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Overview of Topics:

« NYC’s Expected Climate Change (21t Century)

Temperature

Precipitation

Storms (Hurricanes, Nor’easter’s, Winterstorms, Windstorms)
Sea Level Rise (SLR) & Coastal Storm Surge Inundations

« NYC’s Infrastructure Exposed to the CC Hazards,
and its Vulnerabilities.

 Risk (Expected Future $-Losses) due to CC

 Options & Costs to Reduce NYC’s CC Risks.




The Global Context:

Coastal urban agglomerations with populations more than 8 million in 2010
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Climate Change
in the U.S. Northeast

A Report of the
Northeast Climate Impacts
Assessment

October 2006

http://www.climatechoices.org/assets/documents/
climatechoices/NECIA_climate_report_final.pdf
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No. of days >90°F (32°C) No. of days >100°F (38°C)
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=> more air conditioning, heat strokes, energy, CO2, more warming !




2
NO. OF DAYS WITH RAIN or >5 cm
B Lower Emissions
1.5 + M Higher Emissions

0.5 -

Relative to 1961-1990 Average

Multiplier for Number of Events per Year

2010-2039 2040-2069 2070-2099

Many of these heavy rains occur during Nor’easters or Hurricanes



[ HISTORIC HURRICANE EVENTS
- TRACKING THROUGH
NEW YORK STATE 1888 - 1989

' ! %, Source: NOAA (FEMA HAZUS Database)
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CAT1=2.00ft (0.66m);

CAT2=6.6 ft (2.1m);
CATS=7.8ft (2.6m); CAT1=7.80ft (2.6m);

CAT4=13.7 ft (4.6m) CAT2=11.8 ft (4m);
CAT3=18.8 ft (5.5m);

o | CAT4=22.7 ft (7.5m)

CAT2=18.1ft

CATZ=24. 9 é&jm");

"CAT1=12.3ft igm ;
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CAT4=31.3 ft (10m).
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WTC - Site:
Questions:

Can the West-Tub Flood?
Can the East Tub Flood?
For which Storm Surge Elevations?

How will Flooding affect PATH
System?

* Hudson Tunnels

« Stations / Tracks / Control Systems
* New Transportation Hub?

* For how Long ?

¥ .\“.4‘20
fmage

Will Flooding of NYCT Subway
System(s) Affect / Connect with
PATH & WTC facilities?

If Answers to Above are YES:
What Sealing-Off Options Exist ?

What Pumping Facilities are
Planned ? Where ? Capacity?
Reliability ?

Is a Levee System || to West Street
Feasible? Up to what Height?

How long would it be effective,
given SLR.




GIS-based Risk Assessment Tool ‘HAZUS - MH’

(FEMA’s “Hazards in the United States - Multi Hazards Version”: Earthquakes, Wind, Flood).

Risk = Sum ( Hazard x Assets x Vulnerability )

$ / year or levent over Region probability per time $ value 0< V<1

Risk Expected Losses for either a scenario event ($)
or in terms of probabilistic annual losses ($/year)

* Hazards Probability per unit time of exceeding a certain hazard,
e.g. wind speed or flood height (P=1 for scenario event)

° Assets Replacement Value in Dollars for Buildings or
Infrastructure, (or $ / live !)

° Vulnerability  Dimensionless Value between 0 and 1. It is the
Damaged Fraction of Replacement Value of a Given Asset,
for the Specified Hazard Level the Asset is exposed to.

HAZUS-MH also has a Built-in Economic Model for Damage-Related, indirect
Economic Losses; e.g. for Losses related to building damage and closure;
but its default version is weak in assessing vulnerabilities of infrastructure
systems. Requires user input for infrastructure assets and their
vulnerabilities.




HAZUS ESTIMATED
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b NOAA SLOSH MODEL: Surge Heights Translated into Inundated Areas by Dan O’Brien, NYSEMO
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Sea Level Rise Makes a Bad Situation Worse !

The Battery, NYC
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Reduction in Return Period of the 100-Year Flood
due to Sea Level Rise Only (Constant Storm Frequency).

New York City
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In 2008 Mayor Bloomberg appointed the NPCC, NYC Panel on Climate Change

Annals of the New York
Academy of Sciences

Volume 1196,

Climate Change Adaptation in
New York City: Building a Risk
Management Response.

AND MOA MR W wonedepy 2Bueuy) Seun))

New York City Panel on
Climate Change 2010 Report
May 2010

......

s http://onlinelibrary.wiley.com/doi
/10.1111/nyas.2010.1196.issue-
— 1/issuetoc

cademy of Sciences



Appendix A

CLIMATE RISK INFORMATION

Climate Change Scenarios & Implications
for NYC Infrastructure

New York City Panel on Climate Change

Lead Authors
Radley Horton (Columbia University), Cynthia Rosenzweig (NASA, Columbia
University)

Contributing Authors
Vivien Gornitz (Columbia University), Daniel Bader (Columbia University),
Megan O'Grady (Columbia University)

FIGURE C.1. Comprehensive Set of Sea Level Rise Projections New York City and the

Surrounding Region
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TABLE C.1, Total Sea Level Rise Projections in Inches for New York City and the Surrounding Region for

Four Different Methods

Average

(minimum fo maximum)

IPCC Global Estimate
+ Local Subsidence

2020s

NA?

2050s

NA?

2080s

NA?

2090s!

(10.4 to 23.4)5

[PCC-adapted
Methods for the NYC
Region

37(141055)

9.7 (5010 136)°

17.8 (9.3 o 25.6)¢

22.2 (14910 30.0)

http://onlinelibrary.wiley.com/doi/10.1111
1j.1749-6632.2010.05323.x/pdf

RahmstorfHorton
Method + Local
Subsidence
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24.6(18.210 31.6)*
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REesPoNDING TO CLIMATE CHANGE
IN NEw YORK STATE
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NYC Street Length wmies) and % Flooded, for Three Flood Scenarios

Street Length, miles

100 Yr Storm l with 2-ft SLR I with 4-ft SLR l
' Flooded Street Length l ' Dry Street Length l Total: ~ 8,632 miles







Flood Risks to Subway and Road Tunnels from 100-y Coastal Storm Surge

2 Modes of Water Entry into Tunnels

a) Mostly Vertically via Subway Ventilation and Entrances
b) Sub-Horizontally into inclined Rail and Road Tunnels

ENTRANCE 1 VENTILATION




Modified Storm Surge Time-History
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Ve rt|Ca| FIOW through subway entrances & ventilation grates
] |

Average Flow Velocity (ft/s)

L = 20

TR g = gravitational constant

W, Volume of Water Entering Opening Area A,
W = fO(t) dt = fA V(1) dt

Average Flow Rate (ft3/s)

Qi(t) = AoVi(1)

A, = total area of openings (ft?)

ax108F

v36 minutes

500 1000 1500 2000

W, Volume of Water in Tunnel (cf)

Time t after Tunnel Flooding Starts, in seconds



Flooded Subway and Under-River Tunnels, Lower Manhattan, 1% Flood (length overflow)
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Flooded Subway and Under River Tunnels, Lower Manhattan, 1% Flood + 4' SLR (length overflow)
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Flooded Under River Tunnels, Midtown, 1% Flood + 2' SLR (length overflow)
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Flooded Under River Tunnels, Harlem River Crossings, 1%

Flood + 4' SLR (length overflow)

Legend
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* What is the expected direct damage from the
flooding of the transportation infrastructure ?

* How long will it take for the various components of
infrastructure to have their services restored ?

* What will be the economic losses from the trans-
portation outages and extended restoration times ?




Combined (economic + physical-damage) Losses for the New York City
Metropolitan region for a 100-year storm surge, for three sea level rise
scenarios S1, S2, S3 (for 2010 assets with 2010-dollar valuation); and
assuming linear recovery of economy over the minimum outage time of the
subway system for (S1) 21 days, (52) 25 days, and (S3) 29 days, respectively.

Economic Losses | Direct Physical

Total L
Scenario from Outage Damage ($ ota' S
($ billion) billion) ($ billion)

2(1)6 current sea level 48 10 $58

(2-foot rise in sea

level) 2040s >7 13

$70
/

S3 (4-foot rise in sea

level) 2080s 68 16

v s84

Multipliers for 40 and 80 year time horizons as a function of growth rate r when p=2 (i.e. add each year 2% of initial
asset value).

Effective Economic Growth Rate r (%/year): 0.0 1.50 1.75 2.00
S2-Loss Multiplier for 40 Years: 1.8 291 3.16 3.44
S3-Loss Multiplier for 80 Years: 2.6 6.39 7.50 8.83




For Transportation, and Specifically the Subway System,
what measures should be undertaken to avoid such
losses?

1. In all current and future flood zones, seal all ventilation street grates
and replace passive ‘open’ ventilation with forced ‘closed’ ventilation.
This requires new fan plants, and uses more energy.

2. In all flood prone zones, provide safe flood gates at all entrances and
ventilation shafts; and/or safer: surround all entrances and openings by
sufficiently high berms and/or levees: “Taipei-Solution™ Go up before you
step down !

3. What are the Costs? Needs engineering studies, but costs are likely to
be at least 25% of the expected avoided losses: i.e. in excess of $ 15
to 20 Billion ?




Structural “Solution”: 3 or 4 Barriers. Probably Unsustainable. Why?
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FIGURE 2. Flexible Adaptation Pathways

A
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Status quo
Setting inflexible adaptation
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Risk

mm 2=
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.
Monitor & Reassess!

ADAPTATION ASSESSMENT

GUIDEBOOK

New York City Panel on Climate Change

Lead Authors
David C. Major (Columbia University), Megan O'Grady (Columbia University)




Risk Management Tools: Minimizing the Risk via Mitigation and Adaptation
Measures (Let’s use the Risk Equation and GIS-based Models!) :

Risk = Sum (Hazard % Assets x Vulnerability)

| |
Mitig.: Reduce GW + SLR Hazards

Adapt.: Land Use Planning & Zoning,
Considerate Placements of new Assets,
Relocation of Essential Assets.
Levees & Dams (?).
Equity Issues.

orby RiSK = Sum (Hazard x Assets % Vulnerability )

| |
Adapt.: Good Engineering, Construction Quality-Control,
Codes and Code Enforcement, Retrofitting,
Raising Assets in Place
Reinforcing Levees and Pump Stations




The good Message is

(from MMC Study, see below):

For every $1 invested in
Disaster Loss Mitigation & Prevention
there is, on Average, a Return of
~$4 Saved in NOT Incurred Losses.

National Institute of Building Science
Multi-hazard Mitigation Council
(NIBS/MMC) Study “Mitigation Saves™:

http://www.nibs.org/MMC/MitigationSavingsReport/natural_hazard mitigation_saves.htm
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1. Hazard Assessments for Critical Structures must {\) (!
strive for the Longest Possible Records to catch ! |
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2. Systematic Monitoring of New Geo-Science ‘CE*;

Findings that can be Relevant to Updating Disaster 9

| Hazards and Risks Is an Essential Government i
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3. Decision Makers and Regulators need to have
Protocols in Place, and Prudently Exercise them, to h\*
Incorporate these New Findings in a Timely, -
Socially Responsible, and Effective Way
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