1 Photoremovable Protecting Groups: How fast are they really? Hassen Boudebous, Dominik Heger, Bruno Hellrung, Yavor Kamdzhilov, Lubica Klíčová, Marek Mac, Pavel Müller, Markus Schwörer, Peter Šebej, Tomáš Šolomek, Jürgen Wintner Richard Givens, Thomas Kiefhaber, Petr Klán Photoremovable Protecting Groups: How fast are they really? Hassen Boudebous, Dominik Heger, Bruno Hellrung, Yavor Kamdzhilov, Lubica Klíčová, Marek Mac, Pavel Müller, Markus Schwörer, Peter Šebej, Tomáš Šolomek, Jürgen Wintner Richard Givens, Thomas Kiefhaber, Petr Klán 2 Photoremovable Protecting Groups, Phototriggers, Caged Compounds Goeldner, Givens, Dynamic Studies in Biology, Wiley-VCH, 2005 3 Activation of an ionotropic receptor with GABA Kramer, Nat. Methods 5, 2008, 331. Remote control of ion channels 4 D. Gust, Acc. Chem. Res. 2001, 34, 40 Gust P. Anfinrud, PNAS. 2010, 107, 7281 Time-resolved X-ray: Myoglobin-CO X-ray scattering differences recorded over 8 decades of time: 100 ps to 10 ms 5 R. S. Givens, H. Bayley, J. Am. Chem. Soc. 2002, 124, 8220 Caged Protein Kinase A Monitoring intracellular protein kinase activity D. H. Lawrence, JACS, 2003, 13358 6 Kiskin, Eur. Biophys. J. 2002, 30, 588 Caged fluorescers: Transport phenomena, mixing, motion flow deep uv laser pulse Near uv lamp Visible fluorescence • Focused NIR-pulses of fs-duration • Fluorescence excitation for imaging or release of caged reagents in addressable 0.1 fl-volumes (3-d submicron resolution) • Little radiation damage or scattering in tissue • Reagents diffuse out of volume within ~ ms: need fast release! W.W. Webb, Science Biophys. J. 1999, 76, 489 M. Goeldner, Bioorg. Med. Chem. 2010, 18, 7753 I3-dep. 2- and 3-Photon Excitation 7 Light brings a new dimension to chemistry Calculations. Rules-of-thumb. Guidelines. O O OAc CH2 hν hν O OAc O 8 “Mirror image of GS” • • • • Rule: Opposite to ground state reactivity • PMO (Dewar, Dougherty) The photoproduct is often less stable than the starting material Rule: Opposite to ground state reactivity • Charge distributions (Zimmermann) OH OAc Δ or hν OH OH + HOAc H2O ground-state: ortho, para excited-state: meta hν 9 Rule: Opposite to ground state reactivity • Woodward-Hoffmann rules for pericyclic reactions (retaining some symmetry elements along the reaction path) ground-state allowed excited-state forbidden excited-state allowed ground-state forbidden No exceptions! No exceptions? An even simpler use of symmetry: • Electron count (Salem, Dauben, Turro) hν n,π* A S A O H H H O H H H • • OH 10 Note: The path retaining symmetry is probably not the best (not the most downhill)! It is chosen merely because symmetry arguments are so simple to use. At geometries with no symmetry (C1), all wavefunctions belong to the totally symmetric representation. Do potential energy surfaces of the same symmetry cross? ! Adiabatic versus diabatic reaction paths (Förster) class I hot ground state reactions (~never in solution, common in gas phase) class II A B B* adiabatic reactions (exceptional) OH O– + H+hν *1 H2O class III diabatic reactions conical intersections (common) 11 Markus Schwörer Yuri Il‘itchev Marek Mac Caged ATP: The „gold standard“ Kaplan/ Trentham/ Corrie/ Mäntele/ Gerwert JACS 110 (1988) 7170; 117 (1995) 10311; 119, 4149 (1997) • Time resolved FTIR detection using 13C, 15N, 18O isotopomers • Release of ATP single exponential, „synchronous“ with aci-nitro anion decay • kapp(ATP) ≈ 52 s–1 at pH 7 and 10 ˚C CH3 NO2 O O O– O O O– O O O– O O N OH OH N N N NH2 CH3 NO Ohν + ATP 12 Reaction mechanism: common wisdom C X NO2 N O O X R S1 C X N+ O– O– T1 C NO + X – hν H R R H R O + H+ aci-anion decay: • via nitronic acid D. R. Trentham, JACS 110, 1988, 7170 • cycliz‘n not reversible • not necessarily ratedetermining for release o-Nitrotoluene: pH–rate profile Helv. 84, 2001, 1441 13 o-Nitrobenzyl methyl ether: pH–rate profile JACS 2004, 126, 4581 N+ MeO O– OH N O MeO O H NO OH – MeOH MeO NONO2 MeO hν O aci-decay hemi decay aci-decay rate- determining cyclo decay Aci ->isoxazole ∆A x 103 t / 100 ms ϖ / cm–1 ~ MeO N + O– OH CD3CN CD3CN N O OH MeO H hν 1248 cm–1 1090 cm–1 k = 6.6 × 103 s–1 14 ∆A x 103 t / s ϖ / cm–1~ Hemiacetal->nitroso N O OH MeO H NO MeO HO H CD3CN NO O H k = 4.5 × 10–2 s–1 1085 cm–1 1500 cm–1 1504 cm–1 1698 cm–1 not shown –MeOH 1090 cm–1 k - 0.2 s–1 JACS 2004, 126, 4581 15 Mechanism of release C X NO2 C X N+ O– OH C NO –HX – hν B– R RH R O C X N+ O– O– R + H+ pKa - 3 general base cat. specific acid cat. N O O X R B– H C X NO R OH general base cat. H2O JACS 2004, 126, 4581 OH N + O– OH ROH NO2 R O N OH OH RR N O O–H HO O NO R hν path bR = H, Me – H2O path a – H2O o-Nitrobenzyl alcohol Photochem. Photobiol. Sci. 2005, 4, 33 16 HO N + O– OH CD3CN CD3CN hν 1247 cm–1 1695 cm–1 (C=O) k = 6.6 × 104 s–1 O N OH OH PPS, 2005, 4, 33 O O HO N COO– COO– O O N – OOC – OOC NO2 nitr-5 R. Y. Tsien, JACS 1988, 110, 321. Caged Ca2+ 17 NO2 X NO2 X OMe MeO Ph O X Ph O X OMe OMe O X O O X O X OMeO O X HO O N OMe HO O X Rich Givens, Boris Sket C. S. Rajesh Hassen Boudebous JACS 2000, 122, 611 Benzoin phosphates 250 300 350 400 450 500 550 600 650 0.00 0.04 0.08 0.12 λ / nm ² A Ph OO Ph D. L. Phillips, Chem. Eur. J. 2007,13, 2290 18 JPC A 2007, 111, 2811. Dimethoxybenzoin cages Corrie, Wan, JOC, 1997, 62, 8278. Phillips, Chem. Eur. J. 2010, 16, 5102. Sheehan, JACS, 1971, 93, 7222.Sheehan, JACS, 1971, 93, 7222. Corrie, Wan, JOC, 1997, 62, 8278. JPC A 2007, 111, 2811. Picosecond pump–probe spectroscopy (CH3CN) MeO OMe O Ph H MeO OMe O Ph X Two-wave appearance of released HX: k = 1 x 109 s–1, 1 x 106 s–1. MeO OMe O Ph 19 NO2 X NO2 X OMe MeO Ph O X Ph O X OMe OMe O X O O X O X OMeO O X HO O N OMe HO O X Bruno Hellrung, Jürgen Wintner, Dominik Heger, Rich Givens p-Hydroxyphenacyl (pHP) diethylphosphate 20 JACS, 2000, 122, 9346, JACS, 2008, 130, 3307. p-Hydroxyphenacyl (pHP) diethylphosphate HO O X hν H2O, air –HX HO CO2H O O H2O X = OPO(OEt)2 O – CO HO OH H2O Kresge et al., JACS, 2002,124, 6349 21 MP2/6-31G* (PCM acetonitrile) log(k/s–1) = 13 – 4.0/2.3RT = 10 O O O O O • • + CO ‡ O O • • T S ‡ 4 101.7 57.4 21.3 T1(1a) 44.3 6 3 5 O O O + CO MP2 6-31G* Ea (g) = 13.3 kcal/mol Ea (“CH3CN”, PCM) = 4.0 kcal/mol log(k/s–1) = 13 – 4.0/2.3RT = 10 22 D. L. Phillips, JACS, 2006, 128, 2558 ns-TRIR measurement: appearance of final product p-Hydroxyphenacyl (pHP) diethylphosphate 23 Why are quantum yields << 1? p-Hydroxyphenacyl (pHP) diethylphosphate p-Hydroxyacetophenone 24 p-Hydroxyacetophenone JACS 2000, 122, 9346 p-Hydroxyacetophenone triplet D. L. Phillips, JOC 2005, 70, 8661 Tomáš Šolomek 25 p-Hydroxyacetophenone triplet state in water Dominik Heger, Lubica Klíčová, Peter Šebej, Tomáš Šolomek Ionization via an ion pair intermediate Ionization competes with release in pHP cages 26 W. F. van Gunsteren, Angew. Chemie 2001, 40, 351 Van Gunsteren Protein folding Energy Landscapes in Protein Folding Flat Energy Surface Smooth Funnel Rough Landscape K. Dill, NSB, 4, 10-19, 1997 27 Triplet–triplet energy transfer 350 400 450 500 550 600 650 0.0 0.2 0.4 0.6 0.8 λ/ nm 20 ns 100 ns 1 µs 10 µs 25 µs S O 3 * 3 * ² A S O 3 * 3 * Triplet–triplet energy transfer 0 200 400 600 400450 500550 600650 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 200 400 600 400450 500550 600650 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Time [ns]Wavelength [nm] TransientTripletAbsorbance S O O N (Gly–Ser)3–Gly–Ala–(Gly–Ser)–CO2 – 28 Kiefhaber, PNAS 1999, 96, 9597 The speed limit of protein folding k0=(8.7±0.8)·107 s-1 k ~ n-2.1±0.4 Petr Klán, Yavor Kamdzhilov NO2 X NO2 X OMe MeO Ph O X Ph O X OMe OMe O X O O X O X OMeO O X HO O N OMe HO O X 29 Photoenolization of 2-Methylacetophenone Helv. Chim. Acta 1977, 60, 259 O S1 (n,π*) T1 (n,π*) CH2 OH 3E OH OH Z E slow, requires proton transfer JACS 2001, 123, 7931 MeOH CH2 + OH O MeO – Cl– MeOH –H+ CH2 OH Cl CH2 + CH2 O– CH2 O Cl H – HCl O benzene Z E +H+ –H+ Formation (inset) and decay kinetics of the xylylenol transient (λ0bs = 390 nm) formed by LFP of 1 in benzene solution. Phenacyl chloride 30 Petr Klán and coworkers, Brno Dimethyl phenacyl cages O X X = OPO(OEt)2, OSO2R PPS, 2002, 1, 920 MeO O Cl hν O O moist solvent dry solvent MeO JOC, 2006, 71, 8050 PPS, 2007, 6, 50 PPS, 2005, 4, 43 JPC A, 2001, 105, 10329 O N O amines, amino acids alcohols, phenols carboxylic acids O O R O O R O 5-Ethylnaphthoquinone protecting group L O O OO O O L L MnO2 + Δ L = Br, OAc, OPO(OEt)2 O O L– O O hν + H+ + O O H L L Photochem. Photobiol. Sci. 2007, 6, 865 31 0 2 4 6 8 10 12 14 16 18 0.00 0.05 0.10 0.15 0.20 O O OH O Br + HBr H 570 nm 385 nm ΔA t / μs 350 400 450 500 550 600 0.0 0.1 0.2 0.3 O H O O PO(O Et)2 H O O ΔA λ / nm quantum yields of release in aqueous solution: HBr (X=Br): 0.35 ± 0.06 (X=diethyl phosphate): 0.70 ± 0.08 5-Ethylnaphthoquinone protecting group X O O X OH O O O hν + XH X– = Br–, AcO–, (OEt)2OPO– Bogdan Tokarczyk NO2 X NO2 X OMe MeO Ph O X Ph O X OMe OMe O X O O X O X OMeO O X HO O N OMe HO O X 32 In search of fast alcohol release N OMe N hν + MeO– + MeOH 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 0.00 0.01 0.02 0.03 0.04 0.05 566 nm fit 490 nm fit ΔOD tim e / ns 440 ± 40 ps -1 0 1 2 3 4 5 6 0 .0 0 .2 0 .4 0 .6 0 .8 1 .0 D a ta F it intensity(au) tim e / n s 480 ± 50 ps Prof. W. Abraham, Berlin Jürgen Wintner, Pavel Müller NO2 X NO2 X OMe MeO Ph O X Ph O X OMe OMe O X O O X O X OMeO O X HO O N OMe HO O X 33 Caged fluorescers Zhao, JACS 2004, 126, 4653 Belov, Angew. 2010, 49, 3520 del Marmol, Anal. Chem. 2010, 82, 6259 Coumarinmethyl cages R. Schmidt, V. Hagen, JOC 2010, 75, 2790; JPC A, 2007, 111, 5768 34 pKa,1 = 3.44, pKa,2 = 6.31 Titration 1 2 3 4 5 6 7 8 9 0.0 0.2 0.4 0.6 0.8 1.0 pHc/ctot O + OHHO O OHO O O–O 400 500 0.0 0.1 0.2 0.3 0.4 0.5 0.6 λ/nmA O OHO O O–O O + OHHO O + OHHO O O–O O OHO O + OHHO O OHO O OHHO O O–O O O–HO O O––O K K– K+ = E+ E E– E2– pKK a,1 = 3.5 pKE = 2 pK' E = 3 pKE a,1 = 4.5 pKK a,2 = 6.3 pKE a,2 = 7.3 pKK a,3 = 13.6 pKE a,3 = 10.6 rate determining 425 nm 450, 470 nm 482 nm 35 2 4 6 8 10 12 14 -6 -4 -2 0 pH log(k/s-1) O OHHO O OHO Preliminary work ?? Pavel Müller, Jürgen WintnerP. Klán and coworkers 36 Desiderata Conclusions • Can YOU use phototriggers? • Leaving group ability • Release rate • Solubility • Stability in the dark • Time-resolved X-ray of Enzymes • Neuronal signal transmission • Transport phenomena 37 Questions?