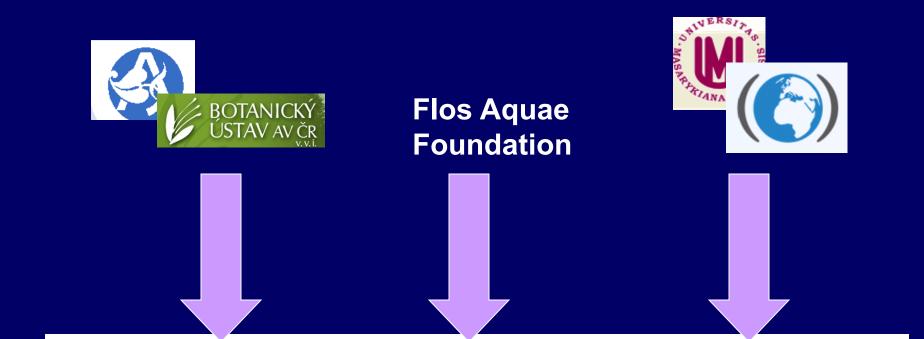
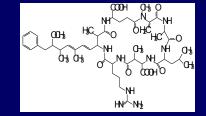
Cyanobacteria and their toxins: ecological and health risks


Luděk Bláha, Blahoslav Maršálek and co.

Masaryk University, Faculty of Science, RECETOX & Institute of Botany, Academy of Sciences Brno, Czech Republic

www.recetox.muni.cz www.cyanobacteria.net

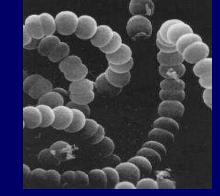
Research centre for toxic compounds in the environment

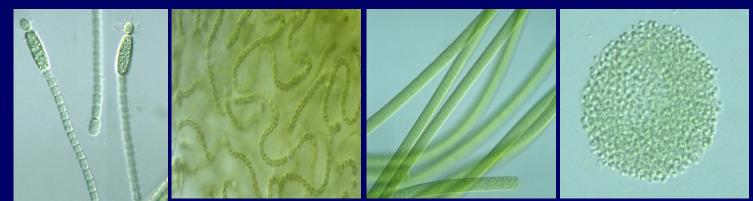

Centrum pro cyanobakterie a jejich toxiny

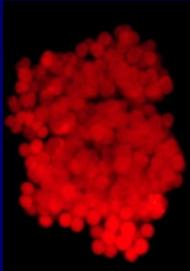
Centre for Cyanobacteria and Their Toxins

www.sinice.cz

www.cyanobacteria.net

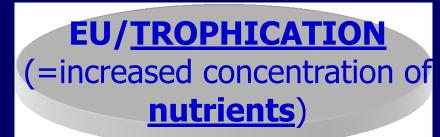




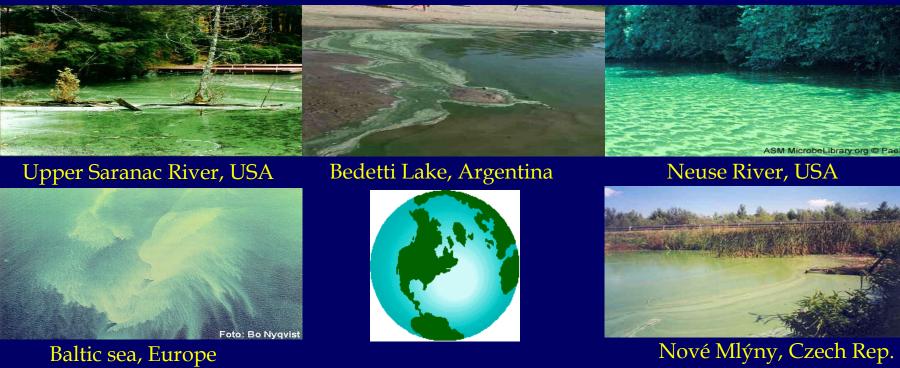


Blue green algae (CYANOBACTERIA, CYANOPHYTA)

- photosynthetic prokaryota
 - live at various biotops
 (water, soil, ice, rocks, lichens ...)
- cca 3 x 10⁹ years old
 formation of the ovv(gon a
- formation of the oxygen atmosphere



Cyanobacteria - current problem


HUMAN ACTIVITIES (agriculture, waste waters...)

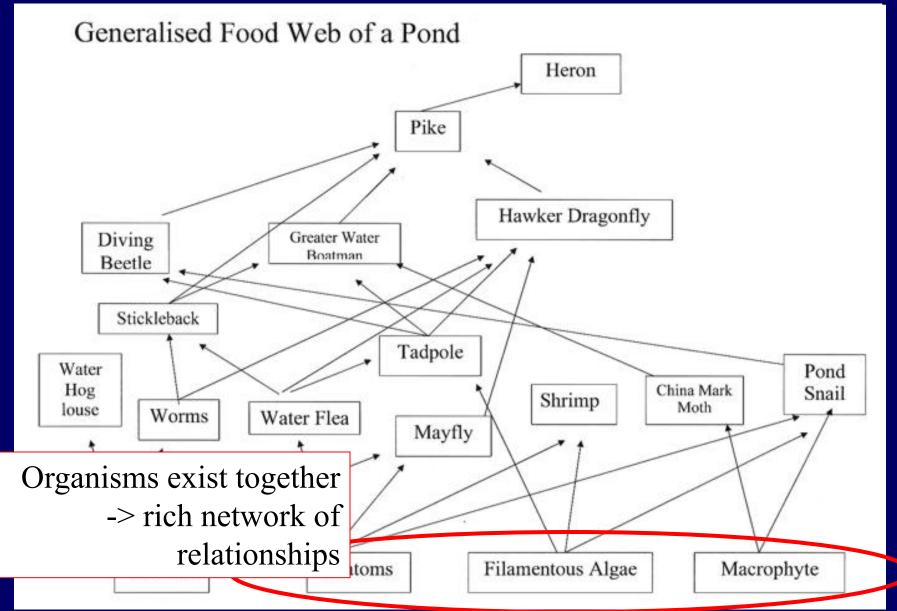
CYANOBACTERIAL MASS DEVELOPMENT

Cyanobacterial water blooms – global problem

Yellow sea, China

Lake Mokoan, Australia

South Africa

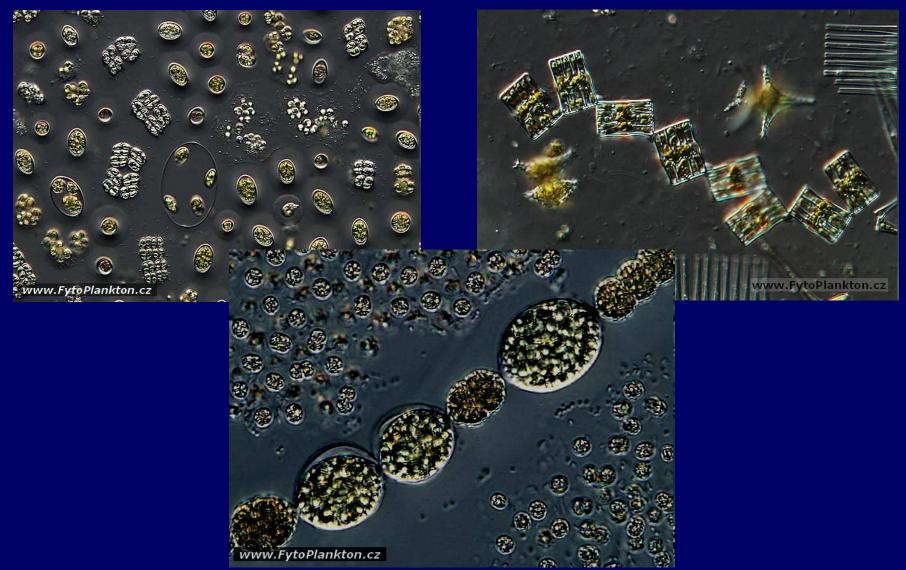

Talking about "risks" of cyanobacteria

- RISK = probability of the occurrence of HAZARDOUS event
 - "Hazardous events" resulting from eu/trophication of the environment
 - Primary damage to <u>structure</u> and <u>functioning</u> of ecosystems
 - <u>Secondary</u> signs -> <u>ecotoxicity and toxicity</u>

Ecological "stability"

- <u>Stable and functioning ecosystem</u>
 - Complex and complicated structure (diversity)
 - Many links (food networks) among organisms
 = ecosystem functioning
 - Including "ecosystem services" to humans: supplies, regulations, cultural / aesthetic, supporting

Complex ecosystem



Ecological risk 1: Loss of phytoplankton biodiversity

- Anthropogenic changes in the environment (more nutrients P,N)
 -> advantage for "some" phytoplankton organisms
- Complex communities replaced with "monoculture" (often Microcystis aeruginosa, Planktothrix sp.)
- "Monocultures" have secondary effects

 -> changes in hydrochemistry (higher pH, transparency)
 -> further indirect impacts on other organisms

Ecological risk 1: Loss of phytoplankton biodiversity

Ecological risk 1: Loss of phytoplankton biodiversity

Ecological risk 2: Further ecosystem changes

<u>Phytoplankton -> changes in the whole network</u>

- Reported examples ...
 - Changes in the consumers communites zooplankton -> fish -> ...
 - Makrophyte disappearance (reed) (shading -> no germination ...)
 - -> macrophytes
 - = substrate for other organisms ...

<u>New "expansive" species</u>

- cyanobacterium *Cylindrospermopsis raciborskii (?)*
- Water blooms = substrate for "associated bacteria"

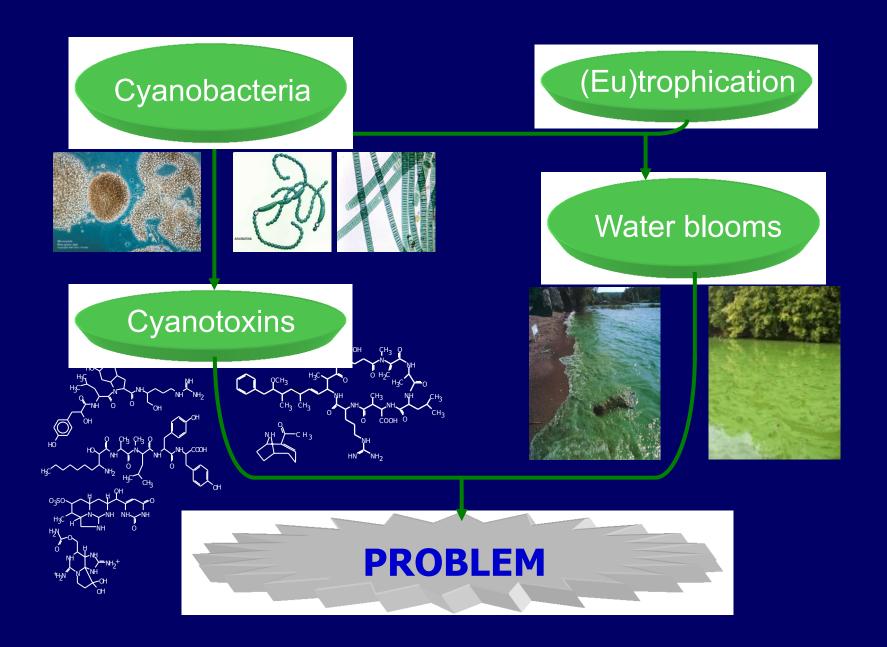
Ecological risk 3: Ecosystem catastrophes

 Sudden disappearance of the producers "monoculture" (*rapid environmental changes, "infections*" by viruses/phages) -> Ecosystem collapse

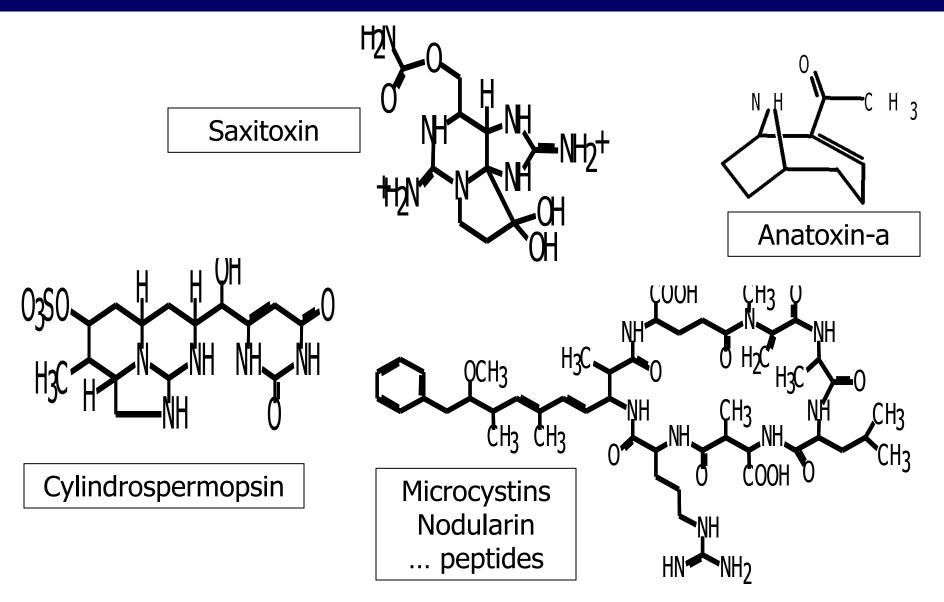
<u>Seasonal changes</u>

Cyanobacterial biomass lysis

 > bacterial decay -> loss of O₂
 -> anaerobic conditions - collapse


- Deaths of aquatic organisms (fish ...)
- Pathogens (anaerobic Clostridium botulinum)

Ecological risk 4: Cyanobacterial **toxins**


- Cyanobacteria evolutionary old and important organisms (atmospheric oxygen)
- G- bacteria (10 mil. Cells / mL)
 - G- : cell walls contain lipopolysaccharides (LPS, similar to E. coli, Salmonella sp...)

Water blooms

- several complex problems (see previous slides...)
- just one of the problems = **toxin production**

Selected "known" cyanotoxins

Categorization of cyanotoxins

1. According to the chemical structure

- cyclic and linear peptids
- alkaloids
- lipopolysaccharides

2. According to biological activity

mechanisms of toxicity

- hepatotoxicity, neurotoxicity, cytotoxicity, irritating, immunotoxicity, genotoxicity ...

ΤΟΧΙΝ	STRUCTURE	STRUCTURE VARIATION	LD50* (µg.kg⁻¹)	τοχιςιτγ
Microcystin	cyclic heptapeptide	>60	50-1200	hepatotoxicity, tumor promotion, induction of oxidative stress
Nodularin	cyclic pentapeptide	7	50-2000	hepatotoxicity, tumor promotion
Anatoxin	alkaloide	2	200-250	neurotoxicity
Anatoxin-a(S)	methylphospho- ester N-hydroxy- guanine	1	20	neurotoxicity
Saxitoxin	carbamat alkaloid	19	10	neurotoxicity
Cylindrospermopsin	guanidin alkaloid	2	200**	cytotoxicity, target organs: liver and kidney
Aplysiato×in		2		dermatoto×icity, tumor promotion
Lyngbyatoxin	modified cyclic dipeptide	1		dermatotoxicity, tumor promotion
Lipopolysaccharide				irritate effect

Cyanobacteria

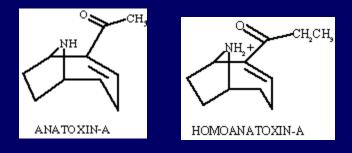
<u>Anabaena</u> Anabaenopsis Anacystis Aphanizomenon Cylindrospermopsis Hapalosiphon Lyngbia <u>Microcystis</u> Nodularia Nostoc *Phormidium (Oscillatoria)* Planktothrix (Oscillatoria) Schizothrix Trichodesmium Umezakia

Toxins produced

Anatoxins, Microcystins, Saxitoxins, LPS's Microcystins, LPS's LPS's Saxitoxins, Cylindrospermopsins, LPS's Cylindrospermopsins, Saxitoxins, LPS's Microcystins, LPS's Aplysiatoxins, Lyngbiatoxin-a, LPS's Microcystins, LPS's Nodularin, LPS's Microcystins, LPS's Anatoxin, LPS's Anatoxins, Aplysiatoxins, Microcystins, Saxitoxins, LPS's Aplysiatoxins, LPS's yet to be identified Cylindrospermopsin, LPS's

THE COMPARIOSON OF TOXICITY OF THE NATURAL TOXINS (i.p. injection, acute rat test, LD50 in μg/kg) Bacteria-cyanobacteria- animals- fungi- plants

Amatoxin Muscarin Aphanotoxin Anatoxin -A microcystin LR nodularin botulin tetan kobra kurare strychnine Amanita phalloides Amanita muscaria *Aphanizomenon flos-aquae Anabaena flos-aquae Microcystis aeruginosa Nodularia spumigena Clostridium botulinum Clostridium tetani Naja naja Chondrodendron tomentosum Strychnos nux-vomica* fungus 500 fungus 1100 cyano 10 20 cyano 43 cyano 50 cyano 0,00003 bacteria 0.0001 bacteria snake 20 plant 500 plant 2 000




Anatoxin-A, Anatoxin-A(S)

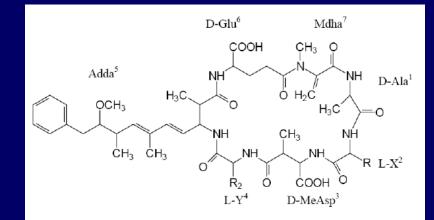
neurotoxic alkaloids

produced by a number of cyanobacterial genera including Anabaena, Oscillatoria and Aphanizomenon.

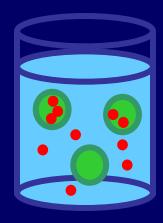
LD50s from 20 µg kg-1 (by weight, I.P. mouse) making them more toxic than microcystins.

SAXITOXINS

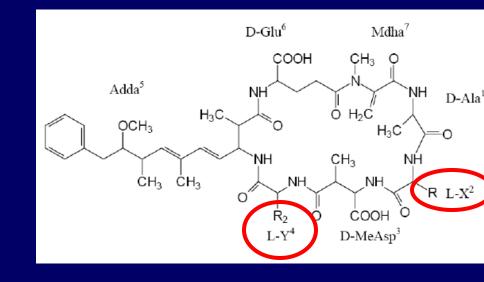
neurotoxic alkaloids


also known as PSP's - paralytic shelfish poisons - due to their accumulation in seafood

 Produced by marine dinoflagellates and cyanobacteria (but also in others such as Aphanizomenon sp.)


Number of STX variants exist

MICROCYSTINS

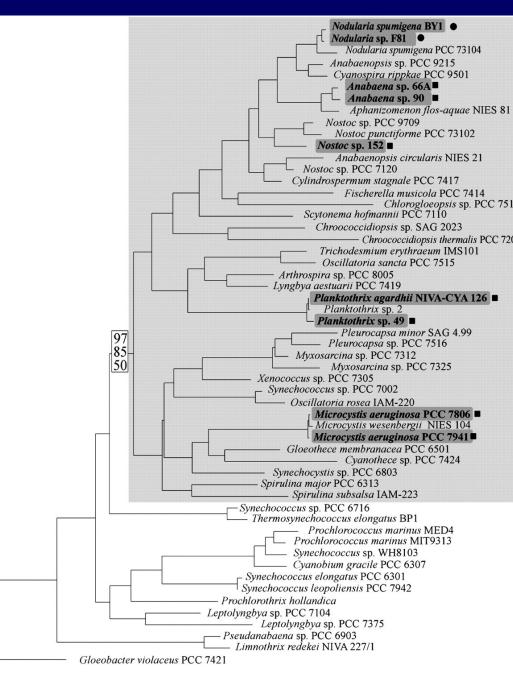


- The most studied and most important
- Produced and present inside cells:
 - Intracellular:
 - up to 10 mg/g d.w. of biomass
 1% dw -> tons / reservoir
 - Extracellular (dissolved): up to 10 ug/L
- Stable in water column, bioaccumulative (?)

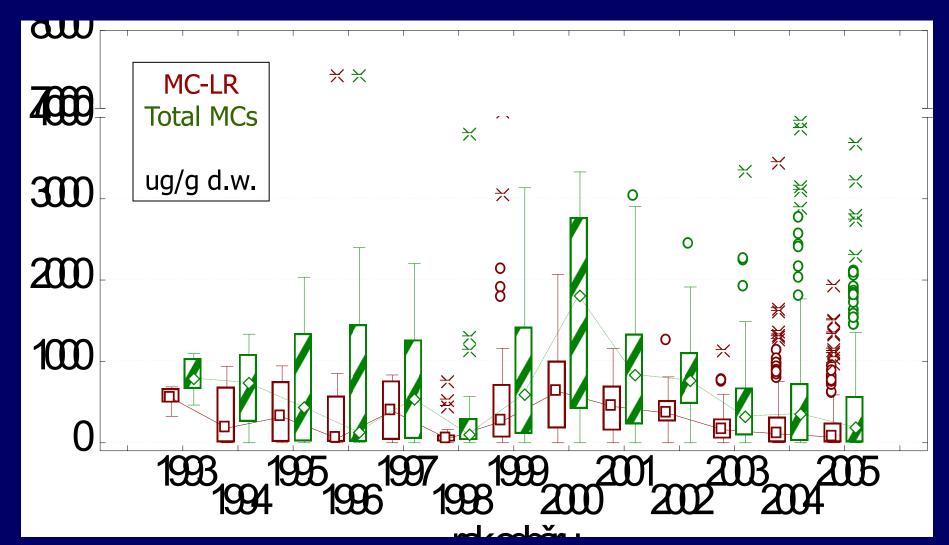
MICROCYSTINS

- Inhibit regulatory protein phosphatases
 - -> tumor promoter
 - -> hepatotoxic

- **70 variants:** MC-LR only considered by WHO
 - chronic TDI: 0.04 ug/kg b.w./day
 - drinking water guidline recommendation: 1 ug/L
- Highly toxic to mammals and humans
- Ecotoxicology ? Natural function ?

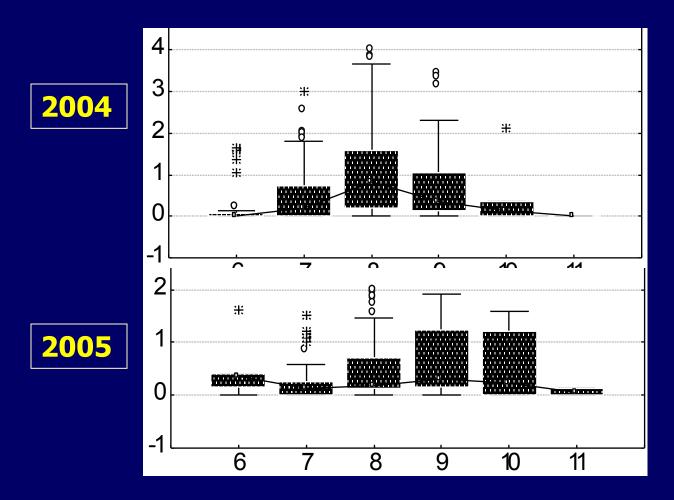

Microcystin synthesis

 Non-ribozomal polyketide synthetases

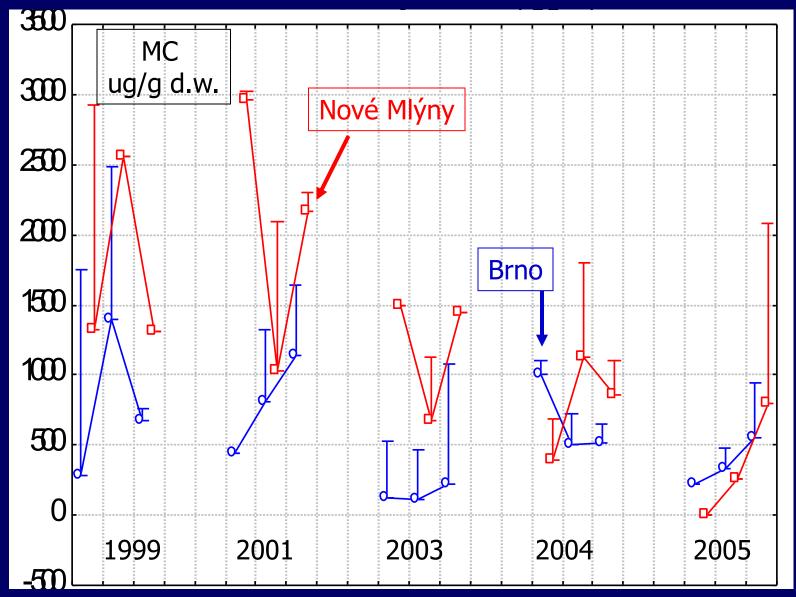

 Evolutionary old genes
 Why remained?

 Horizontal gene transfer

Rantala et al. (2004) PNAS 101:568



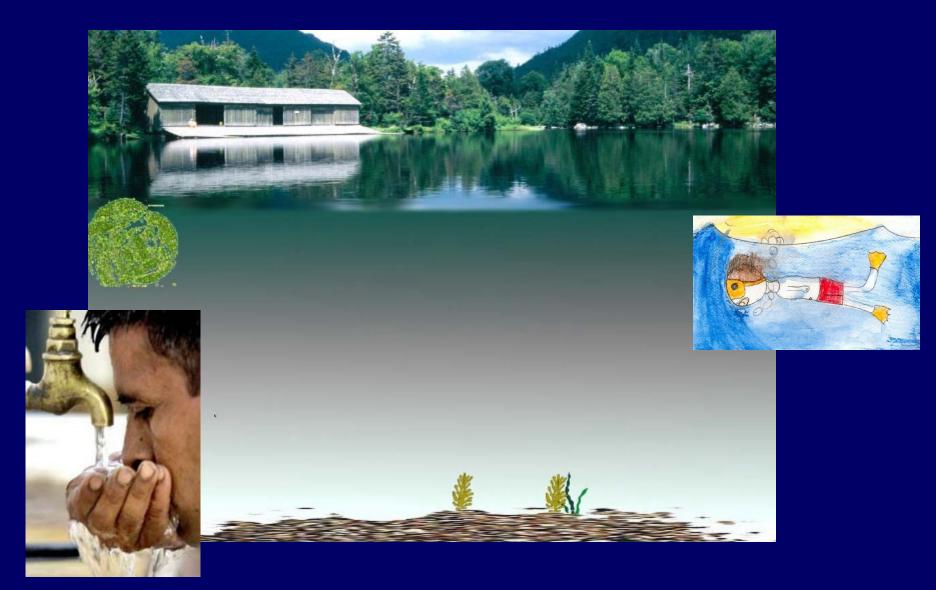
Microcystins in the Czech Rep. (Water bloom biomass concentrations ... up to several mg/g dry weight)

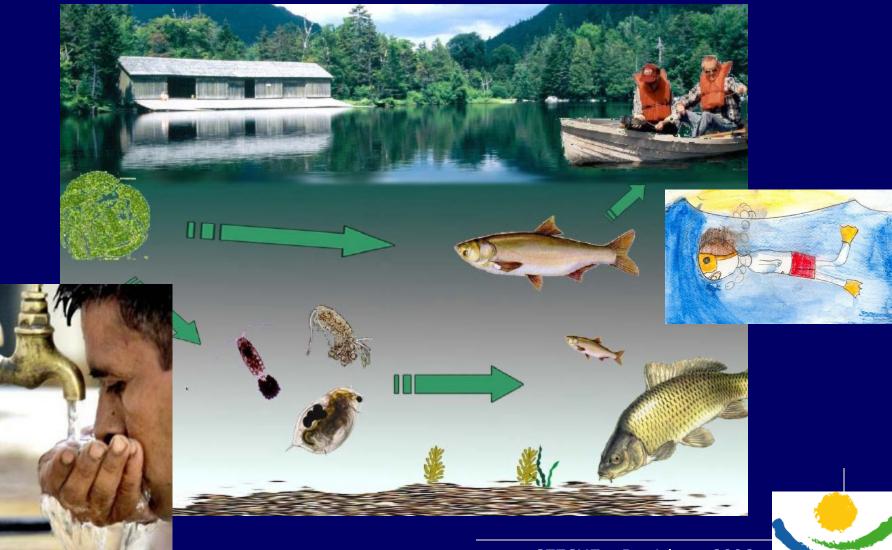


Seasonal variability


 dissolved microcystins in the C.R. (water concentrations)

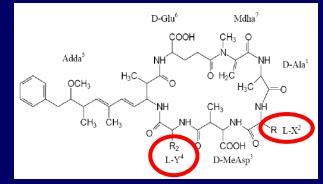
Reservoir seasonal data


Reservoir spatial variability

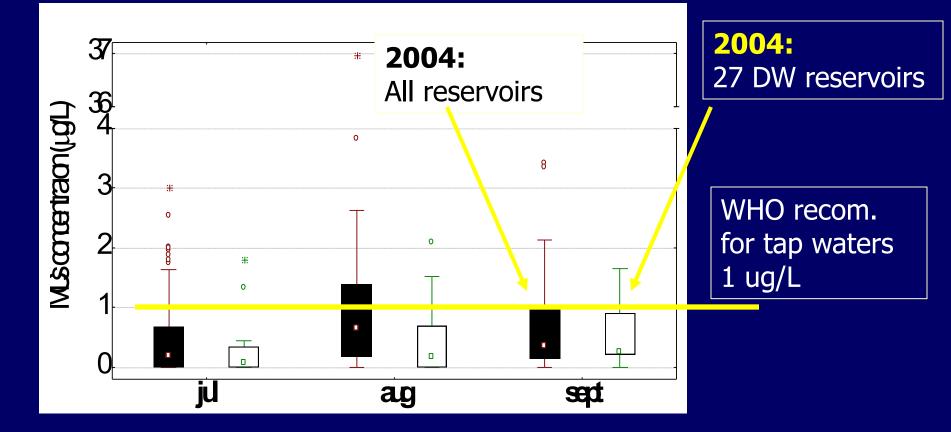

Microcystins

HUMAN HEALTH RISKS

EXPOSURE ROUTES

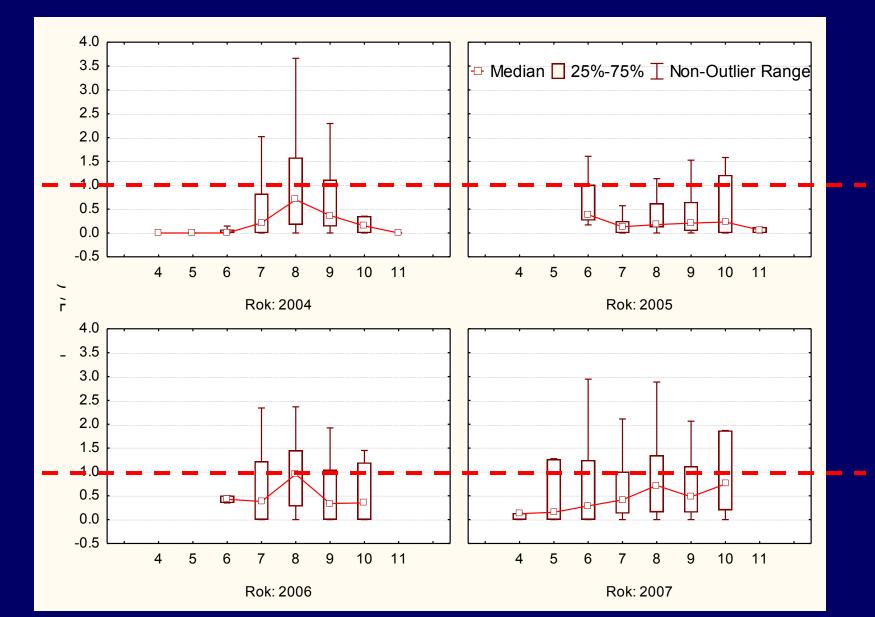

EXPOSURE ROUTES

CEECHE – Bratislava, 2006


MICROCYSTINS

... brief reminder ...

- 70 structural variants: MC-LR only (about 30-50% of MCs) considered by WHO
 Human chronic TDI: 0.04 ug/kg b.w. daily
 drinking water guideline recommendation: 1 ug/L (usually accepted in national laws worldwide, incl. Czech Rep.)
- High toxicity safety risks: manipulation regulated United Nations - <u>Bacteriological and Toxin Weapons Convention</u> Czech Rep. - Law no. 281/2002 Sb. and 474/2002 Sb.


MCs in drinking water reservoirs

Tap waters up to 8 ug/L (1999)

Bláha & Maršálek (2003) Arch Hydrobiol

MCs in drinking water reservoirs

"TOP" MCs in waters (Czech Rep. 2004-7)

Lokalita	Datum odběru	MC [ug/L]
Velké Žernoseky (pískovna)	1.8.2004	37.0
Nechranice	31.7.2004	19.0
Dubice, Česká Lípa	8.9.2004	15.1
Prostřední, Lednice	6.9.2005	18.7
Lučina	19.7.2005	17.3
České údolí VN	8.8.2005	9.3
Plumlov	15.8.2006	24.8
Dalešice	14.7.2006	16.3
Hracholusky	21.8.2006	16.3
Nechranice	26.7.2007	29.8
Skalka	22.8.2007	19.9
Novoveský	2.10.2007	16.3

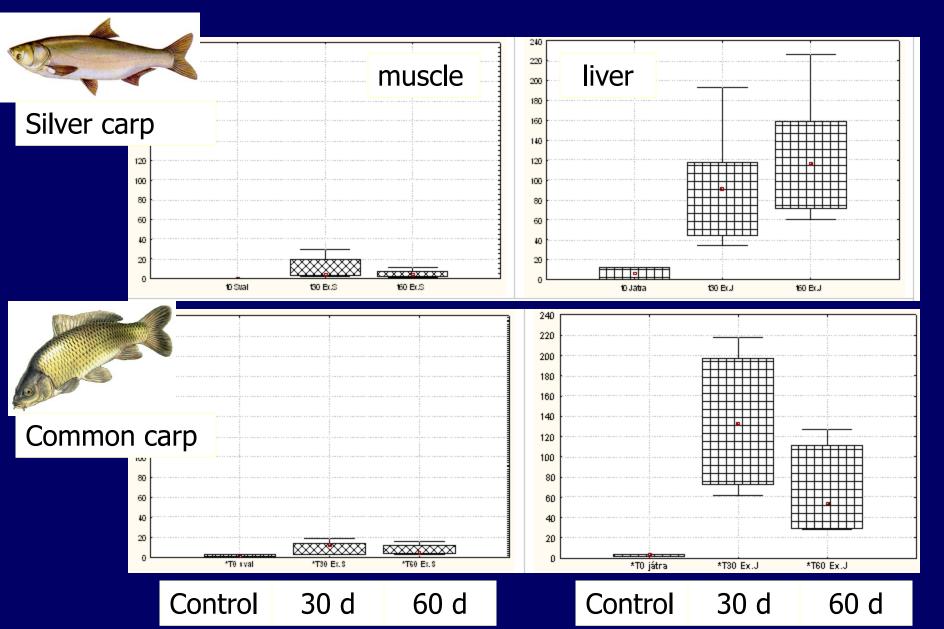
Bláhová et al. (2007). CLEAN - Soil, Air, Water 35(4), 348-354.

Risks of MCs in drinking water supplies

~ 8					
concentration of dissolved MC	20% daily intak of dri		100% daily intake from sources of drink.w.		
e d e d	child (25kg)	adult (70kg)	child (25kg)	adult (70kg)	
MC of	dose MC(µg.kg ⁻¹ live wt. day ⁻¹) HI	dose MC(µg.kg ⁻¹ live wt. day ⁻¹) HI	dose MC(⊿g.kg ⁻¹ live wt. day ⁻¹) HI	dose MC(µg.kg ⁻ ¹live wt. day ⁻¹) HI	
median	0.0015	0.0005	0.0075	0.0027	
0.205 μg/L	0.038	0.014	0.189	0.067	
extreme	0.1272	0.0454	0.6359	0.2271	
17.27 ug/l	3.180	1.136	15.898	5.678	

- SIGNIFICANT HEALTH RISKS EXIST !
- To minimize risk
 - Addopt appropriate technologies and treatments
 - Establish routine monitoring of MCs during the season

Accumulation of MCs in fish



Silver carp

Accumulation of MCs in fish

Risk of MCs in edible fish

		Max.	Max.	Average	Average
Silver carp		conc. (dose)	HI	conc. (dose)	HI
	SC: liver	226 ng/g 68 ug	28	106 ng/g 32 ug	13.2
	muscle	29	3.7	8.4	1.1
		8.8		2.5	
	CC: liver	217	27	132	16.5
		65		39	
Common carp	muscle	18.8	2.4	8.5	1.1
		5.6		2.6	

100% of food from the contaminated source avg. person: 60kg, food - 300g

1

TDI: 0.04 ug/kg/day

MCs in fish [ng/g f.w.] (Czech Republic reservoirs, 2008)

	Liv	Muscle	
	Average	Maximum	
Pike perch	15.6	22.7	0
Amur	2.02	6.1	0
Carp	0.57	1.8	0
Catfish	0	0	0
Silver salmon	4.14	9.5	0

Exposure to MCs from fish
 Less (if any) significant health risks

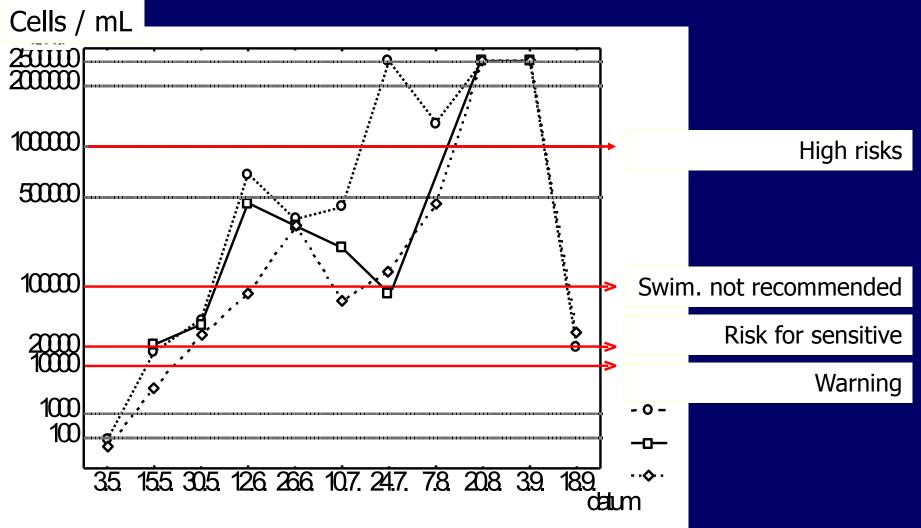
RECREATIONAL EXPOSURE

Contact dermatitis

non-specific (!!!!) responsible agents (? MCs, LPS?)

Lipopolysaccharides ?

Pyrogenicity of LPS

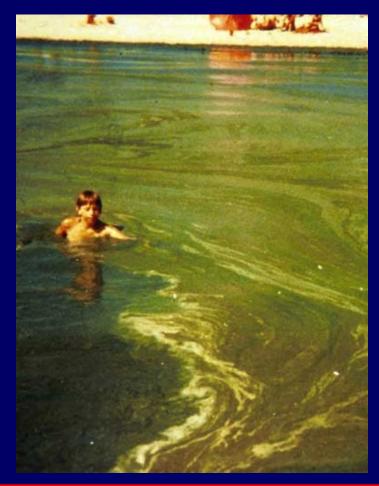

significant in water blooms

(less in lab cultures)

Bernardová et al. 2008 J Appl Toxicol

	Endotoxin activity				
Sample	(EU mg ⁻¹ d.w.)	(EU mg ⁻¹ LPS)			
Green alga					
P. subcapitata	0	0			
Cyanobacterial culture					
P. agardhii	301	35 456			
A. flos-aquae	426	38 399			
M. aeruginosa	257	36 809			
T. variabilis	2 5 1 8	270 848			
Water bloom					
Planktothrix sp.	61	46 959			
Aphanizomenon sp.	7 895	918 118			
M. aeruginosa	799	199 895			
Microcystis sp.	989	449 576			
Anabaena sp.	277	48 699			
Heterotrophic bacteria					
E. coli	14 692	1 347 959			
K. intermedia	1 702	239 770			
P. putida	11 392	1 294 592			
P. fluorescens	55	6 669			

Toxic cyanobacteria in recreational reservoirs (WHO approach - "preliminary caution")


RECREATIONAL EXPOSURE

Contact dermatitis

non-specific (!!!!) responsible agents (? MCs, LPS?)

• Toxins enter the body (MCs risk assessment possible)

Risks of MCs: recreational exposure (US EPA R.A.methodology)

	7 da	ays per year	(chronic expos	sure)	1 day acute exposure			
	Guidance level 2 100 000 cells/mL		Guidance level 3Guidance level 32 000 000 cells/ml100 000 cells		e level 2 Guidance level 3		e level 3	
					cells/mL	2 000 000 cells/ml		
	child	adult	child	adult	child	adult	child	adult
	(25kg/80ml.h ⁻¹)	(70kg/50ml.h ^{_1})	(25kg/80ml.h ⁻¹)	(70kg/50ml.h ^{_1})	(25kg/80ml.h ^{_1})	(70kg/50ml.h ⁻¹)	(25kg/80ml.h ⁻¹)	(70kg/50ml.h ⁻¹)
	MC dose (µg.kg ⁻¹ bw. day ⁻¹)	MC dose (µg.kg ⁻¹ bw.day ⁻¹)	MC dose (µg.kg ⁻¹ bw.day ⁻¹)	MC dose (µg.kg = 1bw. day =1)	MC dose (µg.kg ='bw.day=')	MC dose (µg.kg ⁻¹bw.day⁻¹)	MC dose (µg.kg = 1 bwv. day = 1)	MC dose (∡g.kg ⁻¹ bw. day ⁻¹)
biomass-bound MC	н	HI	н	н	н	н	н	н
median	0.00019	0.00004	0.00389	0.00087	0.01013	0.00226	0.20268	0.04524
concentration	0.005	0.001	0.097	0.022	0.253	0.057	5.067	1.1310
348 μg/g dw								
extreme	0.00220	0.00049	0.04406	0.00984	0.11488	0.02564	2.29757	0.51285
concentration	0.055	0.012	1.102	0.246	2.872	0.641	57.439	12.823
3945 μg/g dw								

Recreation exposure

 > significant risks of MCs

Summary I -MCs and the health risks

MCs present in 80-90% of reservoirs
High MCs concentrations

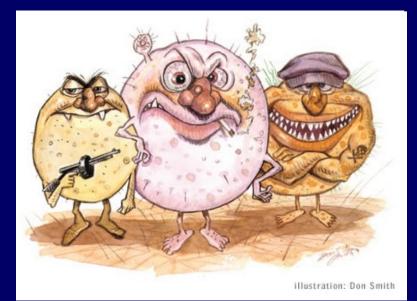
 All exposure routes pose significant health risks under certain scenarios
 ! Recreation, Drinking water (MCs accumulated in fish - less important)

Cyanobacterial EKOtoxicity ?

• **Isolated microcystins** - many toxicological studies

HOWEVER: Water blooms are more than microcystins

- complex mixtures of many compounds (toxins, lipopolysaccharides, non-toxic components...)


- ? accumulated toxicants (metals, POPs ???)

Many studies:

tested complex water blooms BUT interpreted as "MCs"

Ecotoxicity of <u>WATER BLOOMS</u> to bacterioplankton

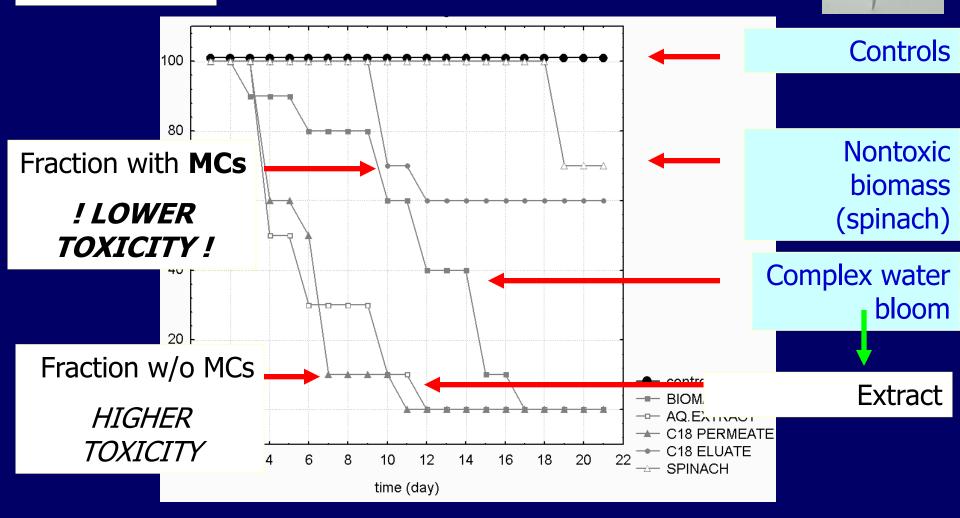

- highly relevant question (MCs are evolutionary old ... as well as bacteria)
- only few studies in general low toxicity observed

Ecotoxicity of <u>WATER BLOOMS</u> to algae (phytoplankton)

<u>Algae = competitors to cyanobacteria</u>

- limited data
- weak direct toxicity only at high (nonrelevant) concentrations
- some studies indicate allelopathy between cyanobacteria & algae (*inhibition of growth, specific effects on dormant stages*)

Ecotoxicity of WATER BLOOMS to zooplankton


- invertebrates lower sensitivity than vertebrates
- variable sensitivity of different (even closely related) invertebrate species
- one of the first hypotheses: "MCs are against predators" (not confirmed - several contras...)

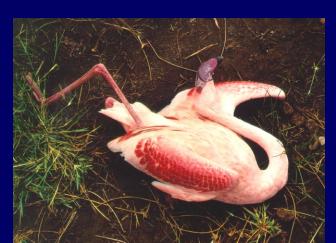
BUT: zooplankton prefers nontoxic strains during feeding (? -> indirect effects on development of toxic blooms ?)

Ecotoxicity of cyanobacteria

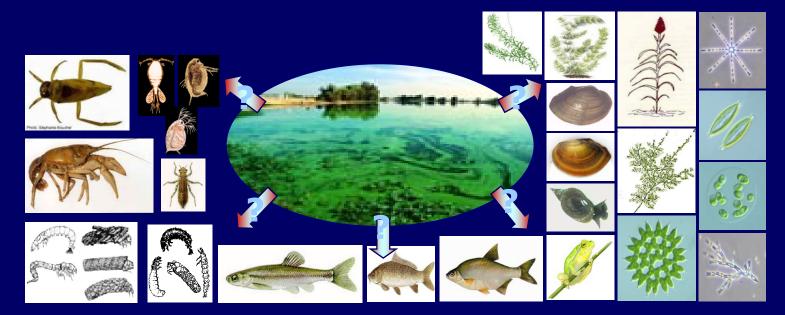
Reproduction

Ecotoxicity of <u>WATER BLOOMS</u> to fish and amphibians

Many studies ... toxin accumulations
 + several effects observed (histhology, biochemistry...)


Indirect effects (pH changes, oxygen content) more important in toxicology !

Ecotoxicity of WATER BLOOMS to birds


- deaths documented (with toxins in bird tissues)
- limited number of controlled experiments
 - low direct toxicity to model birds
- ! Water blooms stimulate effects of other agents (lead toxicity, immunosupressions)

Summary II -Ecotoxicological risks

- Only MCs studied (... results disputable ...)
- In general: Lower importance of "known" isolated toxins (such as MCs)
 - ! Complex bloom effects are more important !

... emerging toxins

Cylindrospermopsin (CYN)

	MC	CYN
LD50 (acute oral toxicity)	6000 μg/kg	5000μg/kg
NOAEL	40 μ g/kg/den	30 μg/kg/den
TDI	0.04 μ g/kg	0.03 μ g/kg
Limit pro pitnou vodu	1 μ g/L *	1 μ g/L * * 15 μ g/L * * *

discovered in tropics (Australia, Florida, New Zealand ...)
now reported from Europe ... including C.R.

Risks of both MCs and CYN are comparable (CYN not regulated, concentrations unknown...)

Cylindrospermopsin in the C.R.

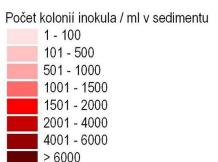
÷				
	<u>nádrž</u> / odběr	<u>tax. složení</u> vodního květu	CYN (µg/L) ELISA	_
	Dubice			
	2007-08-27	<u>Apahnizomenon flos-aquae var. klebahnii</u> 5%, Limnothrix redekei 70%, Planktothrix sp. 5%, Microcystis sp. 15%, Anabaena lemmermannii	3.135±0.003	
	Máchovo jezero			
	2007-07-30	<u>Aphanizomenon gracile</u> 10%, <u>Aphanizomenon sp. (</u> 10%), Microcystis sp. 30%, Aphanocapsa sp. 10%, Oscillatoriales 20%, Aphanothece sp., Anabaena sp.	0.470±0.032	
	Svět			
	2007-07-25	<u>Aphanizomenon flos-aquae var. klebahnii</u> 5%, Anabaena flos-aquae 40%, Anabaena planctonica 50%, <u>Cylindrospermopsis raciborskii</u>	0.061±0.010	Bla 2

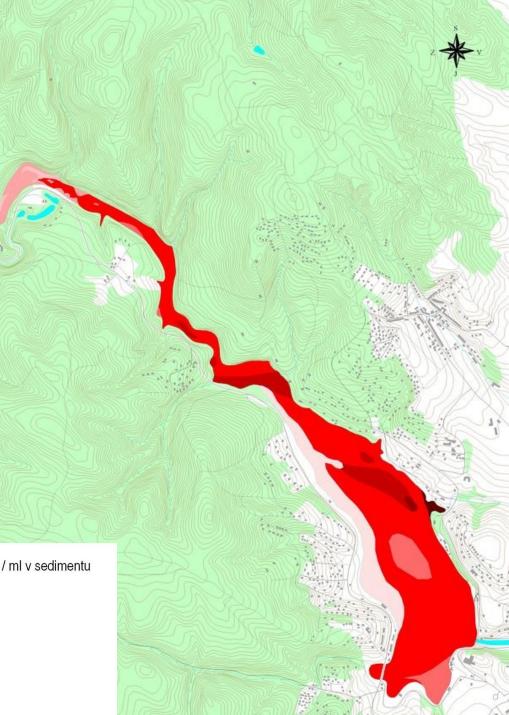
Bláhová et al. 2008 Toxicon

Limit nutrient sources in the reservoir

- Cyanocides (chemical, natural e.g. Humic acids)
- Flocculants AI(OH)_{3 ...}
- **Biological control (**... planktophagous fish)
- **Others** (mechanical removal, ultrasonic ...)

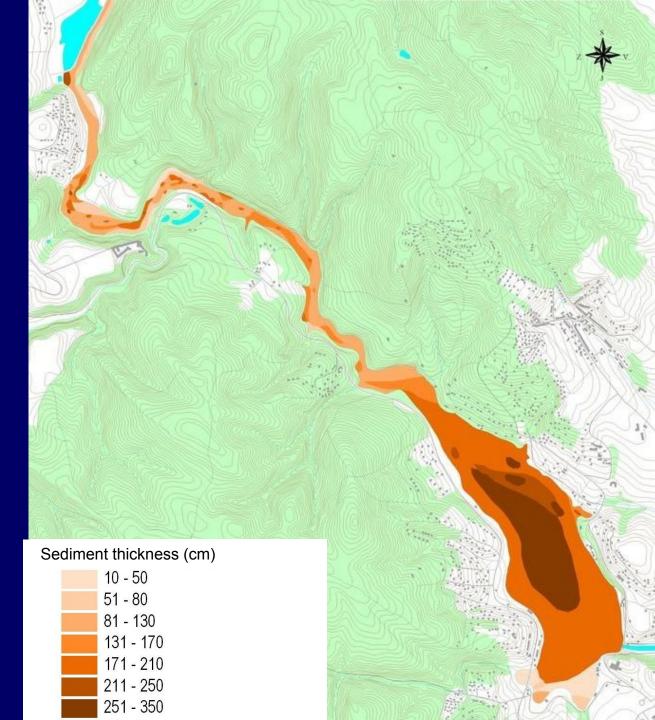
How to manage toxic blooms?


No ideal and universal approach exists


combinations of methos
 locality-specific approach

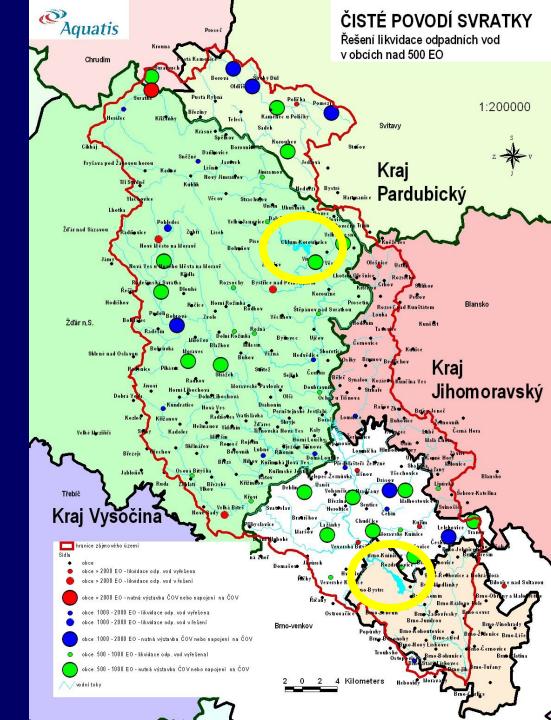
Example Brno reservoir

sources of cyanobacteria (colonies in sediment)



Sources of nutrients

... in the reservoir


(sediments up to 3 m thickness)

Sources of nutrients

... upstream

- several small towns & villages (no WWTPs)

CONCLUSIONS

 Eutrophication causes complex risks with complicated management

1) Ecological risks

- Loss of diversity ... followed by losses of functioning
- Secondary changes in the environment
 - hydrochemistry (pH, O₂)
 - loss on natural habitats (makrophytes...)
 - new conditions (associated bacteria patogenic ?)
- <u>Susceptibility to catastrophes</u>
- Direct ecotoxicity of individual (known) cyanotoxins seems to be less important

CONCLUSIONS

2) HEALTH RISKS OF CYANOTOXINS

- **Lower importance** known toxins (MC) in food chains (fish)
- <u>MC in drinking water</u> higher costs needed for management and control
- Important risk recreation !

<u>New and less explored risks</u>

- new toxins (and their mixtures) LPS, CYN ...
- water blooms as "sorbents" of other toxins (metals, POPs)