

Research centre for toxic compounds in the environment

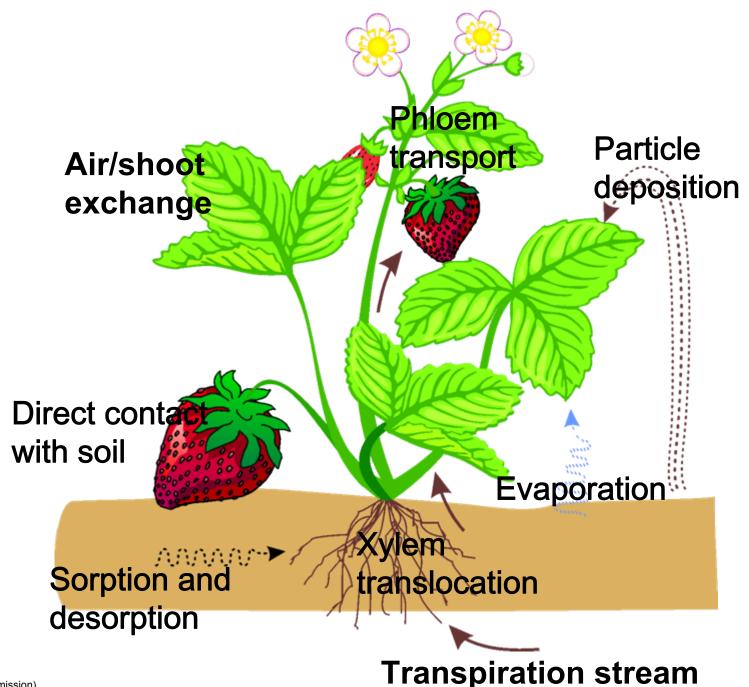
Plant uptake and human health risks from dietary exposure

Organic non-ionised chemicals

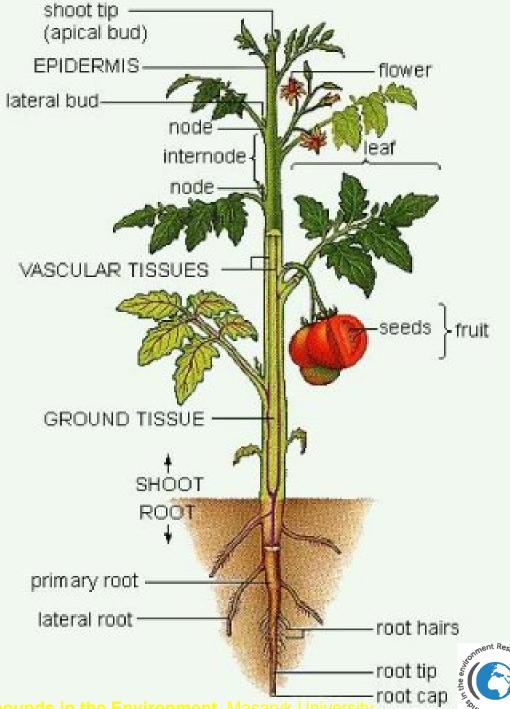
Ondřej Mike

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

OP Research and Development for Innovation


1. Pathways between soil/plant/air

- 2. Building model
- 3. Different crops
- 4. Chemicals
- 5. Dietary exposure

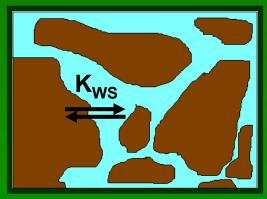


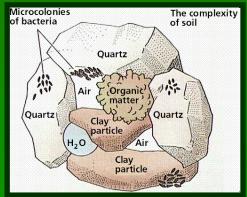
- Roots = take up water and solutes
- Stems = transport water and solutes
- Xylem = dead water pipe
- Phloem = living sugar pipe
- Leaves = transpire water and take up gas
- Fruits = sink for phloem and xylem

1. Pathways between soil/plant/air

- 2. Building model
- 3. Different crops
- 4. Chemicals
- 5. Dietary exposure

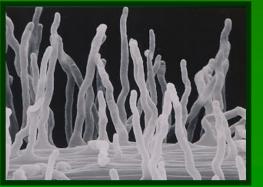
Soil pore water


What is in the solution? Bioavailable

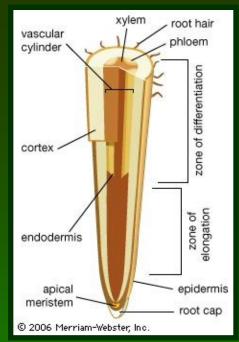

 $C_W/C_{Soil} = K_{WS} = \rho_{wet} / (Kd \times \rho_{dry} + P_W)$

Kd=K_{oc}xOC – sorption to soil (organic matter)

LogK_{oc}=0.81 logK_{ow}+0.1 (EU,1996) (Abdul, Piwoni, Karickhoff, Molecular connectivity...)


_C_w-in mg/L, C_{Soil}-bulk mg/kg, OC-kg/kg, ρ-kg/L, Pw-pore water fraction in bulk soil

Roots

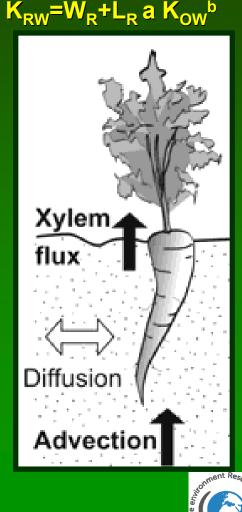

- Can't see them
- Livers of the Earth
- Monocotyledon –all cereals
- Dicotyledon- all voot vegetables
- Root hairs
- Bioavailability

Diffusion and advection

High surface – equilibrium assumption

Change of concentration in roots =

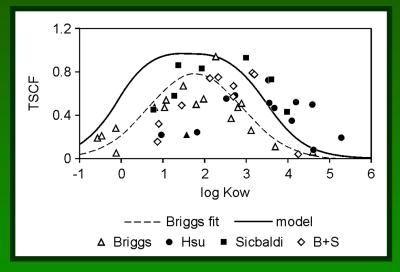
- + uptake with water
- transport to shoots

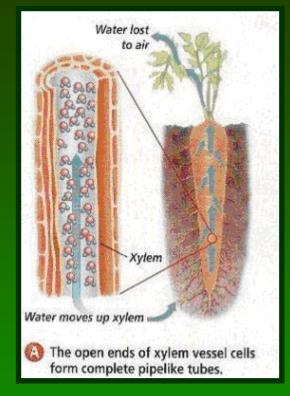

- dilution by growth or metabolism (rate k)

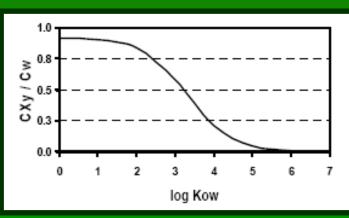
$$dC_R/dt = + C_W Q/M_P - C_{XY} Q/M_P - kC_R$$

where

k - growth + metabolism rate [d⁻¹] C_{xy}- concentration in xylem = C_R/K_{RW} C_w - concentration in soil pore water


- **Q** transpiration stream (L/d)
- M Mass of the roots (kg)





Translocation upwards

- TSCF = "Transpiration stream concentration factor"
- C_{Xv}/C_W TSCF≤1
- C_{Xy}^{Ay} outflux from roots = influx to stem or leaves

Leaves

Leaves are plant material, like roots. But they do not hang in soil nor in water. Leaves hang in air.

- Uptake from roots with transpiration water
- Uptake from air (conductance m/s)
- Loss to air
- Degradation
- Particle deposition
- Soil attached
- Phloem transport

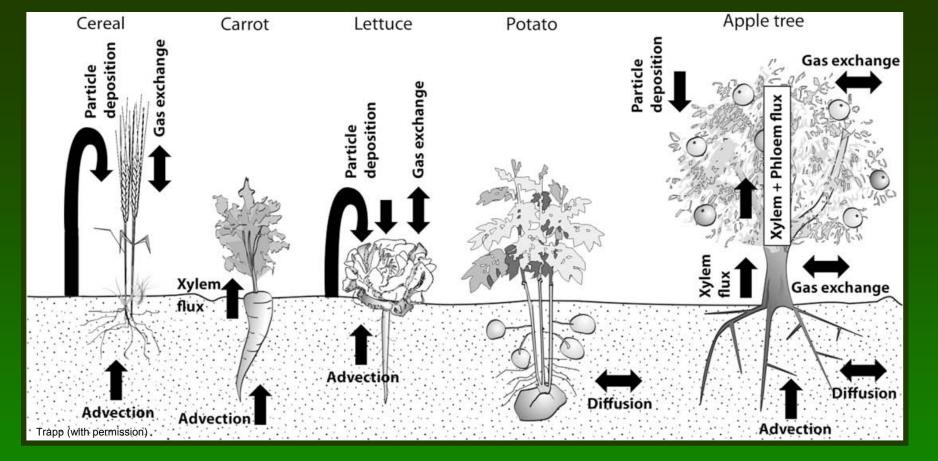
dC_L/dt=

+ $C_R(Q/M_L x K_{RW})$ + $C_A(A_L x g/M_L)$

- $C_{L}(A_{L}xgx1000Lm^{-3}/K_{L}xM_{L})$
- $C_L(A_LXYX TOUCLIN VK_LAXI)$ - $C_L(k_L)$

 $\mathbf{K}_{\mathsf{LW}} \texttt{=} \mathbf{W}_{\mathsf{L}} \texttt{+} \mathbf{L}_{\mathsf{L}} \mathbf{a} \mathbf{K}_{\mathsf{OW}}^{\mathsf{b}} \mathbf{-} \mathsf{leaf} / \mathsf{water}$

 $K_{LA} = K_{LW}/K_{AW}$ - leaf hang in the air


1. Pathways between soil/plant/air

- 2. Building model
- 3. Different crops
- 4. Chemicals
- 5. Dietary exposure

Different crops – phloem, influx to fruits, particles, turtuousity BUT similar model structure

For more information ask me or mail directly to Stefan Trapp stt@env.dtu.dk

http://homepage.env.dtu.dk/stt/

1. Pathways between soil/plant/air

- 2. Building model
- 3. Different crops
- 4. Chemicals and model
- 5. Dietary exposure

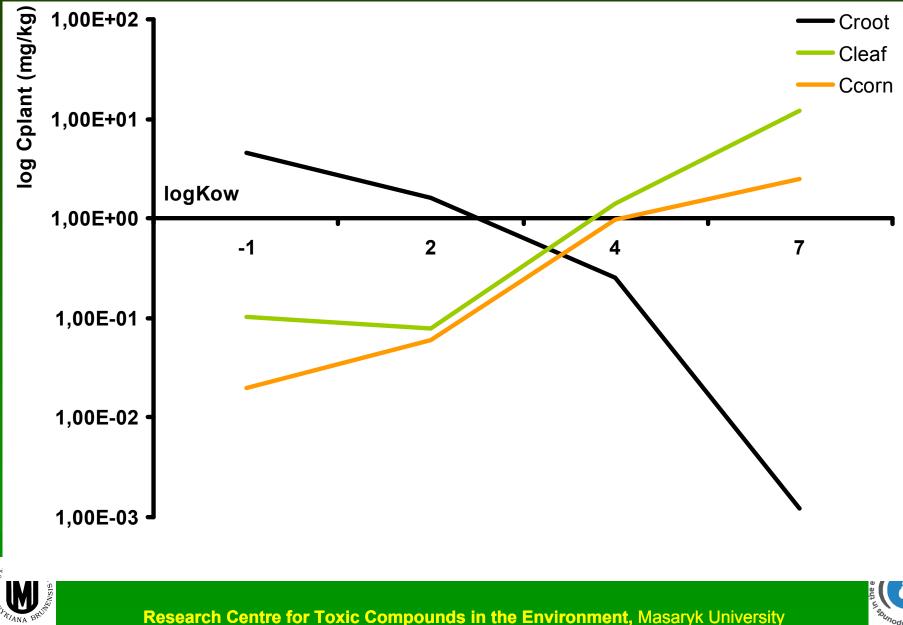
Standard Plant uptake model

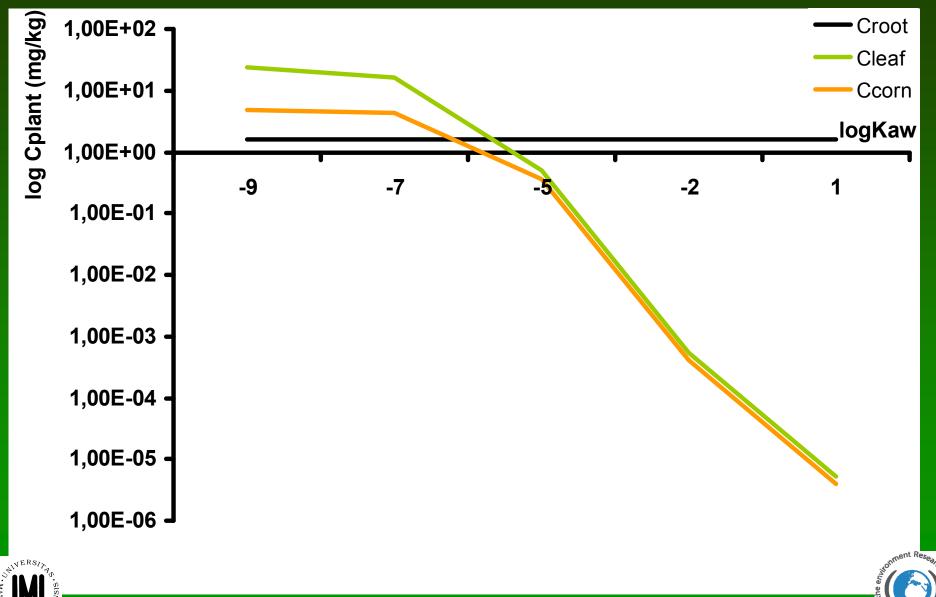
Simple standard	Plant Upt	ake Model stt	7 Apr 09									
-												
Chemical proper	ties		Soil data			Calculations soil			Fraction in a			
log Kow	7	(m3:m3)	Water cont.	0,35	L/kg	wet density	1,95	kg/L	vapor pressu	re 1,00E+00	Pa	
	1,00E+01		orgC	0,02		Koc	5,89E+05		Melting point	200	K	
Metab rate	0,00E+00	1/d	dry density	1,6		KWS	1,03E-04	L/kg	Temperature		Celsius	
Concentrations i						C W soil	1,03E-04	mg/L	Temperature	293,15	K	
Air	1,00E-30		Root data	for 1 m2		Calculations root	-		VP sub-colle	d 1,16E-01	Pa	
Soil (wet wt.)			W Water content			KRW	7,49E+03	L/kg	VP used	1,00E+00	Pa	
Water	1,00E-05	mg/L	L Lipid content	0,025		KRS	7,75E-01		v dep	1,00E-03	m/s	
Equilibrium calc			M mass	1	kg	BCF root - water	1,20E+01	L/kg	fP	1,00E-04	(-)	
K AS	1,03E-03	air-soil L/kg	Q Transpiration	1,2	L/d	BCF root - soil	1,24E-03	kg/kg				
KAS	1,03E+00	air-soil m3/kg	k rate root	0,1	1/d	TSCF calc	1,60E-03	L/L	1,0E-	+01		
K WS		water - soil		_		C root	1,24E-03	mg/kg	<u>ሮ</u> 1,0E-		_	
fP	1,00E-04	fraction particle	Leaves data	for 1 m2		Calculations leaf	F		<u>Ĕ</u> ',0E'	-00 -	П	
C air calc	1,03E-03		Shoot mass	1		K*LW	54495,8	m3:m3	🖻 1,0E	-01 -		
C W calc	1,03E-04	from soil	shoot density	500	kg/m3	KLA	5,45E+03	(-)	D 1,0E	02		
Results			Leaf Area	5	m2	Uptake from soil	1,66E-07	mg/(kg d)	1,0E- 1,0E 1,0E 1,0E 1,0E 1,0E 1,0E	-02 -		
Concentrations			conductance g	1,00E-03	from Fruit tree mode	Uptake from air	4,32E-28	mg/(kg d)	වි 1,0E	-03 -	r	<u>, - </u>
Water	1,00E-05	mg/L	Lipid content	0,02	g/g	Total uptake b	1,66E-07	mg/kg d)	2 1,0E	04		
Air	1,00E-30	mg/m3	Water content	0,8		Loss to air	3,96E+01	1/d	Ĕ ^{1,0} ⊏	-04 -		
Soil	1,00E+00	mg/kg	Transpiration	1	L/d	Total Loss	3.97E+01	1/d	Ŭ 1,0E	-05 - 🗖		
Roots	1,24E-03	mg/kg	Time to harvest	60	days	C steady-state	4 17E-09		1,0E			
Leaves	1,00E-02	mg/kg	Growth rate	0,035	1/d	C (t)	4,17E-09	mg/kg	1,0E		1 1	
Corn	1,00E-03	mg/kg	Attached soil	0,01	g/g wet wt.	C(t) plus soil	1,00E-02	mg/kg		Water Air	Sol Roofs	Bayes Coll
			Corn data	for 1 m2		Calculations corr		units		24.0	ୁ କ୍ଦ୍ର୍	eaves com
			mass	1	kg	K*LW	108990,9	m3:m3				
			density	1000	kg/m3	KLA	1,09E+04					
			Area	1	m2	Uptake from soil	3,31E-08	mg/(kg d)				
			conductance g	1,00E-03	from Fruit tree mode	Uptake from air	8,64E-29	mg/(kg d)				
			Lipid content	0,02	g/g	Total uptake b	3,31E-08	mg/(kg d)				
			Water content	0,15	g/g	Loss to air	7,93E+00	1/d				
			Transpiration	0,2	L/d	Total Loss	7.96E+00					
			Time to harvest	60	days	C steady-state	4 16E-09					
			Growth rate	0,035	1/d	C (t)	4,16E-09					
			Attached soil	0,001	kg/kg fw	C(t) plus soil	1,00E-03	mg/kg				

Yellow-chemicals entry, blue-concentration, light brown-soil entry, light blue- root entry, dark greenleaves, orange- fruits, grey- calculation (don't touch), white-data entry and results

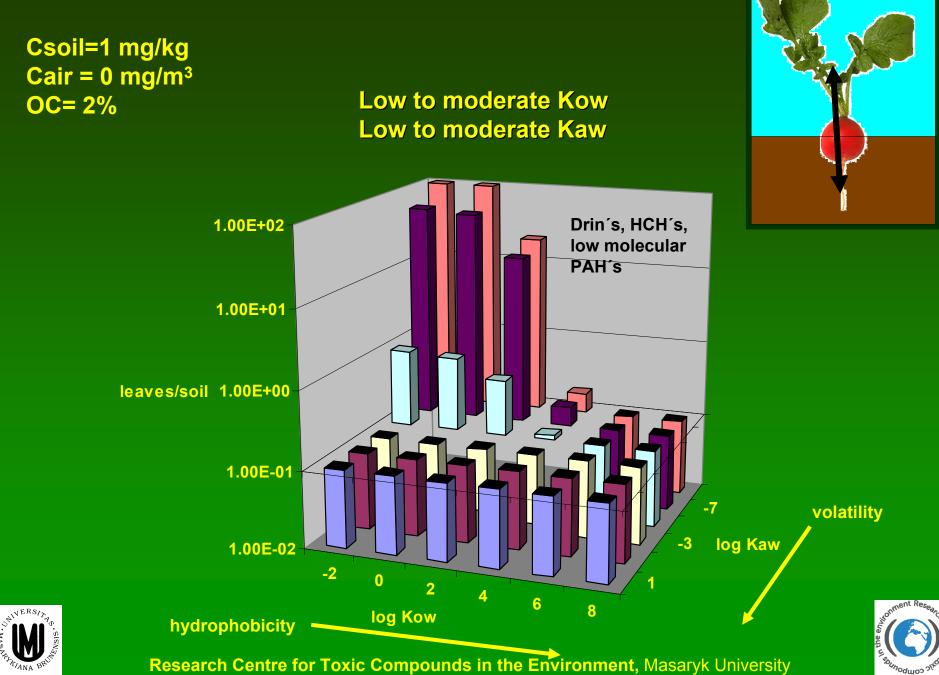
Exercise 1

- Create 2 graphs for Croot, leaf, corn(steady-state) when:
- Cair=1.10⁻⁶ mg/m³, Csoil=1mg/kg, OC=0,02
- 1st Kaw=1.10⁻⁴, log Kow=-1,2,4,7
- 2nd-log Kow=2, Kaw= 10⁻⁹, 10⁻⁷, 10⁻⁵, 10⁻², 10¹

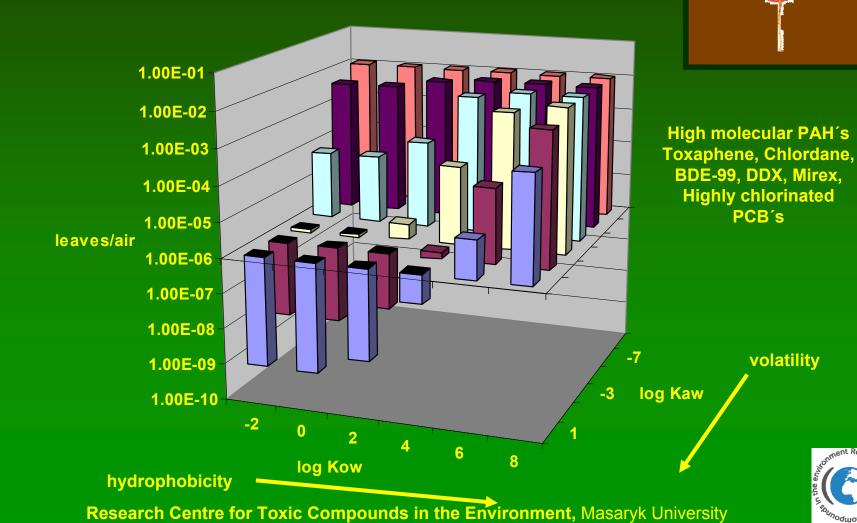

logKow	-1	2	4	7	
Croot					
Cleaf					
Ccorn					
Kaw	1,00E-09	1,00E-07	1,00E-05	1,00E-02	1,00E+00
Croot					
Cleaf					
Ccorn					


Results

" MASAR. C"



Results


Output from the model SOIL to LEAVES

Output from the model AIR to LEAVES

Csoil=0 mg/kg Cair = 1E-6 mg/m³ OC= 2%

High to moderate Kow Low to moderate Kaw

1. Pathways between soil/plant/air

- 2. Building model
- 3. Different crops
- 4. Chemicals
- 5. Dietary exposure

Health risk

"Dosis facit venumum" Effect = Exposure x toxicity

Exposure – measured or modelled Toxicity – usually measured NOEL/UF

Oral exposure Dermal exposure Inhalation exposure Dietary exposure

usually US-EPA guidelines

measured food concentration needed

Data collection

Needed: log K_{OW} , K_{AW} , metabolism const., C_{SOIL} , C_{AIR} , C_{WATER} , OC (Env. Journals) Phys-chem

- Databases: Mackay, Rippen, Verschueren...
- QSAR models : EPISuite,ACD/iLab,MOLPRO...

http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm

Exercise 2

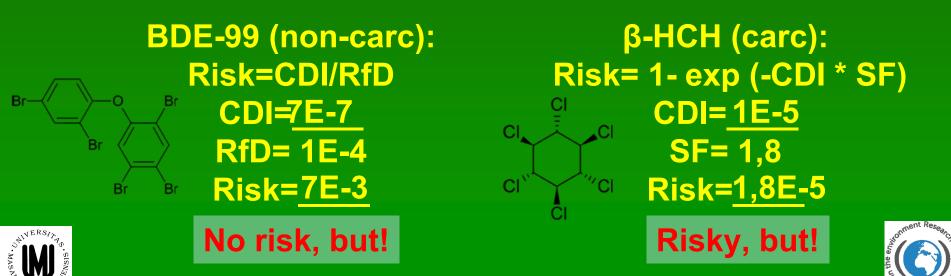
Dietary risk for beta-HCH and BDE-99 : 1st- phys-chem from EPI-Suite programme 2nd- environmental concentrations (lit.-given) 3rd- toxicology profiles US-EPA databases 4th- consumption data (national Czech survey) 5th- plant and risk calculation

Input Data

	log K _{ow}	K _{AW}	Ref.	C _{soiL} (WW) (mg/kg)	C _{AIR} (mg/m³)	SF (mg/kg-day) ⁻¹	RfD (mg/kg- day) ⁻¹	Ref.
BDE-99								
β-НСН								

Women-adult (95%	units	
INroot		g/kg bw/day
INIeaf		g/kg bw/day
INcorn		g/kg bw/day
Weight		kg

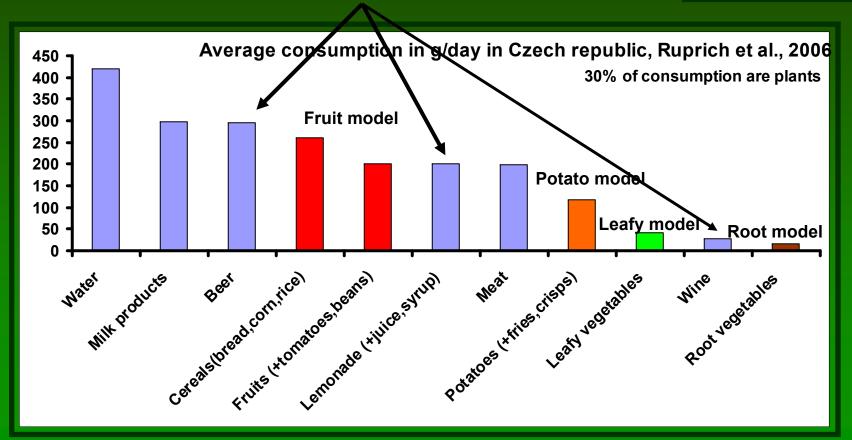
Corg=0,014 (average Czech soil)



http://www.epa.gov/reg3hscd/risk/human/rb-concentration_table/Generic_Tables/index.htm http://czvp.szu.cz/spotrebapotravin.htm

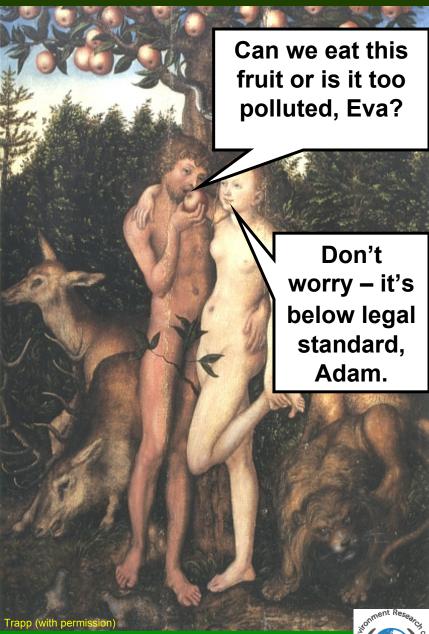
Risk calculation

			Food	BDE-99	β-НСН
	BDE-99	beta-HCH	(kg/kg bw	consumption	consumption
	(mg/kg)	(mg/kg)	day)	(mg/kg bw day)	(mg/kg bw day)
Croot	6,27E-09	9,97E-06	0,0014	8,78441E-12	1,39624E-08
Cleaf	2,37E-04	1,76E-03	0,00194	4,59799E-07	3,40977E-06
Ccorn	4,76E-05	1,35E-03	0,005	2,38041E-07	6,74114E-06
SUMA				6,97849E-07	1,01649E-05

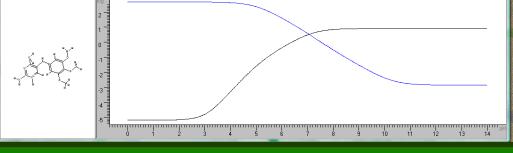


Czech dietary uptake

Potential fruit model + water concentration



Some limitations


- 1. Non-ionic ionic diffusion follows Nernst-Planck equation
- 2. Metabolism (Michaelis-Menten kinetics usually more soluble compounds)
- 3. Growth is considered exponential
- 4. TSCF calculations
- 5. Easier approach? Travis and Arms (1988) log BV (dry wt) = 1.588 – 0.578 log KOW
- 6. On-spot measuring, exposure studies, worst case scenario
- 7. Always be careful with interpretation risk analysis results

Other dietary/crop models?

- Paterson and Mackay(1994), Chiou(2001) Fantke(2011),
- Ionic chemicals (MAMI,Trapp, 2009)

- Heavy metals (CSOIL,CLEA,FIAM,Hough, 2001)
- Breast milk (US-EPA,2008, Trapp, 2009)

Knowledge to go

- Semi-volatile chemicals
- Low Kow (root uptake) High Kow (shoot uptake)
- Model is not predicting exact concentration guide to insight and design experiments
- Modelling is easy
- Not only air is important
- Czech drinks a lots of beer

Question time

