Complex Numbers, Part 7 - Why We Need Them

http://www.youtube.com/watch?v=rBOzwh5-iGc&feature=related

Pre-listening: What can we do with numbers?

•••••	• • • • • • • •	••••	• • • • • • • • • •	• • • • • • • • • • • •
• • • • • • •	• • • • • • • • •	•••••	• • • • • • • • • •	• • • • • • • • • • • •
• • • • • •		• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • •
•••••		• • • • • • • • • •	•••••	•••••
•••••	• • • • • • • •			
• • • • • •		• • • • • • • • • •	•••••	•••••

Listening. Answer questions.

1)	What are counting numbers?
2)	What does the speaker say about the set of counting numbers?
3)	Why is 0 useful in multiplication?
4)	What is the difference between natural and whole numbers?
5)	Which numbers are mathematically closed over subtraction?
6)	What does "rational" mean in mathematics?
7)	Where are equations useful in real life?
8)	What is the real number line?
9)	Which example of an imaginary number does the speaker give?
10)	Which famous mathematician dealt with the topic of numbers?

A THE REAL PROPERTY.

division and multiplication. Arithmetical operations on numbers include addition, subtraction,

The sum of 9 and 14 is 23. One number may be added to another. The result is called the sum.

Make similar statements using these words:

- subtracted/difference
- ୦ ୦ ୭ multiplied/product
- divided/quotient

3. Look and read:

An integer is divisible by 3 if the sum of its digits is divisible by 3. An integer is odd if it is not divisible by 2 An integer is even if it is divisible by 2.

Now make similar statements about the divisibility of integers by:

ළ 10 b) 9 c) 4 d) 8 e) 5 f) 6 g) 11

4. Look at this set of numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23

- Can you continue this set? It is made up of prime numbers. What is a prime number?
 - ೮೭

Section 2 Development

5. Look and read:

6. Read this:

number below the line. parts, the denominator and the numerator. The denominator is the A number such as $\frac{3}{5}$ is called a fraction. A fraction comprises two

- What is the numerator?
- <u>b</u> 2 What are the numerator and denominator separated by?

7. Read this:

as a proper fraction. divided by the same number (51) to give $\frac{2}{3}$. an improper fraction. If the denominator is less than the numerator, the fraction is known as If the numerator is less than the denominator, the fraction is known In the fraction $\frac{143}{153}$ both the denominator and the numerator may be

Make similar sentences about these fractions:

a) 18 ь) <u>24</u> c) 162 d) 342 ٩ <u>243</u> 405

fractions be reduced? This is called cancelling or reducing the fraction. Can the following

<u>78</u> 90 450 h) 40 5 455 j) {}

8. Look and read:

- Both 12 and 18 are divisible by 6
- 12 and 18 are both divisible by 6
- Neither 12 nor 18 is divisible by 5
- 18 is divisible by 9, whereas 12 is not (divisible by 9)
- 18 is divisible by 9. 12, on the other hand, is not (divisible by 9).

Now make similar sentences about the following pairs of numbers:

a) 10, 20 b) 14, 21 c) 118, 354

9. Look and read:

For example, $150 = 2 \cdot 3 \cdot 5^2$. Any integer may be represented as the product of prime numbers 20 can be factorised into 22.5. This is known as factorising a number.

Make similar statements about these numbers:

e 16 ಶ 24 c) 36 d) 370

7

Unit 3

The number system

We can represent any of these numbers on the number line. We can also represent fractions of numbers, e.g. 1.5, $\frac{2}{3}$, -3.4 etc., on the number line. The The set of positive and negative integers consists of all the natural numbers 1, 2, $3, 4, \ldots$, plus the same numbers preceded by the minus sign, $-1, -2, -3, \ldots$ rational numbers are composed of both the integers (or whole numbers) and the non-integers (or fractions). All rational numbers may be represented as integers, whereas irrational numbers cannot be expressed in this way. Irrational numbers include numbers like π (3-14159), $\sqrt{2}$ (1-41421), $\sqrt[3]{5}$ (1-70997), and so on. All these numbers, both rational and irrational, make up the set of real numbers, and may be represented as points on a number line. Imaginary Finally, a complex number is a number which contains both a real number and numbers, on the other hand, cannot be represented as points on a number line. They include numbers such as $\sqrt{-1}$, which is usually expressed by the symbol i a fraction where both the denominator and the numerator an imaginary number, for example $6 + \sqrt{-4}$.

a) III	b) The operation that uses the symbol \neq is called	c) Eighteen subtracted twenty equals	d) An improper fraction exists when the is greater than the	e) The result of a division problem is called	f) The product is the result when one quantity is
ð	<u>م</u>	ି	Ŧ	ି	Ģ

The product is the result when one quantity is more another.