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1.

ABSTRACT

Finite semigroups appear naturally in Computer Science, namely as syntactic semigroups of regular
languages, transition semigroups of finite automata, or as finite recognizing devices on their own.
Eilenberg's correspondence theorem gives a general framework for the classification of regular
languages through algebraic properties of their syntactic semigroups. Here is the resulting typical
problem on the algebraic side: a recursively enumerable set R of finite semigroups is given and one
wishes to decide whether a given finite semigroup is a homomorphic image of a subsemigroup of a
finite product of members of R. Since such a problem is often undecidable, special techniques have
been devised to handle special cases. Relatively free profinite semigroups turn out to be quite
useful in this context. They play the role of free algebras in Universal Algebra, capturing in their
algebraic-topological /metric structure combinatorial properties of the corresponding classes of
languages.

The aim of this short course is to introduce reltively free profinite semigroups and to explore two
topics in which there have been significant recent developments, namely the separation of a given
word from a given regular language by a regular language of a special type (for instance, a group
language), and connections with symbolic dynamics.

Tentative syllabus and preliminary references:

Relatively free profinite semigroups. (1 lecture)

Reference:

[1] J. Almeida, Profinite semigroups and applications, in "Structural Theory of Automata, Semigroups, and
Universal Algebra”, V. B. Kudryavtsev and |. G. Rosenberg (eds.), Proceedings of the NATO Advanced Study
Institute on Structural Theory of Automata, Semigroups and Universal Algebra (Montréal, Québec, Canada,
7-18 July 2003), Springer, New York, 2005, pp. 1-45.

2. Separating words and regular languages. (2 lectures)

Reference:

[2] S. Margolis, M. Sapir, and P. Weil, Closed subgroups in pro-V topologies and the extension problem for
inverse automata, Int. J. Algebra and Comput. 11 (2001) 405-455.

Relatifely free profinite semigroups and Symbolic Dynamics. (2 lectures)
Reference:
[1] (see above).
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» A regular language is a subset of the free monoid A* on an
alphabet A admitting a regular expression, i.e., a formal
expression describing it in terms of the empty set () and the
letters a € A using the following operations:

» (K,L) — KU L (union)
» (K, L) — KL (concatenation)
» L L* (Kleene star)

» The syntactic congruence of the language L C A* is the binary
relation o, on A* defined by:

uopv ifVx,y e A" (xuy € L& xvy € L).

» The syntactic monoid M(L) of the language L C A* is the
quotient monoid A* /o .
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THEOREM 1.1

The following conditions are equivalent for a language L over a
finite alphabet A:

(1) L is regular;
(2) L is recognized by some finite automaton;

(3) L is recognized by some finite complete deterministic
automaton;

(4) the syntactic monoid A* /o on A* is finite;
(5) L is recognized by some homomorphism ¢ : A* — M into a
finite monoid, in the sense that L = ¢~ 1¢L.

COROLLARY 1.2

The set Reg(A*) of all regular languages over the alphabet A is a
Boolean subalgebra of the Boolean algebra of all subsets of A*.
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EXAMPLE: (RESTRICTED) DYCK LANGUAGES

> Regular expression: L; = (ab)* a
» Minimal (incomplete) automaton: Hm
> Transition monoid (M(Ly)): b
| o 1 | a b ab ba 0
a 1 - a 0 ab 0 a 0
b |- o b|ba 0 b 0 0
ab 0 - ab a 0 ab 0 0
ba - 1 ba 0 b 0 ba 0
0 - 0 0 0 0 0 0

» Presentation: (a, b; aba = a, bab = b, a* = b*> = 0).

One may then compute Green's relations, which are summarized
in the following eggbox picture:
e same row: elements generate the same right ideal (R)
e same column: elements generate the same left ideal (L)
e elements above are factors of elements below (> 7) “ba| b
e *e marks an idempotent (e = e)
o the “eggboxes” are the J-classes (J = >7 N <y)

eD=RoL=LoR

e in a finite monoid, D = J
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Minimal (incomplete) automaton:

Regular expression: L, = (a(ab)*b)* Hm:@
b b

Presentation of syntactic monoid M(L,):
(a, b; aba = a, bab = b, a*b*a*> = a°, b*a’b® = b?,

ab’a = ba’b,a*> = b> = 0)

Eggbox picture:

*ba| b

aa

aab

*aabb

baa

*abba

abb

*bbaa

bba

bb
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Dyck language: Loc = U, >0 Ln, Where Lo = {1},
Los1 = (aLnb)*.

Recognition by infinite automaton:
a a a a a a
3
SOOI T
b b b b b b

M(L) = (a, b;ab =1).

Syntactic monoid:
Eggbox picture:

*1 a 2 a" 3"t

b *ba ba? ba" ba"*

b2 an *b232 ann b23n+1

b" b"a | b"a* *p"a" b"a"t?
bn+1 bn+la bn+la2 bn+lan * bn+lan+1
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EXERCISE 1.3

Consider the transition semigroup S of the following infinite automaton:

ararird

1. Note that, in S, aca is a factor of a but a is not regular.

2. Verify that S admits the following presentation:

(a, b, c; baca = a, bacb = b?ac = b, chac = c,

a*>=ab=bc=c*=0).

3. Show that S has two J-classes, one of which is reduced to zero.

4. Show that the non-trivial J-class of S consists of two infinite
D-classes, one of which is regular and a bicyclic monoid, while the
other is not regular and has only one L-class. All H-classes of S are

trivial.
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» A variety of languages is a correspondence )V associating with
each finitely generated free monoid A* a set V(A") of
languages over the finite alphabet A such that the following
conditions hold:

1. V(A*) is a Boolean subalgebra of Reg(A*);
2. if L € V(A*) and a € A, then the following languages also
belong to V(A*):
all={wecA awel}
Lat={we A :wac L}
3. if ¢ : A* — B* is a homomorphism and L € V(B*), then
e~ (L) € V(A*).
» A pseudovariety of monoids is a nonempty class V of finite

monoids which is closed under taking homomorphic images,
submonoids, and finite direct products.
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THEOREM 2.1 (EILENBERG [EIL76])

The complete lattices of varieties of languages and of
pseudovarieties of monoids are isomorphic. More precisely, the
following correspondences are mutually inverse isomorphisms
between the two lattices:

> to a variety V of languages, associate the pseudovariety \V
generated by all syntactic monoids M(L) with L € V(A*) for
some finite alphabet A;

> to a pseudovariety VI, associate the variety of languages V
such that, for each finite alphabet A, V(A*) consists of the
languages L C A* such that M(L) € V.
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» Thus, problems about varieties of languages admit a
translation into problems about pseudovarieties of monoids.

» For instance, to determine if a language L C A* belongs to
smallest variety of languages containing two given varieties of
languages V and W is equivalent to determine if M(L)
belongs to the pseudovariety join V vV W.

» Typically, we are given a recursively enumerable set R of finite
monoids and we want to determine an algorithm to decide
whether a given finite monoid M belongs to the pseudovariety
V(R) generated by R.
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Mutatis mutandis, we have
» languages L C A" without the empty word 1;

» syntactic congruence o, of L over At:

uopv ifVx,y € A" (xuy € L& xvy € L).

v

syntactic semigroup A" /o;
» varieties of languages without the empty word;

» pseudovarieties of semigroups;

v

Eilenberg's correspondence in this setting.
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Examples of pseudovarieties:

S:
l:

all finite semigroups
all singleton (trivial)
semigroups

all finite groups

all finite p-groups
all finite aperiodic
semigroups

all finite
commutative
semigroups

all finite J-trivial
semigroups

all finite R-trivial
semigroups

all finite L-trivial
semigroups

Sl:
RZ:

all finite semilattices

all finite right-zero
semigroups

. all finite bands

. all finite nilpotent

semigroups

. all finite semigroups in

which idempotents are left
zeros

. all finite semigroups in

which idempotents are right
zeros

16
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IMPORTANT EXAMPLES OF INSTANCES OF
EILENBERG’S CORRESPONDENCE

» A language L C AT is said to be star free if it admits an
expression in terms of the languages {a} (a € A) using only
the operations: _U_, AT\ _, and concatenation.

THEOREM 2.2 ([SCH65])

A language over a finite alphabet is star free if and only if its
syntactic semigroup is finite and aperiodic.

17 /113



> A language L C A" is piecewise testable if it is a Boolean
combination of languages of the form A*a;A*a,A* - - - a, A",
with the a; € A.

THEOREM 2.3 ([SIMT75])

A language over a finite alphabet is piecewise testable if and only if
its syntactic semigroup is finite and J-trivial.

> A language L C A* is locally testable if it is a Boolean
combination of languages of the forms A*u, A*vA*, and wA*,
where u,v,w € A*.

THEOREM 2.4 ([BS73, MPT71])

A language L over a finite alphabet is locally testable if and only if
its syntactic semigroup S is finite and a local semilattice (i.e.,
eSe is a semilattice for every idempotent e € S).
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DEFINITION 3.1

We say that a pseudovariety V is decidable if there is an algorithm
which, given a finite semigroup S as input, produces as output, in
finite time, YES or NO according to whether or not S € V.

The semigroup S may be given in various ways:

> extensively, meaning the complete list of its elements together
with its multiplication table;

> as the transformation semigroup  on a finite set Q
generated by a finite set A of transformations of Q ;
— transition semigroup of a finite automaton (Q, A, 4, I, F);

» by means of a presentation.

» Different ways of describing S may lead to different
complexity results, when such an algorithm exists.
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Of course, not all pseudovarieties are decidable.

For instance, if P is a non-recursive set of primes, then the
pseudovariety Abp, generated by all groups Z/pZ with p € P,
contains a group Z/qZ of prime order ¢ if and only if g € P.

Since there are non-recursive sets of primes P, there are
pseudovarieties of the form Abp which are not decidable.

QUESTION 3.2 (VERY IMPRECISE!!)

Are all “natural” pseudovarieties decidable?
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There are many ways to construct new pseudovarieties from known
ones, that is by applying operators to pseudovarieties.
We proceed to introduce some natural operators.

DEFINITION 3.3

Given a pseudovariety V, consider the classes of all finite
semigroups S such that, respectively:

LV: eSe € V for every idempotent e € S;

EV: (E(S)) € V, where (E(S)) is the subsemigroup
generated by the set E(S) of all idempotents of S;

DV: the regular J-classes of S (are subsemigroups which)
belong to V;

V: the subgroups of S belong to V;
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> Let S be a finite semigroup and let D be one of its regular
D-classes.

> Let ~ be the equivalence relation on the set of group
elements of D generated by the identification of elements
which are either R or L-equivalent.

» A block of D is the Rees quotient of the subsemigroup of S
generated by a ~-class modulo the ideal consisting of the

elements which do not lie in D.
1 2 3 4 5 6 1 3 6 2 4 5

* [ % * | *

» The blocks of S are the blocks of its regular D-classes.

DEFINITION 3.4

For a pseudovariety V, let BV be the class of all finite semigroups
whose blocks lie in V.
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PROPOSITION 3.5

For a pseudovariety V, the classes BV, DV, EV, LV, V are
pseudovarieties.
Moreover, if V is decidable then so are those pseudovarieties.

PROOF.

We consider only the case of LV, leaving all other cases as exercises.

> If ¢ : S — T is an onto homomorphism, with S € S, and f € E(T), then
Je € o 1(f) N E(S) and p|ese : €Se — fTf is an onto homomorphism
. LV is closed under taking homomorphic images.

> If S< T and e € E(S), then eSe < eTe
. LV is closed under taking subsemigroups.

> If S, T are semigroups, e € E(S), and f € E(T), then
(e,F)(S x T)(e, f) ~ eSe x fTf
.. LV is closed under taking finite direct products.

Given a finite semigroup, one can compute its set of idempotents E(S) and, for
each e € E(S), the monoid eSe.

Provided V is decidable, one can then effectively check whether eSe € V.
Hence one can effectively check whether S € LV. O
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But, the most interesting operators are defined not in structural
terms but rather by describing generators: the resulting
pseudovariety is given as the smallest pseudovariety containing
certain semigroups which are constructed from those in the
argument pseudovarieties.

DEFINITION 3.6

We say that a semigroup S divides a semigroup T, or that S is a
divisor of T, and we write S < T, if S is a homomorphic image of
a subsemigroup of T.

PROPOSITION 3.7

Let C be a class of finite semigroups. Then the smallest
pseudovariety V(C) containing C consists of all divisors of products
of the form 51 x --- x S, with S1,...,S, € C.

In particular, if C is closed under finite direct product, then V(C)
consists of all divisors of elements of C.

25
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Let S and T be semigroups and let ¢ : T* — End S be a
homomorphism of monoids, with endomorphisms acting on the left.
Forse€ Sand te TY let s = o(t)(s).

The semidirect product S x, T is the set S x T under the
multiplication

(s1,t1) - (32, 02) = (51 s, t1 12).

DEFINITION 3.8

The semidirect product V * W of the pseudovarieties V and W is

the smallest pseudovariety containing all semidirect products S x T
with S eVand T € W.

PROPOSITION 3.9

The pseudovariety V x W consists of all divisors of semidirect
products of the form S« T withS € V. and T €¢ W.

ProprosITION 3.10

The semidirect product of pseudovarieties is associative.

26
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DEFINITION 3.11

The Mal'cev product V@ W of two pseudovarieties V and W is
the smallest pseudovariety containing all finite semigroups S for
which there exists a homomorphism ¢ : S — T such that T € W
and ¢~ 1(e) € V for all e € E(T).

Given two semigroups S and T, a relational morphism S — T is a
relation 4 : S — T with domain S such that w is a subsemigroup
of S x T.

PROPOSITION 3.12

The pseudovariety V@ W consists of all finite semigroups S such
that there is a relational morphism p: S — T such that T € W
and p~Y(e) € V for all e € E(T).
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For a semigroup S, denote by P(S) the semigroup of subsets of S
under the product operation

X-Y={xy: xeX, yeY}

Note that the empty set () is a zero and P’(S) = P(S) \ {0} is a
subsemigroup.

DEFINITION 3.13

For a pseudovariety V, denote by

PV: the pseudovariety generated by all semigroups of the
form P(S), with S € V;

P’V: the pseudovariety generated by all semigroups of the
form P'(S), with S € V.

PRrRoPOSITION 3.14

The pseudovariety PV consists of all divisors of semigroups of the
form P(S) with S € V.
Similar statement for P’.
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Some examples of results on finite semigroups formulated in terms
of these operators:

1.

ot

J=N®@SI

2. DA=LI®SI, DS = LG@®SI
3.
4. GV Com = ZE (the pseudovariety of all finite semigroups in

R = Sl « J [Sti73]

which idempotents are central) [AIm95]

ESI =Sl « G = SI®G = Inv (the pseudovariety generated by
all finite inverse semigroups) [MP87, Ash87, Pin95],

ER = R« G [Eil76], EDS = DS x G [AEQ3]
PG=JxG=J®G=EJ =BG

[MP84, HR91, Ash91, HMPRO1, Pin95],

PJ = PV(Y) [PS85, AIm95] where Y = Synt(a*bc*)

- 8 =U,so(A* G)" A [KR65]
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S=|J(AxG)"xA

n>0

The (Krohn-Rhodes) hierarchy ((A * G)" x A) is strict.

n>0
The smallest n such that a given finite semigroup S belongs to

(A% G)" x A is called the complexity of S, denoted ¢(S).

Let T, denote the full transformation semigroup of an n-element
set It is known that ¢(T,) = n— 1 [Eil76] and so certainly

c(S) <|S| (since S — Tg1).

NoTE 3.15

To know an algorithm to compute the complexity function is
equivalent to know algorithms to decide the membership problem
for each pseudovariety in the Krohn-Rhodes hierarchy.
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This brings us to the following basic question:

QUESTION 3.16

For the operators which were defined above in terms of generators,
do they preserve decidability?

THEOREM 3.17 (ALBERT, BALDINGER & RHODES’1992
[ABRO92])

There exists a finite set ¥ of identities such that Com V [X] is
undecidable.

Let Co1 = (a;a% = 0)L.

THEOREM 3.18 (AUINGER & STEINBERG’2003 [AS03])

There exists a decidable pseudovariety of groups U such that the
following pseudovarieties are all undecidable:
SI«U (=SI®mU), V(G1) VU, PU (= P'U).
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The pseudovariety U is defined to be

U=\/ G, (GspNCom)V \/ (G, N Com)
pEA peD
where:

» A and B constitute a computable partition of the set of
primes into two infinite sets;

» f: A— B is an injective recursive function whose range
C = f(A) is recursively enumerable but not recursive;

» D = B\ C is not recursively enumerable.

EXERCISE 3.19
Show that U is decidable.
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» Let V be a pseudovariety of semigroups.
» For two words u,v € AT, and T € V, let

T |= u = v if, for every homomorphism ¢ : AT — T, o(u) = ¢(v),
rv(u,v) =min{|S|:S€Vand S £ u=v},
dy(u, v) =27 EY)

where we take min{) = oo and 27 = 0.

NoTE 4.1
The following hold for u, v, w,t € AT and a positive integer n:
(1) rnv(u,v) > nif and only if, for every S € V with |S| < n,

SEu=yv;
(2) dy(u,v) <27"if and only if, for every S € V with |S| < n,
SEu=yv;

(3) dv(u,v) =0 if and only if, for every S eV, S = u=v;
4) min{rv(u, v), v(v,w)} < ny(u, w);
) min{ry(u,v), v(w,z)} < n(uw, vz).
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DEFINITION 4.2
A function d : X x X — R>q is said to be a pseudo-ultrametric on
the set X if the following properties hold for all u, v, w € X:
1. d(u,u) =0;
2. d(u,v) =d(v,u);
3. d(u,w) < max{d(u,v),d(v,w)}.
We then also say that X is a pseudo-ultrametric space.
If instead of Condition 3, the following weaker condition holds
4. d(u,w) < d(u,v)+ d(v,w) (triangle inequality).
then d is said to be a pseudo-metric on X, and X is said to be a
pseudo-metric space. If the following condition holds
5. d(u,v) =0if and only if u=v,
then we drop the prefix “pseudo”.

35
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» A function f : X — Y between two pseudo-metric spaces is said to
be uniformly continuous if the following condition holds:

Ve>036>0Vx,x € X (d(x,x) <= d(f(u),f(v)) <e).

PROPOSITION 4.3

1. The function dy is a pseudo-ultrametric on AT.
2. The multiplication is contractive:

dy(uiup, vive) < max{dy(ui, v1), dv(uz, v2)}.

In particular, the multiplication on AT is uniformly continuous.

> For a (pseudo-ultra)metric d, u € X, and a positive real number e,
consider the open ball

B.(u) ={veX:d(uv)<e}.

The point u is the center and ¢ is the radius of the ball.

> A metric space that can be covered by a finite number of balls of
any given positive radius is said to be totally bounded.

36
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PROPOSITION 4.4
The metric space (AT, dy) is totally bounded.

PROOF.
Let n be a positive integer such that 27" < e. Note that, up to
isomorphism, there are only finitely many semigroups of cardinality at
most n in V. For such a semigroup S; consider all possible
homomorphisms ¢; ; : At — S, let S = ]_[,-)j S; and

p: At > S

u (pij(v)ij-

Then S € V and dy(u, v) < 27" if and only if ¢(u) = ¢(v).
For each s € S, choose us € AT such that p(us) = s.
For v € AT and s = p(v), we have p(v) = p(us), and so v € Be(us).
We have thus shown that AT = |, _< Bc(us). O

seS
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» A sequence (up)n in a (pseudo-ultra)metric space X is said to
be a Cauchy sequence if

Ve>03N (mn>N= d(um,u,) <e).

» Note that every convergent sequence is a Cauchy sequence.

» The space X is complete if every Cauchy sequence in X
converges in X.
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THEOREM 4.5

Let X be a pseudo-(ultra)metric space. Then there exists a complete
metric space X and a uniformly continuous function ¢ : X — X with the
following universal property: for every uniformly continuous function

f: X = Y into a complete metric space Y, there exists a unique
uniformly continuous function f : X — Y such that fo. = f.

In particular, if v : X — Z is another uniformly continuous function into
another complete metric space with the above universal property then the
induced unique uniformly continuous mappings i : X — Z and y:Z— X
are mutually inverse.

» The "“unique” space X of Theorem 4.5 is called the Hausdorff
completion of X.
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> It may be constructed in the same way that the real numbers are
obtained by completion of the rational numbers. Here is a sketch:

(a)
(B)

consider the set C C XY of all Cauchy sequences of elements
of X;

note that, for s = (u,), and t(v,), in C, the sequence of real
numbers (d(up, v,,))n is a Cauchy sequence and, therefore, it
converges; its limit is denoted d(s, t);

|d(u,,, Vn) - d(Um-, Vm)‘
< 1t Vo) — At V)] + [ (1, vin) — (1, i)
S d(u,,. Um) + d(Vn-, Vm)

Step (B) defines a pseudo-(ultra)metric on C;

for s = (up)n and t(vy)sin C, let s ~ t if d(s,t) = 0; thisis
an equivalence relation on C; the class of s is denoted s/~;
let X = C/~ and put d(s/~,t/~) = d(s, t), which can be
easily checked to be defined;

finally, let « : X — X map each u € X to the ~-class of the
constant sequence (u),, and check that this mapping is
uniformly continuous and has the appropriate universal
property.
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» Note that +(X) is dense in X.

> In particular, we may consider the Hausdorff completion of the
pseudo-ultrametric space (AT, dy), which is denoted Q4 V.

» Since the multiplication of A is uniformly continuous with
respect to dy, it induces a uniformly continuous multiplication
in QaV:

At x At —F At

(mult.)
LXLi lL

ﬁAV X ﬁAV - ﬁAV
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» We endow each finite semigroup S with the discrete metric:

d(s,t):{o ifs=t

1 otherwise

» Since ((AT) is dense in Q4V, multiplication in QaV is
associative, and thus Q4V is naturally a semigroup.

» From hereon, we write d for dy. The context should leave
clear which pseudovariety is involved.
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» Note that, for S € V, every homomorphism ¢ : At — S is
uniformly continuous with respect to d.

d(u,v) < 27% = d(e(u), p(v)) = 0.

Thus, ¢ induces a unique uniformly continuous mapping
@ : QaV — S such that the following diagram commutes:

>
~
c
<
-
I
3
<
—~
=
~
<
3
<
NN
=
\
3
S
e
—~
o
=1
N
=
S
-
~
s
N
N
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> Given u,v € QaV and S € V, we write S = u = v if, for every
homomorphism ¢ : AT — S (which is determined by ¢|4), the
equality ¢(u) = ¢(v) holds.
We call the formal equality v = v a V-pseudoidentity.

> Note that, if u =Ilimu,, v=Ilimv,, and S€V, then SEu=vif
and only if S |= u, = v, for all sufficiently large n.

» Given distinct elements u, v € Q4V, there exists a positive integer
m such that d(u,v) > 27",

Consider sequences of words (u,), and (v,), such that u = lim¢(u,)
and v = lim(v,).

Then, for sufficiently large n, d(u,t(u,)) <2~™ and
d(v,(va)) <27™.

Hence d(un, va) = d(e(un), t(v,)) > 27™ for all sufficiently large n.

It follows that every S € V with |S| < m fails the identity u, = v,
and, therefore, also the pseudoidentity u = v.
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PROPOSITION 4.6
For u,v € QaV, we have d(u,v) = 2="(“V) where

r(u,v) =min{|S|:S€V and S [~ u=v}.

PROOF.

We have already shown that d(u,v) > 27" implies r(u,v) < m.
The converse, as well as how the equivalence gives the proposition
are left as an exercise. Ol
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> Recall that a metric space is compact if every sequence admits
some convergent subsequence. Equivalently, every covering by
open subsets contains a finite covering.

PROPOSITION 4.7

1. If X is a totally bounded pseudo-metric space, then X is also
totally bounded.

2. If X is a totally bounded complete metric space, then X is
compact.
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PROOF.

1. Given € >0, let uy, ..., uy € X be such that X = |J; Bea(u;).
Then X = U, B-(¢(u;)) since every element of X is at distance at most
€/2 of some element of ¢(X).

2. For each positive integer m, let Fp, be a finite subset of X such that
X = U,ef, Ba-n(x) and consider an arbitrary sequence (up), in X.

For infinitely many indices n, the u, belong to the same B,-1(x7). Let kg
be the first of these indices. Similarly, among the remaining such indices,
there are infinitely many n such that the u, belong to the same B,—:(x2).
We let k» be the first of them. And so on.

We thus construct a subsequence (uy, ), with the property that
d(“k,,,» Uk,,) <2~ min{m,n}+1,

if p=min{m, n}, then uy,, ux, € B,—»(xp), which yields

d(ukmﬂ Ukn) < d(ukmf XP) + d(pr Ukn) < 27° + 27°

whence a Cauchy sequence and, therefore, convergent. O
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» By a pro-V semigroup we mean a semigroup S endowed with
a metric such that the following properties hold:
1. S is compact;
2. the multiplication is uniformly continuous (metric semigroup);
3. for every pair u, v of distinct elements of S, there is a uniform

continuous homomorphism ¢ : S — T into a semigroup
from V such that ¢(u) # ¢(v) (S residually in V).

» By a profinite semigroup we mean a pro-S semigroup.
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PROPOSITION 5.1

Let S be a pro-V semigroup. Then there is a sequence (Sp)nen of
semigroups from V and an injective homomorphism

@S = [ en Sn such that, for each component projection

Tm * [ neny Sn — Sm, the homomorphism 7 o ¢ is uniformly
continuous.

We may define in ][], Sn a metric structure by letting

d(u,v) =Y 2 "dn(mn(u), wn(v))

neN

where d, is the discrete metric on S,. Then ¢ is uniformly
continuous. In particular, the image T of ¢ is closed in || neN S,,
being a compact subset.
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» Note that the sequence (S,)n,en may be chosen so that there
is a finite bound on the number of generators of the S, if and
only if S is finitely generated in the sense that there is a finite
subset which generates a dense subsemigroup.

» On the other hand, if there is no such bound, one can show
that S cannot have a countable dense subset, while it is easy
to see that a compact metric space always admits a countable
dense subset.

PROPOSITION 5.2

Every pro-V metric semigroup is finitely generated.
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» For a finite set A, we say that the pro-V semigroup S is freely
generated by A if there is a mapping v : A — S such that
~v(A) generates a dense subsemigroup of S and the following
universal property is satisfied, where ¢ : A — T is an aribtrary
mapping into a pro-V semigroup T, and ¢ is a unique

continuous homomorphism:
.
_—
N

A

l

THEOREM 5.3

For a pseudovariety of semigroups V' and a finite set A, the metric
semigroup QaV is a pro-V semigroup freely generated by A via the

mapping t|a.
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PROOF.

Let S be a pro-V semigroup and let (S,),cn be a countable family of
semigroups from V as given by Proposition 5.1, so that there is an
embedding ¢ : S — ],y Sn with each composite function

mho@: S — S, uniformly continuous.

Given a mapping ¥ : A — S, let ¢, = m, 0 9.

INT

n

\'

The family ())nen induces a homomorphism ) : Q4V — [Tnen Sn- Its
image lies in the closed subsemigroup T, whence it lifts to the reqmred
continuous homomorphism Q4V — S. It is uniformly continuous because
every continuous mapping from a compact metric space into another
metric space is uniformly continuous. O
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> A subset of a metric space is said to be clopen if it is both closed
and open.

> A metric space is said to be zero-dimensional if every open set is a
union of clopen subsets.

PRoOPOSITION 5.4

Every pro-V semigroup is zero-dimensional.

PROOF.

Let u be an element of the pro-V semigroup S. It suffices to show that
the open ball B.(u) contains some clopen set which contains u.

For each v € S\ Bc(u), let ¢, : S — T, be a uniformly continuous
homomorphism into a semigroup from V such that ¢, (u) # ¢,(v). Then
K, = ¢, o, (v) is a clopen set which contains v but not u. In particular,
the K, form a clopen covering of the closed set S\ B(u), from which a
finite covering F can be extracted.

The union of the clopen sets in F is itself a clopen set K. Note that

S\ K is also clopen, contains u, and is contained in B.(u). O
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» For a mapping ¢ : S — T, let kerp = {(u,v) : o(u) = ¢(v)}
be the kernel of ¢.

THEOREM 5.5

An A-generated profinite semigroup S is a continuous

homomorphic image of QaV if and only if it is a pro-V semigroup.

COROLLARY 5.6

Let S be a pro-V semigroup and suppose that o : S — T is a
continuous homomorphism onto a finite semigroup. Then

TeV. O
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PROOF OF THEOREM 5.5.
(<) Apply Theorem 5.3.

(=) Let ¢ : QaV — S be an onto continuous homomorphism. We need
to show that S is residually in V.

Given distinct points s1,s, € S, since S is residually in' S, there is an onto
uniformly continuous homomorphism ¢ : S — T such that T € S and
¥(s1) # ¥(s2). Note that T is a finite continuous homomorphic image
of QaV. If we can show that S € V, we will be done. In other words, it
suffices to consider the case where S is finite.

Since ¢ is continuous and Q4V is compact, ¢ is uniformly continuous.
Hence, there is a positive integer n such that, for all u,v € QaV,

d(u,v) <277 = p(u) = ¢(v).

In view of Proposition 4.6, it follows that the intersection p of the kernels
of the uniformly continuous homomorphisms Q4V — V with V € V and
|V| < nis contained in ker . Hence, ¢ factors through the natural
homomorphism Q4V — QaV/p. Since Q4V/p belongs to V, so

does S. OJ
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LEMMA 5.7 ([Numb7, HUNSS])

Let K be a clopen subset of a compact zero-dimensional metric semigroup S.
Then there is a continuous homomorphism ¢ : S — T into a finite semigroup
T such that K = o o(K).

PROOF.

We may define on S a syntactic congruence of K by
uokv ifVx,yeS' (xuy € K< xvy e K).

It suffices to show that the classes of this congruence are open: then there are
only finitely many of them, so that S/ok is a finite semigroup, and the natural
mapping S — S/ok is a continuous homomorphism.

We show that, if lim u, = u, then all but finitely many terms in the sequence
are ok-equivalent to u. Arguing by contradiction, otherwise, there is a
subsequence consisting of terms which fail this property. We may as well
assume that so does the original sequence.

For each n there are x,, y, € S* such that one, but not both, of the products
XnUnyn and X,uy, lies in K. Again, by taking subsequences we may assume that
limx, = x, limy, =y (in S*), and x,uy, ¢ K. Then

xuy = lim x,unyn, = lim x,uy, must belong to both K and its complement. [

o
<

w



> A useful application of Lemma 5.7 is the following result, which
completes that of Proposition 5.4.

THEOREM 5.8

A compact metric semigroup is profinite if and only if it is
zero-dimensional.

PROOF.
(=) This follows from Proposition 5.4.

(<) Let S be a compact metric semigroup which is zero-dimensional.
We need to show that it is residually in S, that is that, for every pair s, t
of distinct points of S, there is a continuous homomorphism ¢ : S — T
in to a finite semigroup T such that o(s) # ¢(t).

Since S is a zero-dimensional metric space, there is some clopen subset
K such that s € K and t ¢ K. By Lemma 5.7, there is a continuous
homomorphism ¢ : S — T into a finite semigroup T such that

K = ¢~ 1o(K). In particular, we have ¢(s) # ¢(t), as required. O
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> A language L C A™ is V-recognizable if its syntactic semigroup
belongs to V.

THEOREM 5.9

A language L C A" is VV-recognizable if and only if the closure K = (L)
is open in QaV and 1=}(K) = L. The latter condition is superfluous if
v is injective and ((AT) is a discrete subset of QaV.

PROOF.

(=) Use the universal property of Q4V (Theorem 5.3).

(<) By Lemma 5.7, there is a continuous homomorphism ¢ : Q4V — S
such that S € V and K = ¢~ 1p(K). Then 1 = o is a homomorphism
At — S such that ¥ 1p(K) = }(K) =L and so L is

V-recognizable. OJ

» Theorem 5.9 implies that, as a topological space, Q4V is the Stone
dual of the Boolean algebra of V-recognizable languages of A™.
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THEOREM 5.10

A set S of V-recognizable languages over a finite alphabet A generates
the Boolean algebra of all such languages if and only if the clopen sets of

the form (L) (L € S) suffice to separate points of QaV.

PROOF.

(=) Let u,v € QaV be distinct points. Then ¢ = d(u, v) is positive. Since
QaV is zero-dimensional (Proposition 5.4), there is a clopen subset K
containing u and contained in Bc(u), whence not containing v. By

Theorem 5.9, L = 1~ *(K) is V-recognizable. From the hypothesis, it follows
that L is a Boolean combination f(Li,..., L,) of languages L; from S. By
Theorem 5.9 again, each set ¢(L;) is clopen. Since ¢(X1 U X2) = ¢(X1) U ¢(X2)
and QaV \ ((X) = ¢(A* \ X) for V-recognizable languages X, X1, X C A", we
have K = ¢(L) = f(¢(L1),...,¢(Ln)). Hence at least one of the sets ¢(L;) must
contain exactly one of the points v and v.

(«=) By Theorem 5.9, it suffices to show that the clopen sets of the form ¢(L),
with L C AT V-recognizable, generate the Boolean algebra of all clopen subsets
of QaV. This is a nice exercise on compactness. O
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Recall that a V-pseudoidentity is a formal equality u = v with
u, v € QaV for some finite set A.

Recall also that, for S € V, we write S |=u = v if

o(u) = p(v) for every continuous homomorphism

@ :QaV — S. In this case, we also say that v = v holds in S.

For a set ¥ of V-pseudoidentities, let [X] denote the class of
all S € V such that S |= u = v for every pseudoidentity u = v
from X.

For a subpseudovariety W of V, let pyy : QaV — QaW be the
natural continuous homomorphism:

A—YoQuV

N

QaW
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LEMMA 6.1

A pseudoidentity u = v, with u,v € QaV, holds in every member
of a subpseudovariety W of V if and only if pw(u) = pw(v).

THEOREM 6.2 ([REI82])

A subclass W of V is a subpseudovariety if and only if it is of the
form [X] for some set ¥ of V-pseudoidentities.

» Usually, one takes V = S.
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PROOF OF THEOREM 6.2.

(«=) This amounts to verifying that the property S |= u = v is preserved under
taking homomorphic images, subsemigroups and finite direct products, which
follows easily from the definitions.

(=) Fix a countably infinite set X and let X be the set of all pseudoidentities
u = v such that u, v € QaV for some finite subset A of X and S |= u = v for
all S € W. Then U = [X] is a subpseudovariety of V by the first part of the
proof, and it clearly contains W. We claim that U = W.

Let S € U and choose an onto continuous homomorphism ¢ : QaU — S for
some finite subset A of X (cf. Theorem 5.3).

Consider the natural continuous homomorphisms py ﬁAVLﬁAU
and pw. By Lemma 6.1 and the choice of ¥, we ¥

have kerpw C kerpy and so there is a factorization "Wl / l*"
pu = Y o pw for some onto continuous homomorphism —

b : QAW — QaU. Hence potp : QW — S isan 1AW >
onto continuous homomorphism. Corollary 5.6 then im-

plies that S € W since QW is a pro-W semigroup by
Theorem 5.3.
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» To write pseudoidentities that are not identities, one needs to
construct some elements of QS \ A*.

LEMMA 6.3

Let S be a profinite semigroup, let s be an element of S, and let
k € 7Z. Then the sequence of powers (s”!+k)n2|k| converges. For
k = 0 the limit is an idempotent.

PROOF.

Using Proposition 5.1, it suffices to consider the case where S is
finite, which is left as an exercise. ]

» The limit lim s™*k is denoted s¥ k.

» Note that swTkswtl — gwtk+t,

@10 is an idempotent and s¥~K and swtk

are mutual inverses in the maximal subgroup containing the
idempotent s“.

In particular, s¥ :=s



EXAMPLES [

S=[x=x] Sl =[xy = yx,x* = x]
I=[x=y] RZ =[xy =]
G=[x*=1] B =[x*=x]
G, =? N = [x* = 0]
A =[x~ = x¥] K= [x*y = x“]
Com = [[xy = yx] D = [yx* = x“]
J=[0)” = (m)°, x“"1 = x]
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ExAMPLES II

» Since there are uncountably many pseudovarieties of the form
Abp, where P is a set of primes, and one can show that all of
them admit a description of the form [[xy = yx, u = 1]
[AIm95, Corollary 3.7.8], for some u € Q{X}S, we conclude
that QS is uncountable.

» Let P be an infinite set of primes and let p1, po,... be an
enumeration of its elements, without repetitions.

Let up be an accumulation point in ﬁ{X}S of the sequence
(xP1Pn),,.

Abp =[xy = yx,up =1].

» Does the sequence (xPP), converge?
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ExaMPLES II1

» To describe the pseudovariety G, of all finite p-groups, we use

the following result, whose proof is similar to that of
Lemma 6.3.

LEMMA 6.4

Let S be a profinite semigroup and s € S. Then the sequence
(sP"), converges.

w . n!
» We let s =limsP .
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ExAMPLES IV

EXERCISE 6.5 (FOR THOSE THAT KNOW SOME GROUP
THEORY)

Find, for each of the following pseudovarieties of groups, a single
pseudoidentity defining them:

(1) the pseudovariety G, of all finite groups which have no
elements of order p (p being a fixed prime number);

(2) the pseudovariety Gy of all finite nilpotent groups;

(3) the pseudovariety G, of all finite solvable groups.
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N: FINITE NILPOTENT SEMIGROUPS

> Recall that N =[x = 0] = U, [x1 - x, = 0].
The proof depends on the following key result.

LEMMA 7.1

Let S be a finite semigroup with n elements. Then, for every choice of
elements sy, ...,s, € S, there exist indices i,j such that 0 < i< j<n
and the following equality holds for all k > 1:

— k
51...5n_Sl...si(si+1...5j) 5j+1...5n'

PROOF.

Consider the n products pr =s1---s, (r =1,...,n). If they are all distinct,
then at least one of them, say p,, is idempotent and we may take i =0, j = r.
Otherwise, there are indices 7, j such that 1 < i < j < n and p; = p;, in which
case pj = pj = pisit1--- 55 = pi(sit1- - 5). O



» Let ©: At — S be a homomorphism into a semigroup S € N, say
satisfying x; - - - x, = 0. Then, all words of length at least n belong
to »~1(0) and for s € S\ {0}, the words in the language
L = ¢71(s) have length less than n, and so L is a finite set.

Thus, every N-recognizable language is either finite or cofinite.

> To show that these are precisely the N-recognizable languages, it
suffices to show that every singleton language {w} C AT is
N-recognizable.

Let n = |w| be the length of the word w. Consider the semigroup S
consisting of the words of AT of length at most n together with a
zero element 0. The product of two words is the word resulting from
their concatenation if that word has length at most n and is 0
otherwise.l Then S satisfies the identity x; - - - x, = 0, for the
natural homomorphism ¢ : AT — S, that sends each letter to itself,
we have o~ 1(w) = {w}.

1This amounts to “killing” the ideal of the semigroup A consisting of the
words of length greater than n, identifying all the elements in the ideal to a

zero. In semigroup theory, such a construction is called a Rees quotient.
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PROPOSITION 7.2

A language over a finite alphabet A is N-recognizable if and only if
it is finite or its complement in A" is finite.

> In view of Theorem 5.9, we deduce the following result:

PROPOSITION 7.3

Let V be a pseudovariety of semigroups containing N. Then the
completion homomorphism 1 : A* — QaV is injective and AT is a
discrete subspace of QaV. In particular, a language L C AT is
V-recognizable if and only if its closure L in QaV is a clopen
subset.
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PROOF.

The injectivity of « amounts to V satisfying no identity v = v with
u,v € At distinct words. Indeed, Synt({u}) is nilpotent, whence it
belongs to V. Since 1ul € {u} while 1v1 ¢ {u}, we deduce that u
and v are not oy,y-equivalent and so Synt({u}) = u = v.

We may therefore identify each w € AT with «(w) € QaV.

For w € AT, we have {w} = {w}, because Q4V is a metric space.
Since {w} is V-recognizable, its closure {w} is an open subset

of Q4V by Theorem 5.9. Hence At is a discrete subset

of ﬁAV. L]
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PROPOSITION 7.4

The semigroup Q4N is obtained by adding to At a zero element.
The open sets containing zero consist of zero together with a
cofinite subset of At .2

PROOF.

It suffices to observe that a non-eventually constant sequence
(W), of words of AT is a Cauchy sequence with respect to the
metric dy if and only if lim |w,| = co. In the affirmative case, for
every homomorphism ¢ : AT — S into S € N, we have

lim ¢(wp) = 0. Thus, all non-eventually constant Cauchy
sequences converge to the same point ot Q4N, which is a zero.

The open subsets of Q4N containing 0 have complement which is
a closed, whence compact, subset of AT. Since AT is a discrete
subset of 24N, that complement must be finite. The converse is
clear. ]

2This is known as the Alexandroff or one-point compactification, which in
general is obtained by adding one point and declaring the open sets containing
it to consist also of the complement of a compact subset of the original space.
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K: FINITE SEMIGROUPS SATISFYING es = e

> Recall that K = [x“y = x“]. Note that

K= U K, where K, = [x1 - Xy = x1 - - X5]-
n>1

» Let AY denote the set of all right infinite words over A, i.e.,
sequences of letters.

» Endow the set S = At U AY with the operation

uv ifue AT
u-v= ]
u  otherwise

and the function d : S x S — R defined by d(u, v) = 27"(4V),
where r(u, v) is the length of the longest common prefix of u and v.
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PROPOSITION 7.5

The set S is a pro-K semigroup for the above operation and distance
function d. The unique continuous homomorphism QaK — S that sends each
letter a € A to itself is an isomorphism.

PROOF.

It is easy to check that the multiplication defined on S is associative and that d
is an totally bounded complete ultrametric.
Consider the set S, consisting of all words of AT of length at most n, endowed

with the operation
uv if luv| <n
u-v= o o
in(u) otherwise

where i,(w) denotes the longest prefix of length at most n of the word w. This
operation is associative and S, € K,. Moreover, every n-generated semigroup
from K, is a homomorphic image of S,. Hence S, ~ QK.

Note also that the mapping ¢, : S — S, which sends each w € S to i,(w) is a
continuous homomorphism.

Hence, given two distinct points v and v from S, for n = r(u, v) + 1, the
mapping ¢, is a continuous homomorphism into a semigroup from K which
distinguishes u from v. Thus, S is a pro-K semigroup.

~
~
-
=
w



(..)

Consider next the unique continuous homomorphism 1) : Q4K — S which maps
each letter a € A to itself. Since K =, Ki, given distinct u,v € QaK,

there exists a continuous homomorphism 6 : Q4K — S, such that 6(u) # 6(v).

ﬁAKLS

I

S, -~ QaK,

The fact that the above diagram can always be completed by a homomorphism
u shows that ¢ (u) # ¥(v). Hence 1 is injective. O
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IMPLICIT OPERATIONS

> Let n be a positive integer.

» An n-ary implicit operation on pro-V semigroups is a
correspondence 7 associating to each pro-V semigroup S an
n-ary operation s : S” — S such that , for every continuous
homomorphism ¢ : S — T between pro-V semigroups, the
following diagam commutes:

gn_TS

o s

T T,

e, (ms(st,....sn) =7m1(p(s1), .., 0(sn)) for all

S1,...,% €S.
» Examples: the binary multiplication (s1,s2) — s15, and the
component projections (si,...,Sy) — S; are implicit

operations. Composing implicit operations we also obtain

implicit operations.
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» If A and B are finite sets with the same cardinality n, then
QaV ~ QgV. We denote by Q,V any of them. Usually, we
identify Q,V with Qx V, where X, = {x1,...,x,} has
cardinality n.

» To each w € Q,V, we may associate an n-ary implicit
operation 7, on pro-V semigroups as follows:

» for a pro-V semigroup S, given s1,...,s, € S, let f: X, — S
be the function defined by f(x;) =s; (i=1,...,n);
> let (mw)s(s1, ... ,5,) = F(w) where 7 completes the following
diagram:
X, ——= Q,.V

N
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PROPOSITION 8.1

1. For each w € Q,V, 7, is indeed an n-ary implicit
operation on pro-V semigroups.

2. The correspondence w € Q,V — 7, is injective and in
fact m,, is completely characterized by the operations
(mw)s with S € V.
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PROOF.

1. Let ¢ : S — T be a continuous homomorphism between two pro-V

semigroups and let si,...,s, be elements of S. Let f : X, — S be defined by
f(xi)=si (i=1,...,n). Then we have the following commutative diagram:
Xn
\L of
f Qv ®

which shows that

p((mw)s(F(s1), ..., (1)) = p(F(w)) = @ o F(w)
= (mu) 7 (p(F(s1)); -, p(F(5n))).-
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(...)

2. Let u,v e Q,V be two distinct elements. Then there exists a continuous
homomorphism ¢ : 2,V — S into a semigroup S € V such that p(u) # ¢(v).
Let s; = ¢(x;) (i =1,...,n). For w € Q,V, by definition of 7, we have

(mw)s(s1y .-, 5n) = p(w).
Since p(u) # ¢(v), we deduce that
(mu)s(sty---,sn) # (mv)s(sty---,Sn)

and so, certainly 7w, # 7, . O

> We identify w with m,.

> Note that S € V satisfies the V-pseudoidentity u = v if and only if
us = Vvs.

» We say that a pro-V semigroup S satisfies the V-pseudoidentity
u=vif us =vs.
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» By an implicit signature we mean a set o of implicit operations
(on S) which includes the binary operation of multiplication.

» Example: k= {_-_, “71}.

» Given an implicit signature o, each profinite semigroup S
becomes a natural o-algebra in which each operation w € o is
interpreted as ws.

> In particular, each Q4V becomes a o-algebra. The
o-subalgebra generated by ¢(A) is denoted Q3 V.

» For the minimum implicit signature o, consisting only of
multiplication, we denote Q3V simply by Q4V.3

> A formal term constructed from the letters a € A using the
operations from the implicit signature o is called a o-term
over A. Such o-term w determines an element wy of Q3V by
evaluating the operations within Q3 V.

jThe bar in the notation Q4V comes from the fact QiV = L(A+) is dense
in QaV. This notation (without reference to V) was introduced by
Reiterman [Rei82].
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» The following result is an immediate consequence of
Theorem 5.3.

PROPOSITION 9.1

The o-algebra QQV is a \-free o-algebra freely generated by A in
the sense of the following universal property: for every mapping
@ :A— S into a semigroup S € VI, there is a unique
homomorphism ¢ of o-algebras such that the following diagram
commutes:

A—=Q9V

N
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Examples:
» Q%N = QaN;
> for |A] > 2, since Q4K is uncountable, we have Q5K S Q4K
for every countable implicit signature o;

» Q%) = Qad [AIm95, Section 8.1];
» Q%G is the free group freely generated by ((A) = A;

» Q5 CR is the free completely regular (union of groups)
semigroup freely generated by ((A) = A.
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> A key problem for the applications is to be able to solve the
word problem in the free o-algebra Q4 V: to find an algorithm,
if one exists, that given two o-terms over A, determines
whether uy = wy.
If such algorithm exists, then we say that the word problem is
decidable; otherwise, we say that it is undecidable.
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Examples:

>

The word problem for Q%N: two k-terms coincide in Q3N if and
only if they are equal or they both involve the operation _“~1.

The word problem for Q%G is well known: the operation _“~! is
inversion in profinite groups, so all k-terms can be effectively
reduced (over G) to k-terms in which that operation is only applied
to letters; then use, in any order, the reduction rules aa®~ ! 1 and
a*~'a — 1 (a € A) to obtain a canonical form for k-terms over G;
two k-terms are equal over G if and only if they have the same
canonical form.

Word problem for Q4K: exercise.

The solution of the word problem for Q7J = QaJ gives the
structure of Q4J [AIm95, Section 8.1].

The word problem for Q2% CR has been solved by Kad'ourek and
Polak [KP86].

The word problem for Q%A has been solved by
McCammond [McC01].
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A SEPARATION PROBLEM

» Let V be a pseudovariety of semigroups.

» Suppose that a regular language L C AT and a word w € AT
are given. How do we find out whether a proof that w ¢ L
exists using V-recognizable languages?

» More precisely, we wish to decide whether, given such L and
w, there exists a V-recognizable language K C A" such that
LCKandw ¢ K.

» For instance, how do we determine whether there exists a
finite permutation automaton such that no word from L ends
in the same state as w does?

> Another example of the same type of problem: is there some
integer n such that no word from L has the same subwords of
length at most n as w does?
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» Qur problem sounds like a topological separation problem, and
indeed it admits such a formulation in the profinite world.

ProproOsITION 10.1

Let V be a pseudovariety of semigroups, L C A" a regular
language and w a word in A*. Then there is a \-recognizable
language K C A™ such that L C K and w ¢ K if and only if ty(w)
does not belong to the closure of 1y(L) in QaV.

PROOF.

By Proposition 5.4, the condition vy(w) belongs to the closure vy (L)
in QV holds if and only if every clopen subset of Q4V which contains
tv(w) has nontrivial intersection with ¢y(L). By Theorem 5.9, such
clopen subsets are precisely the sets of the form vy (K) where K is a
V-recognizable subset of AT. It remains to observe that, wy(w) € ty(K)
and wy(K) Ny (L) = 0 if and only if w € K and KN L = (), which follows
from the facts that K = 1y, (tv(K)) and L C 1y (ew(L)). O
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Note that, while Q4V is in general uncountable, by

Theorem 5.9 it has only countably many clopen subsets, since
there are only that many V-recognizable subsets of A* (for
instance since they are all recognized by finite automata).

An idea due to Pin and Reutenauer [PR91] in the case of the
pseudovariety G of all finite groups is to somehow “compute”
the closure of ty(L) not in 4G but in the free group Q45G, or
even in AT,

Under the assumption of a conjectured property for the
pseudovariety G, they produced an algorithm for computing
the required closure, which solves our problem for G.

We proceed to introduce the required property in general,
returning later to their algorithm.
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0-FULLNESS

» For a subset L of AT, denote by cl,v(L) and cly(L)
respectively the closure of wy(L) in Q3V and in QaV.

» Note that cly v(L) = cly(L) NQQV.

» Denote by py the natural continuous homomorphism
§AS — ﬁAV.

» Since Q4S is compact and py is a onto continuous mapping,
we always have the equality cly(L) = py(cls(L)).

> In general, for a continuous function f : S — T, and a subset

X of S, we have f(X) C f(X). The reverse inclusion also
holds if f is onto and S is compact.

» We say that the pseudovariety V is o-full if, for every regular
language L C AT, the following equality holds:

Cla,v(L) = pv(clys(L)).

In other words, membership of w € Q3V in cl, v(L) is
witnessed by some w’ € cl, s(L) such that py(w') = w.
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Examples:

» The pseudovariety N is x-full: for a regular language L C AT
and a k-term w, wy € cl, n(L) if and only if w is a word
from L or w involves the operation _“~1 and L is infinite; in
the latter case, by compactness there is some x-term v such
that vs € cl, (L) \ AT and so wy = 0 = pn(vs).

» That the pseudovariety J is x-full follows from the structure
theorem for Q4J.

» The pseudovariety G is k-full: the essential ingredient is a
seminal theorem of Ash [Ash91]; the details follow from
[ASO0] and [Del01].

» The pseudovariety Ab is x-full [Del01].
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» The pseudovariety G, is not x-full: this follows from a weak
version of Ash’s theorem proved by Steinberg [Ste01] for G,
together with fact that the conjunction of this weaker
property with k-fullness implies that the pseudovariety is
defined by pseudoidentities in which both sides are given by
k-terms [ASOQ]; however, such a definition does not exist
since, by a theorem of Baumslag [Bau65], the free group is
residually a finite p-group.

» That the pseudovarieties A and R are x-full has been proved
by JA-JCCosta-MZeitoun using the solution of the word
problems for Q%A [McC01]* and Q%R [AZ07].

“plus refinements from an alternative proof obtained by the same authors

including the fact that Q%A is closed for taking factors in Q4A.
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PRO-V METRICS

» The same way we defined a pseudo-ultrametric on the free
semigroup AT associated with a pseudovariety V, we may
define a pseudo-ultrametric on an arbitrary semigroup S: let

d(s1,55) = 27702,

where r(s1,s,) is the smallest cardinality of a semigroup
T € V for which there is a homomorphism ¢ : S — T such
that ¢(s1) # ¢(s2).

» Similar arguments show that d is indeed a pseudo-ultrametric
on S, with respect to which the multiplication in S is
uniformly continuous. If S is finitely generated, then the
completion Sis again a pro-V semigroup, but it may not be a
free pro-V semigroup.

» The pseudo-ultrametric d is an ultrametric if and only if S is
residually in V.

» Every homomorphism S — T into T € V is uniformly

continuous.
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PRrRO-H METRIC ON GROUPS

» Traditionally, one denotes by H an arbitrary pseudovariety of
groups.

» Because a group is highly symmetrical, the pro-H metric
structure looks similar everywhere.

LEMMA 11.1

Let G be a group and consider the pro-H metric on G. Then, for
every u,v,w € G, the equalities d(uw, vw) = d(u,v) = d(wu, wv)
hold. In particular, for e > 0, we have B.(u) = uB:(1) = B-(1)u
and a subset X is open (respectively closed) if and only if so is
Xw. Moreover, for e > 0, the ball B(1) is a clopen normal
subgroup of G such that G/B.(1) € H. A subgroup H is open if
and only if it contains some open ball B.(1).

PROOF.
This is a simple exercise. []
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» For a subgroup H of a group G, denote by H¢ the largest
normal subgroup of G which is contained in H. It is given by
the formula

He = ﬂ g 'Hg.
geG

> If we let G act on the set of right cosets of H in G by right
translation, then we obtain a homomorphism ¢ : G — S/
into the full symmetric group S/ (of all permutations of the
set G/H) such that ¢~1(id) = Hg.

» It follows that, if the index (G : H) of the subgroup H in G is
finite, then so is (G : Hg) and (G : Hg) is a divisor of
(G : H).
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LEMMA 11.2

A subgroup H of G is (cl)open in the pro-H metric if and only if
G/HG € H.

PROOF.

Suppose first that H is open. By Lemma 11.1, H contains a
normal subgroup K of G such that G/K € H. Then K C Hg and
so G/Hg ~ (G/K)/(Hg/K) belongs to H. Conversely, if

G/Hg € H then Hg is an open set, because the natural
homomorphism G — G/Hg is (uniformly) continuous. Since H
contains H¢, H is a union of cosets of Hg, and so is its

complement. Hence H is clopen. O
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» Another natural question is whether, for a subgroup H of G,
the intersection with H of an open subset of G in the pro-H
metric of G is also open in the pro-H metric of H.

> In general, the answer is negative, but there are important
situations in which it is affirmative.

ExAMPLE 11.3

Let G be the free group on two free generators a, b and consider
the homomorphism ¢ : G — Sz defined by p(a) = (12) and

@(b) = (13). Let K = ¢~ 1(1) and let H = ¢~1{(123)) be the
inverse image of the subgroup of index 2. Then H is clopen in the
pro-Ab metric of G and K is clopen in the pro-Ab metric of H but
K is not clopen in the pro-Ab metric of G.
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» Note that, for pseudovarieties of groups K and H, K« H
consists of all groups G which have a normal subgroup K such
that both K € K and G/K € H.S

» If Hx H = H, then we say that H is closed under extension.
» A condition for the answer to the above question to be
affirmative is drawn from the following result.
LEMMA 11.4

Let H be a clopen subgroup of G in the pro-H metric of G and
suppose that U is a normal subgroup of H such that H/U € H.
Then the normal subgroup Ug of G is such that G/Ug € H * H.

®For those unfamiliar with semidirect products, take this as the definition of

K x H and show that it is a pseudovariety of groups.
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PROOF.

Consider also the normal subgroup Hg and let g € G. By
Lemma 11.2, G/H¢ belongs to H. For each x € Hg, the
conjugate gxg~! belongs to H and so the mapping

g 1 He — H/U which sends x to gxg LU is a group
homomorphism. Moreover, for x € Hg, we have

xelUgexeglUgforallge G

sgxgtelUforallgeG
& pg(x) =1forall g € G.

It follows that Hg/Ug embeds in a finite power of H/U and so
Hg/Ug € H. The result now follows from the observation that

G/HG ~ (G/UG)/(HG/UG).
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> A first application of the preceding lemma is the following
answer to the above question.

PRoOPOSITION 11.5

Suppose that H is closed under extension. Let H be a clopen
subgroup of G in the pro-H metric of G. Then a subset of H is
open in the pro-H metric of H if and only if it is open in the pro-H
metric of G.

PROOF.

By Lemma 11.1, a subgroup L of H is open in the pro-H metric
of H if and only if it contains a normal subgroup U of H such that
H/U € H. By Lemma 11.4, the normal subgroup Ug of G is such
that U/Ug € HxH = H. Hence U is open in the pro-H metric
of G by Lemma 11.2. Since L is a union of cosets of U, L is also
open in the pro-H metric of G. O
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> In terms of the pro-H metrics, we obtain the following more
precise result.

PROPOSITION 11.6

Suppose that H is closed under extension and G is a group
residually in H. Let H be a clopen subgroup of G in the pro-H
metric of G. Then the pro-H metric dy of H and the restriction
to H of the pro-H metric dg of G have the same Cauchy
sequences.
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PROOF.

Let d be the restriction of dg to H and let r be the corresponding partial
function H x H — N. Denote by d’ the pseudo-metric dy and by r’ the
corresponding partial function. We start by establishing the following function
inequalities:

r<r<((G:H)-r). (1)
The first inequality in (1) follows from the observation that, if a
homomorphism from G into a member of H distinguishes two elements of H
then its restriction to H also distinguishes them. Suppose next that u,v € H
and the homomorphism ¢ : H — K with K € H are such that p(u) # ¢(v).
Let U = ¢ '(1). Then H/U embeds in K and, therefore, it belongs to H. By
Lemma 11.4, Ug is a normal subgroup of G of finite index such that
G/Us € H+H = H and, by an earlier observation, (G : Ug) divides (G : U)!.
If we choose above K so that |K| is minimum, then (H : U) = r’(u, v) and so,
since ulUg # vUg,

r(u,v) <(G:Us) < (G:U)=((G:H)-(H:U)!'=((G: H)r'(u,v))!

which proves (1).
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From the first inequality in (1) we deduce that every Cauchy sequence
with respect to d’ is also a Cauchy sequence with respect to d. For the
converse, let f(n) = ((G : H) - n)!. Then f is an increasing sequence and
a simple calculation shows that, for every € > 0,

d< o—f([—logel) —— o <e.

This implies that Cauchy sequences for d are also Cauchy sequences

for d’. |
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FREE PRODUCTS

> A free product in a variety V of semigroups is given by two
homomorphisms ¢; : S; — F (i = 1,2), with 51,5, F € V
such that, given any other pair of homomorphisms
i S — T, with T €V, there exists a unique
homomorphism 6 : F — T such that the following diagram
commutes:
F<_5

N o

52—2>T

» By the usual argument, if the free product exists, then it is
unique up to isomorphism.
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EXERCISE 11.7

Show that, for every variety V and semigroups S1, S, € V, the free
product of S; and S, in V exists.

» For semigroups S and T in a variety V), we say that S is a free
factor of T if there exists U € V such that T is a free product
of S and U in V. Note that every semigroup is a free factor of
itself.

EXERCISE 11.8

Suppose that S is a free factor of T in the variety V generated by
a pseudovariety V. Show that:

1. the pseudo-metric d\*j and the restriction of the pseudo-metric
dyJ to S coincide;

2. the open sets in pro-V metric of S are the intersection with S
of the open sets of T in the pro-V metric of T.
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