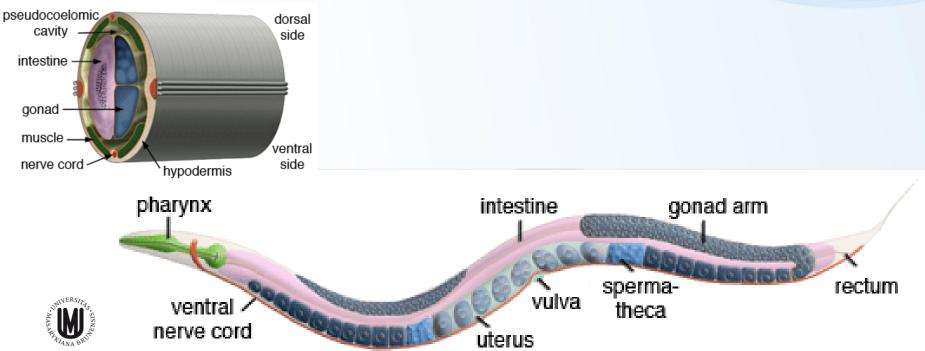
Soil microbial assay according to OECD, ISO

Real uncontaminated agricultural soil with indigenous microflora:

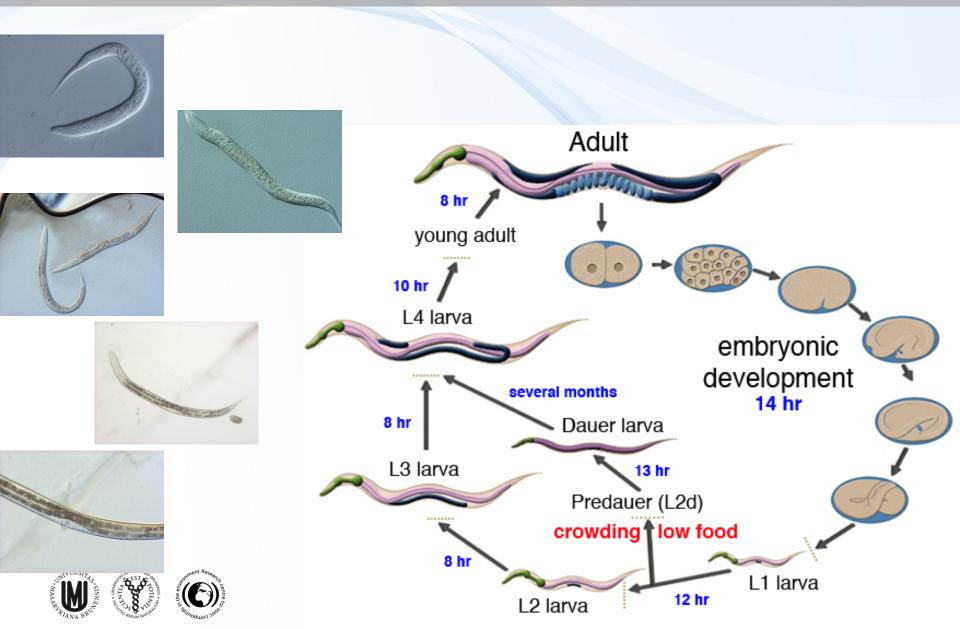


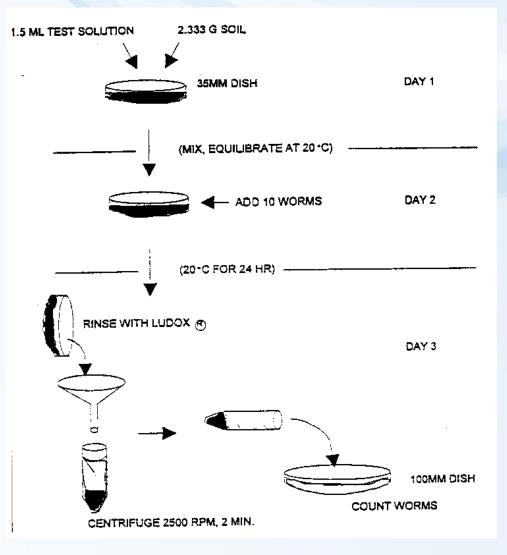
Effects on microbial respiration


Respirometry

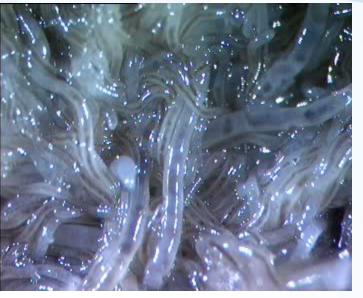


NY IERS/24

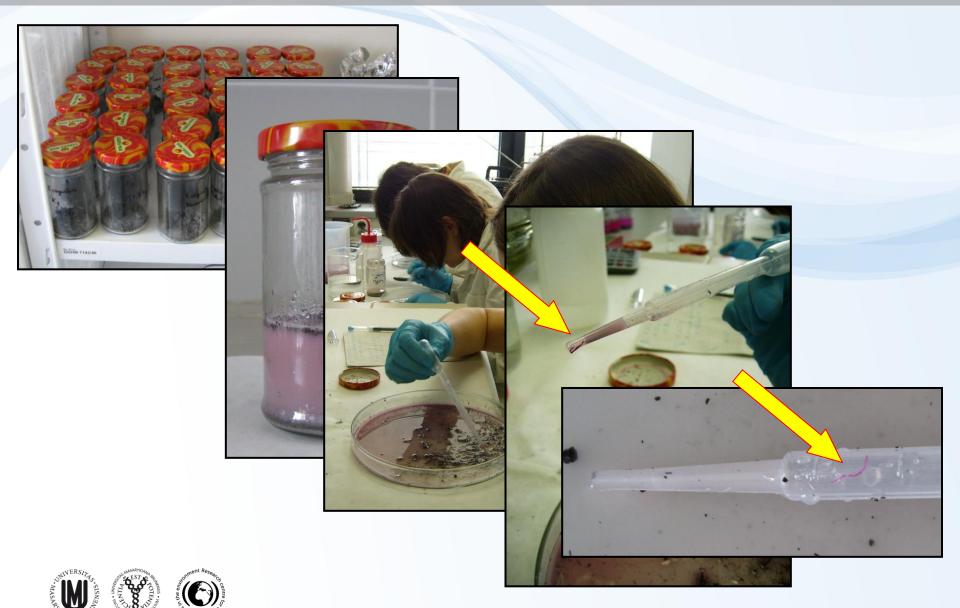

Nematodes



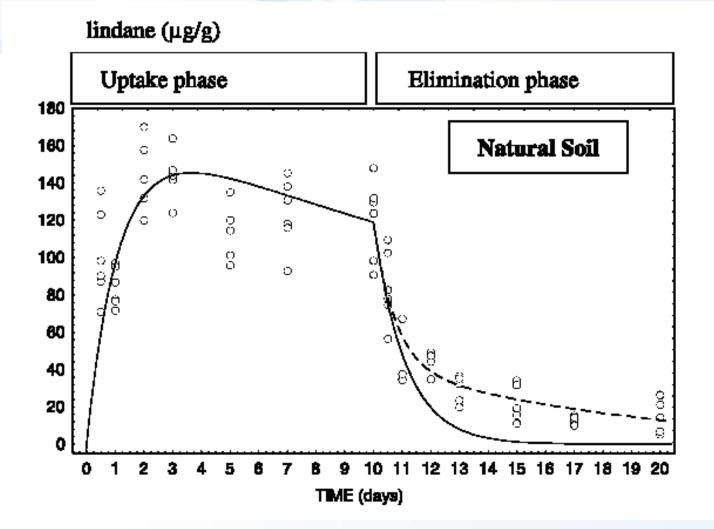
Caenorhabditis elegans


Caenorhabditis elegans

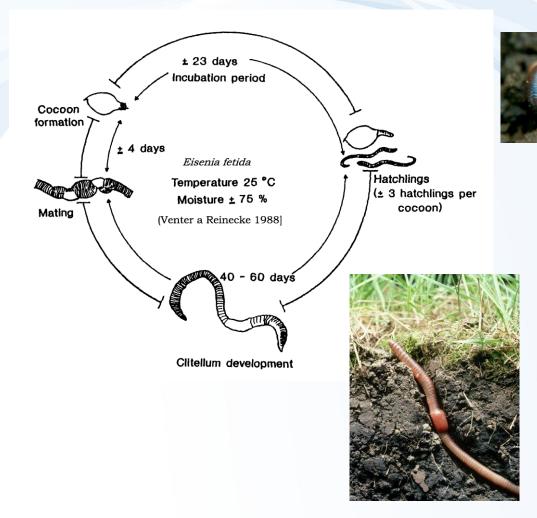
ASTM: E2172-01 Standard Guide for Conducting Laboratory Soil Toxicity Tests with the Nematode *Caenorhabditis elegans*





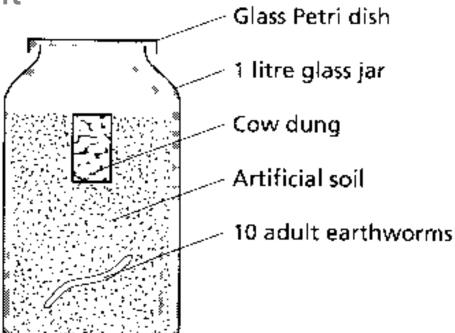


Avoidance test with *E. albidus*



Bioaccumulation experiments with enchytraeids

Earthworms



Earthworm acute toxicity test

- 14 days
- 500 g soil + 10 adult Eisenia fetida
- mortality and weight

Earthworm reproduction test

- 56 days
- 500 g soil + 10 adult Eisenia fetida
- horse manure as food
- juveniles extracted using water bath

Eisenia fetida reproduction test

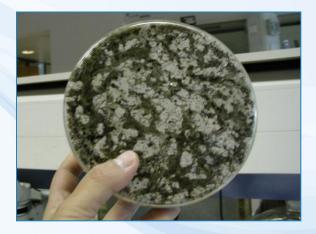
Soil preparation

WHC measurement

Water added Soil weighted to jars

10 adults to 1 jar

Weighting worms



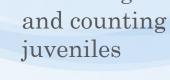
10 adults from culture Washed

E. fetida test – after 28 days

Temperated room

Control of the jars, activity markers

Mortality assessment


E. fetida – 8 weeks

Water bath, increasing temperature 40°C - 60°C • After 20 min juveniles appear

Collecting

Sieving the soil

Hand sorting of cocoons

Counting

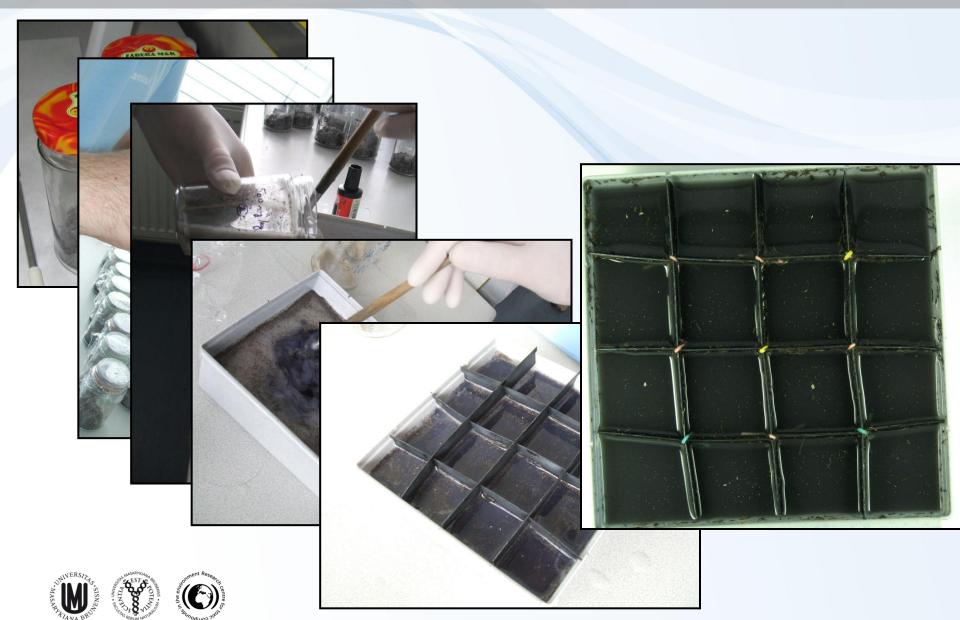
Avoidance test

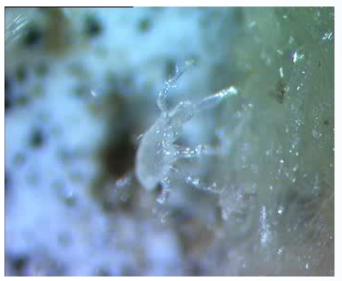
Guideline: Species: Substrate: Duration: Parameter: Test vessels: ISO/DIS 17512 (draft) *E. andrei* LUFA St. 2.2 standard soil 1 - 2 days Behaviour of the worms Dual chamber

Risk assessment with earthworms ----Prüfung der Auswirkungen auf Regenwürmer Labortest mit 1. Akute Toxizität (2 Wochen) Kompostwurm TER = $\frac{LC50}{PEC}$ Bewertung: < 10 Mortalität. Körpergewicht 2. Einfluss auf die Fortpflanzung Kokons des (8 Wochen) Kompostwurms Bewertung: $TER = \frac{NOEC}{PEC}$ < 5 Anzahl der Jungtiere, Körpergewicht einheimische 3. Auswirkungen im Freiland (1 Jahr) Regenwurmart

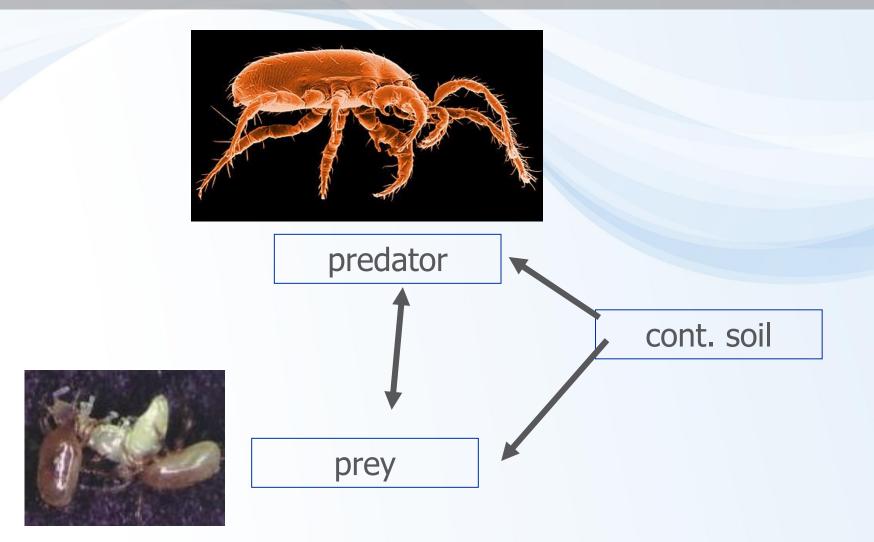
Bewertung: Individuenzahlen, Risiken für Populationen und Lebensgemeinschaften

Folsomia candida




Folsomia candida

Mites



Hypoaspis aculeifer

Mites

Plants

Lactuca sativa root growth

Plant protection products risk assessment

Auswirkungen auf andere Pflanzen

Verschiedene Konzentrationsstufen im:

Wachstumstest

Erbse

Lein

Prüfpflanzen: 6 Pflanzenarten aus unterschiedlichen Familien

1. Stufe: Prüfungen im Gewächshaus

- <u>Auflauftest</u>: Auswirkungen auf Keimung und Auflauf
- <u>Wachstumstest</u>: Auswirkungen auf den Biomassezuwachs

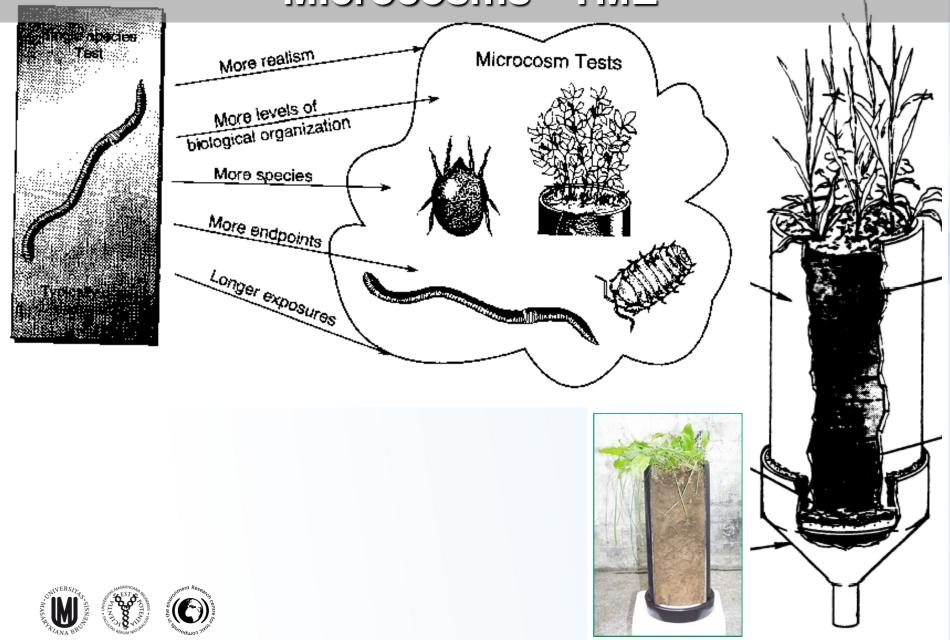
TER < 10

- 2. Stufe: Weiterführende Versuche
- Verlängerte Gewächshausversuche
- Mehr Arten
- Freilandversuche

Microcosms, mesocosms

Table 9.1 Classification of Various Semi-Field Tests

 Model ecosystem segments (= "microcosms") Natural or artificially assembled units; a few centimeters in size up to approx. I m³ (contents up to a few hundred liters); closed and open systems are both possible.


Specialized techniques:	c.g. the plant metabolism box of the NATEC
1	(FIGGE, 1992) or small "artificial streams"
	(CLEMENTS et al., 1989).
Integrated techniques:	e.g. the Terrestrial Model Ecosystem (TME)
5	(VAN VORIS et al., 1984; KNACKER et al.,
	1990, 1991) or the Standardized Aquatic
	Microcosm (SAM) (TAUB et al., 1986; EPA,
	1987).

2. Ecosystem segments in the field (= "mesocosms") Field segments which remain exposed to normal environmental conditions; various sizes ranging between 1 m³ and several hundred m³.

Specialized techniques:	Partial enclosures in lakes or rivers, e.g. plastic bags with algae coenoses (EIDE et al., 1979).
	Lysimeter (usually about 1 m3 in size), e.g. tests on the mobility of pesticides in natural soil cores (e.g. BBA, 1990a).
	Semi-field tests (usually tests with beneficial organisms), e.g. effects of pesticides on ground beetles (carabids) in cultivated soil system segments (ABEL & HEIMBACH, 1992).
Integrated techniques (very rarely in the terrestrial medium):	Artificial testing systems, e.g. "artificial streams" — reconstructions of real streams including sediment (EATON et al., 1985).
	Natural enclosures, e.g. "Bremerhaven-Caissons" in wadden seas (FARKE et al., 1984).

Microcosms - TME

Microcosms - TME

Literature

- van Straalen, N.M. and van Gestel, C.A.M. (1993): Soil invertebrates and Microorganisms. In Calow, P. (Ed.): Handbook of ecotoxicology. Oxford : Blackwell scientific publications. p. 251-277. ISBN 0-632-03573-0.
- Donker, M.H., Eijsackers, H., and Heimbach, F. (1994): Ecotoxicology of soil organisms. CRC Press, Inc., Boca Ranton. ISBN 0-87371-530-6.
- Tarradellas, J., Bitton, G. and Rossel, D. (1996): Soil Ecotoxicology. Lewis Publishers, Boca Raton, FL. ISBN: 1-56670-134-1.
- Lokke, H. and van Gestel, C.A.M. (1998): Handbook of soil invertebrate toxicity tests. John Wiley & Sons, Chichester. ISBN 0-471-97103-0. 281 pp.
- Römbke, J. and Moltmann, J.F. (1996): Applied ecotoxicology. CRC Press LLC, New York. ISBN 0-56670-070-1.
- Hoffman, D.J., Rattner, B.A. (1994): Handbook of Ecotoxicology. Boca Raton, FL, USA : CRC Press.
- Suter, G.W. II, Efroymson, R.A., Sample, B.E., and Jones, D.S. (2000): Ecological risk assessment for contaminated sites. Lewis Publishers, Boca Ranton. ISBN 1-56670-525-8. 437p.
- Doelman, P. and Eijsackers, H.J.P. (2004): Vital Soil Function, Value and Properties. Elsevier. 358 p. ISBN: 0-444-51772-3.

Literature

- Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A. (1994): Defining soil quality for a sustainable environment. SSSA Special Publication Number 35. Soil Science Society of America, Inc.
- Pankhurst, C.E., Doube, B.M., Gupta, V.V.S.R. (1997): Biological indicators of soil health. CAB International, Wallingford. ISBN 0851991580.
- Doran, J.W. and Parkin, T.B. (1996): Quantitative indicators of soil quality: A minimum data set. In Doran, J.W. and Jones, A.J. (Eds.): Methods for assessing soil quality, p. 25-38. SSSA Special Publication Number 49. Soil Science Society of America, Inc., Madison.
- Doran, J.W. and Jones, A.J. (Eds.): Methods for assessing soil quality. SSSA Special Publication Number 49. Soil Science Society of America, Inc., Madison.
- Doran, J. W., Parkin, T. B. (1994): Defining and assessing soil quality. In: Defining soil quality for a sustainable environment. SSSA special publication number 35. SSSA, Inc., American Society of Agronomy, Inc. Madison, Wisconsin, USA, 1994, pp. 3 – 21.
- European Commission (2002): Communication from the Commission to the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions - Towards a Thematic Strategy for Soil Protection. COM (2002) 179.
- European Commission (2006a): Communication from the commission to the council, the european parliament, the european economic and social committee and the committee of the regions. Thematic strategy for soil protection. COM(2006)231.
- European Commission (2006b): Proposal for a directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending Directive 2004/35/EC. COM (2006) 232.
- European Commission (2006c): Commission staff working document accompanying the communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the regions. Thematic strategy for soil protection. Impact assessment of the thematic strategy on soil protection. SEC (2006) 260.

Literature

- Van-Camp, L., Bujarrabal, B., Gentile, A-R., Jones, R.J.A., Montanarella, L., Olazabal, C., Selvaradjou, S.K. (2004): Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection. Volume V – Monitoring. EUR 21319 EN/5, 872 pp. Office for Official Publications of the European Communities, Luxembourg.
- EEA (2007): CSI 015 Progress in management of contaminated sites Assessment published Aug 2007. European Environmental Agency. <u>www.eea.eu</u>
- Carlon, C. (2007): Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization. European Commission, Joint Research Centre, Ispra, EUR 22805-EN, 306 pp.
- De Bruijn, J., Crommentuijn, T., van Leeuwen, K., van der Plassche, E., Sijm, D., van der Weiden, M. (1999): Environmental Risk Limits in The Netherlands. RIVM Rapport 601640001. pp. 900.
- De Vries, W. and Bakker, D.J. (1998): Manual for Calculating Critical Loads of Heavy Metals for Terrestrial Ecosystems. Guidelines for Critical Limits, Calculation Methods and Input Data. Report 166. DLO Winand Staring Centre, Wageningen, The Netherlands, 144 pp.
- <u>http://ec.europa.eu/environment/waste/index.htm</u>
- <u>http://www.eea.europa.eu/themes/waste</u>

