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�
dN
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dt



if then

� logistic growth due to density dependent
changes in fecundity and survival
� K .. carrying capacity,
upper limit of population growth, where λ = 1
� change in λ depends on N
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Discrete (difference) model
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when Nt → 0 then

• no competition
• exponential growth

when Nt → K then

• density-dependent control
• S-shaped (sigmoid) growth

when Nt > K  then

• population returns to K
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- when N → K  then   r → 0
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� logistic growth 
� first used by Verhulst (1838) to describe growth of human population

→

Solution of the differential equation

Continuous (differential) model
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Monotonous increase (r = 0.5) Damping oscillations (r = 1.9)

Limit cycle (r = 2.3)

Chaos (r = 3.0)



1. N = 0 .. unstable equilibrium
2. N = K .. stable equilibrium .. if 0 < r < 2
� “Monotonous increase” and “Damping oscillations” has a stable
equilibrium
� “Limit cycle” and “Chaos”
has no equilibrium

r < 2 .. stable equilibrium
r = 2 .. 2-point limit cycle
r = 2.5 .. 4-point limit cycle
r = 2.692 .. chaos
� chaos can be produced by
deterministic process
� density-dependence is
stabilising only when
r is rather low

Model equilibria

N

r



a) yeast (logistic curve)

b) sheep (logistic curve
with oscillations)

c) Callosobruchus
(damping oscillations)

d) Parus (chaos)

e) Daphnia

� of 28 insect species
in one species chaos
was identified, one
other showed limit
cycles, all other were in
stable equilibrium
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� Hassell (1975) proposed general model for DD

Effect of θ on population density
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- where θ.. the strength of competition
 θ >> 1 .. scramble competition (over-compensation)
 θ = 1 .. contest competition (exact compensation)
 θ < 1 .. under-compensation
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� species response to resource change is not immediate but delayed due to
maternal effect, seasonal effect
� appropriate for species with long generation time where reproductive rate
is dependent on density of a previous generation
� time lag (d, τ) .. negative feedback of the 2nd order

discrete model continuous model

� many populations of mammals cycle with 3-4 year periods
� time-lag provokes fluctuations of certain amplitude at certain periods
� period of the cycle in continuous model is always 4ττττ

dt

t
t aN

N
N

−
+ +

=
11

λ
K

NK
rN

dt

dN t
t

τ−−
=



r τ < 1 → monotonous increase
r τ < 3 → damping fluctuations
r τ < 4 → limit cycle fluctuations
r τ > 5 → extinction

Solution of the continuous model:
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� to attain maximum sustainable yield (MSY)
� local maximum of the model for N
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where a = 0.6 for L < 5
a = 0.4 for L = (5,10)
a = 0.2 for L > 10



� K2 .. extinction threshold, unstable equilibrium
� population increase is slow at low density but fast at high density
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Simulate population dynamics using density-dependent model for
discrete population growth for a period of 40 generations with
N0=10.

1. With deterministic λ (=1.2) and K (=500).
2. With stochastic λ (=1.2 ±0.2) but deterministic K (=500).
3. With stochastic K (=500 ±50) but deterministic λ (=1.2).
4. With stochastic λ (=1.2 ±0.2) and K (=500 ±50).



N<-41
for(t in 1:40) N[t+1]<-{
N[t]*1.2/(1+N[t]*(1.2-1)/500)}
plot(0:40,N,type="b")

for(t in 1:40) N[t+1]<-{
N[t]* runif(1,1,1.4)/(1+N[t]*(runif(1,1,1.4)-1)/500)}
plot(0:40,N,type="b")

for(t in 1:40) N[t+1]<-{
N[t]*1.2/(1+N[t]*(1.2-1)/runif(1,450,550))}
plot(0:40,N,type="b")

for(t in 1:40) N[t+1]<-{
N[t]* runif(1,1,1.4)/(1+N[t]*(runif(1,1,1.4)-
1)/runif(1,450,550))}
plot(0:40,N,type="b")



You have observed the following population dynamic of yearly
censuses of aphids:

180, 531, 277, 296, 828, 329, 397, 772, 625, 318, 567, 881, 386

1. Plot the population dynamic. Is there evidence for density-
dependence?
3. Estimate λmax and K.



aphid<-c(180, 531, 277, 296, 828, 329, 397, 772, 625, 318, 567,
881, 386)
plot(aphid,type="b")

lambda1<-aphid[-1]/aphid[-13]
plot(aphid[-13], log(lambda1))
m2<-lm(log(lambda1)~aphid[-13])
coef(m2)
abline(m2)
exp(1.3057703)
-1.30577030/-0.00248398



On an African market wild game animals are sold. You know
carrying capacities (K), finite growth rates (λ), and longevities (L)
for each species:

1. Compute MSY for each species:
2. Is the observed harvest sustainable in each species?

K lambda Longevity Harvest
monkey 49000 1.17 31 781
pangolin 22000 2.01 13 192
porcupine 110000 1.82 23 1580
duiker 45000 1.63 7 732



0.2*(1.17*49000-49000)/2

0.2*(2.01*22000-22000)/2

0.2*(1.82*110000-110000)/2

0.4*(1.63*45000-45000)/2


