Completing the Square

http://www.brightstorm.com/math/algebra-2/quadratic-equations-and-inequalities/solving-a-quadratic-by-completing-the-square/

What is a quadratic equation?

Read the text about Solving a quadratic equation and fill in the missing verbs.

happens completed subtract take add figure include solve make

keep change foiled isolate turn

Solving a quadratic equation by completing the square. So we already know how to use these square root properties to 1)...... a quadratic. So if we're ever given with an equation with something already squared, all we want to do is isolate that term, so in this case x-3 squared is equal to 5. 2).... the square root of both sides. So we end up with x-3 is equal to plus or minus root 5. Remember whenever you use the square root as a tool we have to 3)...... plus or minus. Then solve for x we just to add 3 to both sides leaving us with x is equal to 3 plus or minus root 5, okay.

So the square root property is a really handy property when we have something squared, okay? The problem is that we don't always have something squared, okay? So we're going to go to another example where we are going to use this completing the square in order to get it in this form. Okay.

So what we want too do is to 4)..... this problem into something squared, okay? The first step that we want to do is 5)...... all our x terms together. So what we want to do then is subtract the 10 over x squared plus 8x is equal to -10. Okay. So I now want to turn this piece into something squared, okay? The x squared and the 8x are fixed. I can't change those. Okay? I left a little space at the end because we can add something to both sides and our problem doesn't 6).....

So what we want to do is 7)...... out what we can add there in order to make a perfect square including this 8x, okay. So I know that this has to be a x and it has to be a plus. Okay? This middle term is positive so that tells us it has to be a positive sign. But what we want to do is somehow figure out what we can put here in order to get 8 and our middle term if we 8)...... it out, okay? And the trick for that is you take this middle term and divide it by 2. Okay? So in this case 8 divided by 2 is 4. That is what is going to go right here. Okay? And what 9)...... when we foil this out what we end up getting is x squared plus 8x plus 16.

So what I've really done is by including this 4 in here I've added 16 to my initial equation. So I've added 16 to this side, I also have to add 16 to this side to 10).... it balanced. Whatever we do to one side we also have to do to the other. Okay? So what we actually have in this case then is x+4 quantity squared is equal to 6. Okay?

So this is what's called completing the squares, okay. We took our term, figured out what we needed to 11)...... to both sides to 12)...... it a perfect square. So that middle term divided by 2, that goes in here and then that new term squared is get what gets added in both sides and then we're able to rewrite this as a perfect square.

6. Look and read: The two roots of a quadratic equation are denoted by α and B. We	Example: Factorisation of $x^2 + x - 12 = 0$ gives $(x - 3)(x + 4) = 0$. The roots of the equation are therefore 3 and -4 .
Complete these two sentences: a) If (b ² - 4ac) is positive, b) If (b ² - 4ac) is zero,	A quadratic equation has two solutions, called roots. If the factors of a quadratic equation can be found easily, then we can find the roots by factorising.
If $(b^2 - 4ac)$ is negative, then $\sqrt{b^2 - 4ac}$ is imaginary and no real roots satisfy the equation.	3. Look at this:
The two roots are at $\frac{-b+\sqrt{b^2-4ac}}{2a}$ and $\frac{-b-\sqrt{b^2-4ac}}{2a}$	1) $5x^2 + 7 = 20$
$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	d) $5x - 3 = 4x^2$ c) $x^2 + x = 1$
If the factors of a quadratic equation cannot be found easily, then we can find the roots by using the formula	$\frac{3x^2 = -1}{3x^2 = 3x} \qquad \frac{3x^2 + 0x + 1 = 0}{3x^2 = 0}$
5. Look and read:	Over General form a b $2x^2 - 3x = 2$ $2x^2 - 3x - 2 = 0$ 2 2
Section 2 Development	Now change the following equations to the general form for quadratic equations and give the values of a, b and c. The first two are done for you:
(Note: This operation is known as completing the square).	where x is the variable and a, b and c are constants. A quadratic equation is generally given in the form $ax^2 + bx + c = 0$.
c) $x^2 + 7x$	A quadratic expression is generally given in the form and the
a) $x^2 - 12x$ b) $x^2 + 3x$	2. Read this:
Write similar sentences about the following expressions:	c) $x + 2y + z$ () $x^3 + 2x - 16$
$x^{2} + 20x + 100$ factorises into $(x + 10)^{2}$.	-
For example, $x^2 + 20x$ can be made into a perfect square by adding 100.	
x^2 + ax can be made into a perfect square by adding $\left(\frac{a}{z}\right)^2$.	Say which of the following are quadratic expressions:
Factorisation of $x^2 + 12x + 36$ gives $(x + 6)^2$. Therefore the expression is known as a perfect square.	raised to the power of 2 (e.g. x^3). It cannot contain number powers greater than 2 (e.g. x^3 , x^4 , etc.)
4. Read this:	A quadratic expression is an expression of the second seco
d) $x^2 + 5x - 6 = 0$	Quadratic equations
b) $x^2 - 9x + 18 = 0$	1. Read this:
$x^{2} + 7x + 10 = 0$	Section 1 Presentation
Now make similar sentences about the following:	Unit 8 Process 3 Cause and Effect

52

can show the six possible cases by drawing graphs.

 \hat{O}

4																	
$x^2 - 10x - 200 = 0.$ Factorising, we obtain $(x + 10)(x - 20) = 0$	8. Look at this example:	c) $x^2 - 5x + 6 = 0$ Solution of this equation gives roots at 2 and 3. f) $a - \frac{a}{x^2} = 0$ Multiplication of both sides by x^2 gives $ax^2 - a = 0$.	= 18y + 10x + 32	$x^2 - 2x - 3 = 0$ $\frac{25}{10}$	Now change the following examples to form (ii):	(i) Factorising the left-hand side gives $(x-3)(x+1) = 0.$	/ Look at these examples:			$\frac{d}{d}$ e e		real roo ession	• If $(b^2 - 4ac)$ is negative and a is	pression is positive for all other values of x.	b) • If $(b^2 - 4ac)$ is zero and a is positive, then the two real roots α and β coincide, and the quadratic	expression is only ne lues of x between α and	• If $(b^2 - 4ac)$ is positive and a is positive, then there are two real
angle of rudder	Help	$\frac{1}{1000} = \frac{1}{100} = 1$	angle of sail	current	9. Look and read:	Section 3 Reading	This gives the formula for finding the roots of a our dentic course	we obtain $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	we obtain $x + \frac{b}{2a} = \frac{\pm \sqrt{b^2 - 4ac}}{2a}$	we obtain $\left(x + \frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a}$	we obtain $x^2 + \frac{b}{a}x + (\frac{b}{2a})^2 = (\frac{b}{2a})^2 - \frac{c}{a}$	we obtain $x^2 + \frac{b}{a}x = -\frac{c}{a}$	$\dots \text{ we obtain } x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$	Given $ax^2 + bx + c = 0$	subtracting, subtracting, taking the square root,	completing the square, dividing, factorising,	Use expressions from this list to complete the calculation below.

7