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2. Damage Functions
(Damage vs. ground motion)

Loss Functions
(Loss vs. ground motion,
loss vs. damage)
3. Seismic Risk Analysis

(Frequency of exceedance vs. damage or loss)

v

4. Decision Analysis
A. Costs, benefits, risk aversion
B. Options for risk mitigation
C. Analysis of optimal decisions

1. PSHA

(Frequency of exceedance
vs. ground motion)

Figure 1. Steps in the mitigation of carthquake risk.

McGuire 2004




Table 1. Examples of uncertainties in seismic hazard analysis.

Aleatory Uncertainties U, ~ (Natural Randomness)
« Future earthquake locations
. Future earthquake source properties (e.g., magnitudes)
« Ground motion at a site given the median value of motion
e Details of the fault rupture process (e.g., direction of
rupture)
Epistemic Uncertainties Ue (Modeling Uncertainties, Lack of Knowledge & Understanding)
 Geometry of seismotectonic and seismogenic zones
» Distributions describing source parameters (e.g., rate, b value,
maximum magnitude)
« Median value of ground motion given the source properties
« Limits on ground shaking

McGuire 2004 ®

PSHA applies Protocols (e.g. in US: “SSHAC”) for Soliciting
“Expert Opinions” that then are formally taken into

account to quantify the combined effects of U, and U,



Science Tasks for Probabilistic Seismic Hazard Assessment (PSHA)

* Create Cleaned-Up Earthquake Catalog
Translate Intensity ==> Magnitude
Translate Various Magnitudes ==> Uniform Moment Magnitude, Mw Preferred
Completeness Checks, Remove Aftershocks, Other Checks: Doubles, Blasts, ...
* Choose Seismic Source Zones
Gridded Seismicity: Grid Size and Smoothing Parameter (==> a4, b)
Source Zone Geometry , Fit Rate Relation ==> n(M,), a, b, Max, h?
Faults, their Slip- or Moment-Rates; Characteristic Earthquakes Mcnh?
* Ground Motion Relations: Select from available (a,v,u, PSA,PSV,PGA)= f(M,d,h,g)

PSHA Procedural Steps:
Choose “SSHAC?” (or equivalent) Project Level/Protocol & Assemble Expert Team
Choose PSHA Computer Algorithm
Assign Multiple Model Choices and Logic Tree with Branch Weights
Compute n(C2c) per Site & for all Sources & for all Branches in Logic Tree
Plot Results as Hazard Curves (n=n(c)) for Spectral Frequencies fi; Mean, Median
Choose Probability Levels (Tr) and make respective Uniform Hazards Spectra
Perform Deaggregation for (M*,d*,e) at Given Ground Motion Values c*
Obtain recorded or synthetic Ground Motions g(t) for M*,d* at given Tr
Modify Ground Motion g(t) to be spectrally compatible with UHS at given Tr
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FIGURE 10.2 Basic steps of probabilistic seismic hazard analysis (after TERA Corporation

1978).




Basic Equation for Probabilistic Seismic Hazard Assessment, PSHA
before Consideration of Epistemic Uncertainties

mU =00

N
Bilz)= Zai f t;(m)f(r)P(Z>z|/m,r)drdm

1=1 m, r=0

E(z) Expected number of exceedances of ground motion levels Z>z during period t
a; is the mean rate of occurrence of earthquakes between lower and upper magnitudes (m, and m,, )
for source I during period t; (e.g. given by the (truncated) G-R relation).

N is the number of source zones considered

f.(m) is the probability density distribution of magnitude (recurrence relationship) for source i;

f.(r) 1s the probability density distribution of epicentral or source distances for between the various
locations within source 1 and the site for which the hazard is being estimated;

P(z>z|m,r) is the probability that a given earthquake of magnitude m and epicentral distance r will
exceed the ground motion level z (related to the used ground motion relation, including its
aleatory uncertainty).

Reiter 1990
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FIGURE 7.4 Median (50th percentile) estimates for peak horizontal acceleration from
Campbell (1981a) and Joyner and Boore (1981). Joyner and Boore (1981) estimates of the
maximum horizontal component have been reduced by 12% so that they may be com-
pared with the (Campbell 1981a) estimates of the mean horizontal component (after
Campbell 1981a).




How to treat epistemic (model) uncertainties U,?
==> Logic Trees
Rules for Logic Trees:

Each Node has different Model Branches for the
same topical Object (e.g. different Ground Motion
Prediction Equations)

Each Branch emerging from a Node has a weight
w assigned. The Sum of the Branch Weights at
each Node must be 1!

The end weights W at the ends of each branch
sequence, i.e. at the local “top” of the tree, is the
Product W of all branch weights w, running from
the trunk to the last branch or “twig” at the top of
the tree.

When you add up all the end weights W, located at
the tops of the tree, the Sum must add up to 1!
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Figure 50. Sample logic tree for one fault.




Example of 2 different Expert Teams coming up with 2 different
Seismic Source Zone models.

Probabilistic Analysis 193
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FIGURE 11.2 Hazard curves for the Vogtle Nuclear Power Plant¥ite in Georgia based on
best estimate source zone characteristics of eleven experts (after Bernreuter and others
1989). S




PGA Hazard at Berkeley by Source
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Figure 29. Contribution to the PGA hazard in Berkeley, for each
fault and background seismicity.

Annual Frequency of Exceedance

1-Hz Hazard at Berkeley by Seismic Source
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Note large differences in PGA for the various
confidence fractions. From 15 to 85% level of
confidence the PGA varies from ~160 to ~920
cm/sec”2 for EP = 10"-5/y
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FIGURE 10.4 15th, 50th and 85th constant percentile hazard curves for the Vogtle Nuclear
Power Plant site in Georgia (after Bernreuter and others 1989).
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FIGURE 11.15 Schematic sketch of uniform hazard response spectrum (for example, 103
per year) in which the contributions to hazard at shorter and longer periods come from




Deaggregation of Hazard at given PE
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Source Zone and Seismic Parameters for DMB Hazard Calculations

configuration

Mb(max)

b-value

Attenuation
relationships

Magnitude*
Conversions
‘Mb'-to-Mw

Gridded Gridded Seismicity Woodward-Clyde
Seismicity  with Offshore Zone Seismic Source Zones

I | l
6.00r7.0/ 6.9 75
6.00r7.0 w75 \ or I

\/ opt.#1: 0.904 0.909

0.900r0.950r 1.0 or or
opt.#2: 0.868 0.875

Toro et al., 1994 OR Frankel et al., 1996

coefficients for Mn or Mw look-up tables for Mw

Atkinson and Boore, 1995  OR Johnston, 1996
Mw = 1.14 + 0.24 MLg + 0.093 MLg"

for MbLg>5.5: 2

Mw = 2.715 - 0.277 MbLg + 0.127 MbLg
and for MbLg<5.5: Mw =-0.39 + 0.98 MblLg

* convert earthquake catalog magnitudes from local magnitudes, usually MbLg,

to Moment Magnitudes, Mw.

Figure 2 Variation in modeling parameters used as input to the PSHA calculations for the

Delaware Memorial bridge site.

Figure 3a Seismic ‘sources’ (shaded areas) for the gridded seismicity model, centered on the
DMB site. Grid-point spacing is 1/2 degree in latitude and longitude. Large areas of background,
non-zero seismicity surround the grid.

/

Figure 3b A second seismic 4ource configuration differs from Figure 3a with the addition of an
offshore seismic source zon¢ which links three large historic carthquakes: Charleston, S.C., Grand
Banks, Newfoundland, and Baffin Bay. Based on these earthquakes, the offshore zone produces
M7 and greater carthquakes at a rate of 0,00025/100years/Ikm along its length.

Figure 3c A third seismic source configuration with two source zones (shaded) from W-CC
(1989). Seismicity is evenly smoothed within the two zones, one along the old Appalachian oro-
genic belt, the other extending from the PreCambrian of northern NY northwestward into Ontario

and Quebec, Canada.
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Figure 4a Seismic hazard map for 2% probability of exceedance in 50 years at 1.0 sec. period
based on gridded seismic source model in Figure 3a. Mmax =7.0, b value = 0.9. The 0.05g con-
tour is close to the DMB.

Figure 4b Seismic hazard map for 2% probability of exceedance in 50 years at 1.0 sec. period
based on an offshore seismic zone added to the gridded seismic sources (Figure 3b). Mmax =7.0,
b value = 0.9. The strongest accelerations are in the offshore zone which controls the hazard
inland as well.
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Figure 5 Seismicity rates smoothed over 1/2 cells of latitude and longitude normalized to M>2
per 100 years per cell. Note shading is a logarithmic scale.

In the W-CC model (Figure 3c) two different a and b values are calculated based on two
models of earthquake catalog completeness and two maximum magnitude options - M6.9 and

M7.5 - available for each of the seismic source zones. Values are shown in Table I below.

Table I Recurrence Relation Estimates - W-CC Seismic Source Zone Model (1989)

-80 -78 -76 -74 -72 Seismic Sourc Com-
- Z uree pleteness | Mmax=6.9 Mmax=7.5
Figure 4¢ Seismic hazard map for 2% probability of exceedance in 50 years at 1.0 sec. period one Option
based on a W-CC seismic source zone model (Figure 3c). Mmax =6.9, b value = 0.904. Accelera- -
— - q . .. . Appalachian 1 a=-2.311 a=-2293
tions are similar in magnitude to the gridded model in 4a; the main difference is that the trend of b= 0904 b= 0.909
contours parallel the Appalachian zone. ' '
Appalachian 2 a=-2427 a=-2.293
b= 0.868 b= 0975
No.NY/Ontario 1 a=-1.464 =-1.451
b= 1.003 b= 1.006
No.NY/Ontario 2 a=-1.331 =-1.314
= 1.033 b= 1.037

The minimum magnitude used to integrate over magnitude interval between Mmin and Mmax

is Mb = 5.0 because this is the lowest magnitude for which we have Frankel et al. (1996)
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and Frankel et al. (1996) (solid line). A change in slope in the Frankel curves reflects the contribu-
tion of post-critical reflected phases from the Moho discontinuity at distances around 100 km.

Values are for the soft-rock reference site adopted by the USGS for National Hazard Maps. % 10% in 50yr
&8 T
Table III Magnitude, Mw, converted from local Mb _8’ o
<.
@
@
Local ‘Mb’ 500 | 550 | 600 | 650 | 7.00 o DMB 0.1s| Hazard Curves
Mw Johnston 1996 467 | 528 | 594 | 664 | 7.39 N ——
Mw Atkinson & Boore | 4.51 5.00 5.63 6.28 7.00
1995 .(7).001 0.;01 0.(;03 0.&)5 0(;‘0 0,1;25 O.(;SO 0 17)0 02;50 O.SIOO 1 OrOO
Acc (g)

hazard computations:

Figure 7 DMB hazard curves due to 80 different model parameters for 1.0 sec. and 0.1sec. peri-
Sources * b values * Mmax * Attenuation * Maggigudgs ods. Three different line types indicate 3 source configurations: dashed=gridded seismicity;
solid=offshore zone + gridded seismicity; and fine-dotted=W-CC source-zone model. Lines are
* * * * ;
2 sources * 3 bvals * 2 Mmax * 1 Attn (F) 2 Mags drawn corresponding to annual probabilities associated with risk levels of 10% in 50 years and
+ 2 sources * 3 bvals * 2 Mmax * 1 Attn (T) * 3 Mags 2% in 50 years.

+ 1 sources * 2 bvals * 2 Mmax * 1 Attn (F) * 2 Mags
+ 1 sources * 2 bvals * 2 Mmax * 1 Attn (T) * 3 Mags
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Table IV Weighted Uniform Hazard Spectral Values

Table V. Comparison of DMB Results (this study) with USGS National Hazard Maps

Period Mean Mean + USGS Haz | Risk Level
(s) 1sd Map
0.2 0.069 0.100 0.08 10% in 50yr
0.2 0.208 0.288 0.28 2% in 50yr
1.0 0.017 0.025 0.02-0.03 | 10% in 50yr
1.0 0.052 0.078 0.08 - 0.09 2% in 50yr

Figure 11 Uniform hazard spectra based on the mean (solid curves) or mean plus one standard
deviation (dashed curves) of the normal distribution fit to weighted models. Both risk level are

SPECTRAL ACC (G)
10% in 50 years | 2% in 50 years
Pe(zi)o d Mean Mizg * | Mean M?:g *
0.1 0.079 0.117 0.262 0.371
0.2 0.069 0.100 0.208 0.288
0.3 0.057 0.083 0.166 0.233
04 |- 0.045 0.065 0.132 0.187
0.5 0.036 0.052 0.108 0.154
0.6 0.030 0.043 0.090 0.130
0.7 0.025 0.037 0.076 0.112
0.8 0.022 0.032 0.065 0.097
0.9 0.019 0.028 0.058 0.087
1.0 0.017 0.025 0.052 0.078
2.0 0.007 0.010 0.031 0.053
4.0 0.002 0.005 0.016 0.028

shown.
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Steps for Translating Probabilistic Ground Motion Spectra into Hazard-Compatible Ground
Motion Records in the Time Domain for Engineering Use:

Deaggregate PSHA Results (for 2 given probabilities 5 and 2% in S0 years; and for 2 discrete
frequencies 1Hz and 10Hz) into one or more discrete (M*, d¥) pairs, depending on mode
topography.

Obtain the seismic parameters for the model of the regional crust through which seismic
waves propagate.

Choose regionally appropriate stress drop values (100 bar) and source depths A for the
sources, and use focal mechanisms (reverse faulting or oblique SS with reverse components of

slip).

Find a regionally appropriate “scattering function” that complements the viscoelastic
(intrinsic) damping (Qa* and Qf*) for the layers of the seismic model of the regional crust.

Compute Synthetic Ground Motion Records ( 3 components: Z, R, T) with full wave theory.

Convolve the Synthetic Seismograms with the Scattering Function to obtain the appropriate
ground motion duration and “coda-fall-off”.

Optional: Make the records in the time domain spectrally compatible with UHS for the
corresponding probabilities (2 and 10% in 50 years).




Pairs at Three Periods

M*, d*
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Magnitude/D

Table VI Deaggregation Results
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Table VII Velocity/Q Model for Crust and lower Sediments Vs (m/s)
o =) & S & 8 &
o o
Depth to | Thickness density g/ £ " ‘o 3 3 3 3 8, < <
top - km km Vs km/s Vp kn/s ce Qs Qp o L i ! . L °
0
g . l I~ 8
050 .050 0.61 1.07 2.0 120 240
.100 .050 0.97 1.69 2.1 200 400 R ] DM B .
o - = S
150 4.850 3.05 5.30 2.5 2000 2000 © ©
5.00 7.00 3.30 5.80 2.6 3000 3000 . -
3 R
12.0 7.00 3.75 6.56 2.8 3000 3000 °
19.0 16.0 4.00 7.00 3.0 3000 3000
g USGS -8
35.0 4.73 8.18 33 3000 3000 o
(0]
el
* Note: The Q values only account for viscoelastic (intrinsic) damping. The effective Q is lower 53 -3
than these values due to the scattering function described in the text. £l L
Figure 17 Shear-wave velocity, Vs, versus depth profile for the upper S00 meters comparing the
USGS soft-rock-reference velocities with the velocity model we use to characterize the DMB site a
(from 46m to 500m depth) for computing soft-rock ground motions. rS
§ T T T T T L T §
- . n n 8 g
- & & & g g 8 8
Vs (m/s)

Palearaic and

Precambrion rocks

Foults of
Triassic oge

T L QGOK

(w) wdeg

|
75°

Figure 15 Generalized geologic map of southeastern PA, eastern MD, northern DE, and part of
NJ. Young Coastal plain deposits onlap Paleozoic and Precambrian crystalline rocks, as well as
sedimentary and igneous rocks of the Triassic (from King, 1977). The Fall Line is the surface ling
of intersection between young, onlapping Coastal plain sediments and the older rocks beneath
them.
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Figure 14 An example of the method for simulating earthquake ground motions compared to an
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synthetic ground motion at station S17; b) scattering function; ¢) simulated ground motion; d)
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Original ond Hozord Consistent Time Series for 10 percent probability of exceedance in 50 years
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Figure 18a The original and hazard consistent time series for (mean plus 1 ) 10% probability
of exceedance in 50 years. A magnitude 5.05 at 25 kin is the earthquake (mode) that
contributes most to the expected level of hazard at 0.1 sec. period. The simulated

time series for the M/D combination (m5 25) is plotted in the top box. The

corresponding hazard consistent time series (m5 500.ts) is plotted just below.

The time series have roughly similar duration although the spectral content differs

drastically. A magnitude 7.25 at 295 km is the modal earthquake at 1 sec. period. The
simulated time series for this M/D combination (m7.2 295) is plotted in the third box,

and the corresponding hazard consistent time series (m7.2 500.ts) is plotted in the 4th box.
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Figure 18b The (mean plus 1 ©) uniform hazard curve is plotted (solid line) for the
10% probability of exceedance in 50 years. The dotted line shows the 5% damped
response spectrum of the m35 hazard consistent time series. The dashed line shows

the 5% damped response spectrum of the m7.2 hazard consistent time series. Both
spectra are within 5% difference of the target uniform hazard curve. Toro et al., (1994)
predictions for the m5 event at 25 km (squares) and the m7.25 event at 295 km are
plotted after applying soil correction factors (see Table II).




Original and Hazard Consistent Time Series for 2 percent probability of exceedance in 50 years
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Figure 19a The (mean plus 1 o) original and hazard consistent time series for 2% probability of
exceedance in 50 years. A magnitude 5.05 at 15 km is the earthquake (mode) most likely to contribute

to the expected level of hazard at 0.1 sec. period. The simulated time series for the M/D combination

(m5 15) is plotted in the top box. The corresponding hazard consistent time series (m5 2500.ts) is

plotted just below. The time series have roughly similar duration although the spectral content differs
drastically. A magnitude 7.3 at 295 km is the modal earthquake contributing to the hazard at 1 sec.
period. The simulated time series for this M/D combination (m7.3 295) is plotted in the third box, and the
corresponding hazard consistent time series (7.3 2500.ts) is plotted in the 4th box.
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Figure 19b The (mean plus 1 ©) uniform hazard curve is plotted (solid line) for the 2% probability
of exceedance in 50 years. The dotted line shows the 5% damped response spectrum of the m5 hazard
consistent time series. The dashed line shows the 5% damped response spectrum of the m7.3 hazard
consistent time series. Both spectra are within 5% difference of the target uniform hazard curve.

Toro et al., (1994) predictions for the mS event at 15 km (squares) and the m7.3 event at 295 km

are plotted after applying soil correction factors (see Table II).




The Toro

etal. (1994) predictions for the magnitude/distance combinations obtained from the deaggrega-

tion are all lower than the 85-percentile UHS, but especially low at long periods for the M5/15km

event: and at short periods for the M7/295km event.

DISCUSSION

Clearly, the choice of input parameters to a probabilistic seismic hazard affects the result. For
the PSHA at the site of the Delaware Memorial bridge, different source models, seismicity
parameters, and attenuation relationships were applied. The difference in source models causes
the greatest variability, more than a factor of 2 for | second period. The next most influential
variable in the modeling is the magnitude conversion formula. Using the Johnston (1996)
conversion from Mb to Mw yields response spectral accelerations 1.6 times greater, on average,
than those calculated using the Atkinson and Boore (1995) conversion. Differences in maximum
magnitude, b value, and attenuation relations result in smaller differences ranging from factors
of 1.1 to 1.4. These factors are not necessarily multiplicative, but where they are, a large range
of response spectral accelerations are possible. For example, a maximum ratio of 12 was found

between results from extreme options for the 2%-in-50-year exceedance level at 1 second period.




It is important to keep in mind the high degree of variability, because it is easy to lose sight of
during subsequent derivation and synthesis of time series. The 85-percentile uniform hazard
spectra were deaggregated to determine the earthquakes, defined by magnitude and distance,
that contributed most strongly to the selected hazard level. Rock-ground motions of these
dominant earthquakes were then simulated to account for average source properties, crustal
wave propagation effects, and duration of ground shaking. In turn, these source, path, and site
effects are all associated with uncertainties, though not quantified for time series simulations.
Finally, the ground~motion simulations were modified to be compatible with the 85-percentile
uniform hazard spectra, while still maintaining some of the “original” character of the
simulations, such as duration of shaking and phase arrival times. In the next phase of the project
the hazard-spectrum-compatible time series will be further modified by simulated propagation

through soft sediments specific to the DMB site. Methods used in this stu_dy are fairly standard.







Example for Hybrid, Constant Recurrence Period (CRP) Method.
This isn’t a PSHA and does not account for uncertainties Ua and Ue,
but allows to model hazard-consistent ground motions for specified Tr.
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log n = (-2.30510.642) - (0.7751x0.153) M (1b)

log N=1logn +log S +log T (2a)
loeN =a-bM +log S +log T (2b)
logl=0=a-bM +log S +log T (3)
log S =log (2nd2) =bM -a-log T (4a)
log d =(bM -a -log T -log 2x)/2 (4b)
logd =(0.775M +2.305 -log T -log 2x)/2 (7)

Table 2: Median distances d (km) expected for earthquakes with magnitudes M and
recurrence periods 1 (years) for an unconfined seismic source with uniform cumulative rate log
n(y1km?)=-2.305-775 M.

Magnitude M Average Recurrence Period T (years)------------
500 1000 2500 5000
5 22 16 10 7
6 34 38 24 17
7 131 92 58 42
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Figure 6. Three components of computed hard-rock accelerations for an earthquake with a recurrence
period of 1,000 years, and related magnitude-distance (M-d) combination of M=6 at d=38km. The
three components are from top to bottom: R, radial; T, transverse; and Z, vertical component.
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Figure 7. (Top): Transverse components of computed hard-rock accelerations for three equally
probable earthquakes with a constant recurrence period (CRP) of 1,000 years, but different
magnitude-distance (M-d) combinations M=5 at d=15.5 km; M=6 at d=38km; and M=7 at d=92 km.
(Bottom): 5% damped response spectra for the same 1000-year accelerations shown above. Note the
small earthquake at short distance dominates the short periods, the large earthquake at large distance
the long periods. The envelope to the three spectra is called a CRP envelope response spectrum.

Table 3: "New England" Crustal Structure Used in the TZB Ground Motion Simulations.

Layer Thickness DepthtoTop P-velocity S-velocity Density Qp Qs
(km) (km) (km/s)  (km/s) (gem3)  (intrinsic*)

1 2.0 0.0 6.00 3.50 2.50 3000 1500
2 130 2.0 6.10 3.60 2.60 6000 3000
3 250 15.0 7.00 4.10 2.90 6000 3000
4 o0 40.0 8.10 4.70 3.20 6000 3000

* These Q factors represent only the intrinsic anelastic absorption (attenuation) of crustal materials.
The additional attenuation from scattering is separately accounted for by the procedure of Horton (1994).

Table 4: Source Parameters Used for the TZB Ground Motion Simulations

Magn. Moment Stress  Corner Focal Strike  Dip Rake
M Mo Drop  Frequ.  Depth ~  -----eree (degr)--------
(Nmx1016)  (bar)  (Hz) (km)
5 3.98 100 1.10 7 0 80 20
6 126.00 100 0.35 7 observed at 22.5 degrees
7 3980.00 100 0.11 7 from strike

! lard Rock Envelope Response Spectra, Spercent domped, Transverse, 3 Recurrence periods [yrs): 500, 1000. 2500
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Figure 8. Constant recurrence period (CRP) envelope response spectra for three different constant
recurrence periods of CRP = 500, 1,000 and 2,500 years. Note that the 1,000-year spectrum exceeds
the 2,500-year spectrum at periods between about 1 and 2 seconds because of contributions from
super-critical Moho reflections for the constituent 1,000-year event of M=7 being located at d=92 km.
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Table 5: Plasticity Index (PI) Assigned to the Soils at TZB Site.

Rock or Soil PI
Organic Silts 30
Silty Clays 15
Silty Clays with some Sand 10
Sand 3
Varved Clays (interbedded clays and sands) 3
Gravel 0
Triassic Red Sandstone oo *
Serpentinite oo

* The concept of plasticity is not applicable to rocks.
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Figure 12. (Top): Shear modulus degradation G/G,,,, (labeled here p/p,.) as a function of
cyclic shear strain (in %) for soils with different plasticity index, PI. (Bottom): Damping ratio 8 as
a function of cyclic shear strain for soils with different PI. Both curves are taken from Vucetic and
Dobry (1991) and apply to normally consolidated or only slightly overconsolidated soils.
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