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+ +   .. mutualism (plants and pollinators)

0 +   .. commensalism (saprophytism, parasitism, phoresis)

-  +   .. predation (herbivory, parasitism), mimicry

- 0    .. amensalism (allelopathy)

-  -    .. competition

Increas e Neutral Decreas e
Increas e + +
Neutral 0 + 0 0

Decreas e + - - 0 - -

Effect of species 1 on fitness of species 2
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� based on the logistic model of Lotka (1925) and Volterra (1926)

species 1: N1, K1, r1 

species 2: N2, K2, r2
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�assumptions:
- all parameters are constant
- individuals of the same species are identical
- environment is homogenous, differentiation of niches is not possible
- only exact compensation is present



� total competitive effect (intra + inter-specific)
(N1+ αN2)    where α .. coefficient of competition

α = 0 .. no interspecific competition
α < 1 .. species 2 has lower effect on species 1 than species 1 on itself
α = 0.5 .. one individual of species 1 is equivalent to 0.5 individuals of
species 2)
α = 1 .. both species has equal effect on the other one
α > 1 .. species 2 has greater effect on species 1 than species 1 on itself

species 1:

species 2:

� if competing species use the same resource then interspecific
competition is equal to intraspecific
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� examination of the model behaviour on a phase plane

� used to describe change in any two variables in coupled differential
equations by projecting orthogonal vectors

� identification of isoclines: a set of abundances for which the growth
rate is 0
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� species 1
r1N1 (1 - [N1 + α12N2] / K1) = 0
r1N1 ([K1 - N1 - α12N2] / K1) = 0

        if r1, N1, K1 = 0
and  if K1 - N1 - α12N2 = 0
then N1 = K1 - α12N2

if N1 = 0 then N2 = K1/α12
if N2 = 0 then N1 = K1

� species 2
r2N2 (1 - [N2 + α21 N1] / K2) = 0
N2 = K2 - α21N1

if N2 = 0 then N1 = K2/α21
if N1 = 0 then N2 = K2

� above isocline i1 and below i2 competition is weak
� in-between i1 and i2 competition is strong
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1. Species 2 drives species 1 to extinction
� K and α determine the model behaviour
� disregarding initial densities species 2 (stronger competitor) will
outcompete species 1 (weaker competitor)
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2. Species 1 drives species 2 to extinction

� species 1 (stronger competitor) will outcompete species 2 (weaker
competitor)
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3. Stable coexistence of species
� disregarding initial densities both species will coexist at stable  
equilibrium (where isoclines cross)
� at at equilibrium population density of both species is reduced
� both species are weak competitors
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�one species will drive other to extinction
depending on the initial conditions
� coexistence for a short time
� both species are strong competitors

4. Competitive exclusion

r1 = r2
K1 = K2
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� when Rhizopertha and Oryzaephilus were reared separately both
species increased to 420-450 individuals (= K)

� when reared together Rhizopertha reached K1 = 360, while
Oryzaephilus K2 = 150 individuals

� combination resulted in more efficient conversion of grain (K12 = 510
individuals)

� three combinations of
densities converged to the
same stable equilibrium

� prediction of
Lotka-Volterra model is correct
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Crombie (1947)
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� multiple regression analysis is used to estimate parameters from
abundances
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� solution of the differential model:



Two species of Tribolium beetles were kept together in a jar with
flour. The species breed in discrete periods. Their densities were
recorded once a week. The following abundances were observed:

A: 10, 6, 5, 4, 3, 4, 6, 8, 10, 12, 15, 16
B: 20, 18, 16, 11, 6, 6, 5, 3, 2, 2, 1, 1

1. Estimate r1, r2, K1, K2, α12, α21.
2. Simulate the dynamics using difference model system for a period of
20 years. Use estimated values of parameters and initial densities of 20
individuals.



a<-c(10,6,5,4,3,4,6,8,10,12,15,16)
b<-c(20,18,16,11,6,6,5,3,2,2,1,1)
a1<-a[-1]/a[-12]
b1<-b[-1]/b[-12]

coef(lm(log(a1)~a[-12]+b[-12]))
0.60443/0.02992
20.20154*0.04106/0.60443

coef(lm(log(b1)~b[-12]+a[-12]))
0.399980/0.005052
79.1726*0.011438/0.399980

N12<-data.frame(N1<-numeric(1:20),N2<-numeric(1:20))
N12[,1]<-20
N12[,2]<-20
for(t in 1:20) N12[t+1,]<-{
N1<-N12[t,1]*exp(0.6*(20.2-N12[t,1]-1.4*N12[t,2])/20.2)
N2<-N12[t,2]*exp(-0.4*(79.2-N12[t,2]-2.3*N12[t,1])/79.2)
c(N1,N2)}
matplot(N12, type="l",lty=1:2)
legend(1,80,c("N1","N2"),lty=1:2)



Two species of spiders, Pardosa and Pachygnatha, occur together
and were found to feed in the field on the following prey:

1. Estimate and plot niche breadth (D) for each species.
2. Estimate niche overlap (a12, a21) for each species.
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Druh Colle mbola He mipte ra Ensife ra Dipte ra Isopoda
Pardos a 0.61 0.15 0.12 0.07 0.05
Pachygnatha 0.93 0.05 0.01 0 0.01



Par<-c(0.61,0.15,0.12,0.07,0.05)
Pach<-c(0.93,0.05,0.01,0,0.01)
both<-rbind(Par,Pach)
barplot(both,beside=T,legend.text=c("Par","Pach"))
1/sum(Par^2)
1/sum(Pach^2)

a12<-sum(Par*Pach)/sum(Par^2); a12
a21<-sum(Par*Pach)/sum(Pach^2); a21



Simulate the population dynamic using differential model system
for the period of 30 years. The initial densities are N01=200 and
N02=10.

An invasive ant species is spreading and may replace a native ant
species as both have similar niches. The following parameters are
know for the native (1) and invasive (2) species.

r1 = 0.2
K1 = 200
α12 = 1.1

r2 = 0.9
K2 = 300
α21 = 0.7
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How to achieve stable coexistence?



comp<-function(t,y,param){
N1<-y[1]
N2<-y[2]
with(as.list(param),{
dN1.dt<-r1*N1*(1-(N1+a12*N2)/K1)
dN2.dt<-r2*N2*(1-(N2+a21*N1)/K2)
return(list(c(dN1.dt,dN2.dt)))})}

N1<-200;N2<-10
param<-c(r1=0.2,r2=0.9,a12=1.1,a21=0.7,K1=200,K2=300)
time<-seq(0,30,0.1)
library(deSolve)
out<-data.frame(ode(c(N1,N2),time,comp,param))
matplot(time,out[,-1],type="l",lty=1:2,col=1)
legend("right",c("N1","N2"),lty=1:2)

N1<-200;N2<-10
param<-c(r1=0.2,r2=0.9,a12=0.5,a21=0.7,K1=200,K2=300)
time<-seq(0,30,0.1)
library(deSolve)
out<-data.frame(ode(c(N1,N2),time,comp,param))
matplot(time,out[,-1],type="l",lty=1:2,col=1)
legend("right",c("N1","N2"),lty=1:2)


