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SUMMARY

Although subcellular mRNA trafficking has
been demonstrated as a mechanism to con-
trol protein distribution, it is generally believed
that most protein localization occurs subse-
quent to translation. To address this point, we
developed and employed a high-resolution
fluorescent in situ hybridization procedure to
comprehensively evaluate mRNA localization
dynamics during early Drosophila embryogene-
sis. Surprisingly, of the 3370 genes analyzed,
71% of those expressed encode subcellularly
localized mRNAs. Dozens of new and striking
localization patterns were observed, implying
an equivalent variety of localization mecha-
nisms. Tight correlations between mRNA distri-
bution and subsequent protein localization and
function, indicate major roles for mRNA locali-
zation in nucleating localized cellular machiner-
ies. A searchable web resource documenting
mRNA expression and localization dynamics
has been established and will serve as an in-
valuable tool for dissecting localization mecha-
nisms and for predicting gene functions and
interactions.

INTRODUCTION

Virtually all cells are polarized, partitioning their contents

to a variety of organelles, compartments and membrane

interfaces that execute specialized biological and regula-

tory functions. Since the discovery of the signal peptide by

Blobel and colleagues (Blobel and Dobberstein, 1975), the

targeting of most proteins to these various subcellular

destinations has been thought to occur after translation.
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More recently, it has been shown that protein localization

can also be controlled by localizing the mRNA transcript

prior to translation (Bashirullah et al., 1998; Czaplinski

and Singer, 2006; Kloc et al., 2002; St Johnston, 2005).

A potential advantage of this mechanism is its cost effec-

tiveness. Each localized mRNA can facilitate many rounds

of protein synthesis, thereby avoiding the significant en-

ergy costs of moving each protein molecule individually

(Jansen, 2001). This process also helps to ensure that

proteins do not appear where their effects would be

detrimental.

Localized mRNAs can serve many biological functions,

including the establishment of morphogen gradients

(Driever and Nusslein-Volhard, 1988; Ephrussi et al.,

1991; Gavis and Lehmann, 1992), the segregation of

cell-fate determinants (Broadus et al., 1998; Gore et al.,

2005; Hughes et al., 2004; Li et al., 1997; Long et al.,

1997; Melton, 1987; Neuman-Silberberg and Schupbach,

1993; Simmonds et al., 2001; Takizawa et al., 1997; Zhang

et al., 1998), and the targeting of protein synthesis to spe-

cialized organelles or cellular domains (Adereth et al.,

2005; Lambert and Nagy, 2002; Lawrence and Singer,

1986; Mingle et al., 2005; Zhang et al., 2001).

While the list of known localized mRNAs has grown

steadily over the past two decades (Bashirullah et al.,

1998; Czaplinski and Singer, 2006; Kloc et al., 2002;

St Johnston, 2005), the prevalence, variety and overall

importance of mRNA localization events is unknown. Pre-

vious in situ screening efforts in Drosophila have estab-

lished speculative estimates of the proportion of local-

ized mRNAs, ranging from one to ten percent (Dubowy

and Macdonald, 1998; Tomancak et al., 2002). However,

the detection methods used in past studies were of

insufficient resolution to observe intricate subcellular

patterns.

To assess mRNA subcellular localization dynamics on

a global scale, a high-resolution fluorescent in situ hybrid-

ization (FISH) procedure was developed and applied to

early developmental stages of Drosophila embryogenesis.
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Figure 1. Embryonic Gene Expression Dynamics Revealed by High-Resolution FISH

(A and B) The optimized FISH procedure reveals localization patterns not readily discernible with traditional detection methods and enables the

unambiguous distinction of maternal and zygotic mRNA populations. Examples of patterns observed are shown for maternal Bsg25D transcripts (A),

and for zygotically expressed CG4500 and Trn-SR transcripts (B), detected using optimized FISH (mRNAs in green/nuclei in red), or standard

alkaline phosphatase-based detection ([A] left panel, image obtained from the BDGP in situ database, Tomancak et al., 2002).

(C) General summary of observed and projected gene expression and mRNA localization events.

(D) Comparison of maternal and zygotic transcripts and their respective gene ontology (GO) term enrichments.

(E) Expression and localization dynamics of maternal and zygotic transcripts during stages 1–9 of embryogenesis.
Of the genes expressed during this developmental

window, a surprising 71% were found to encode mRNAs

exhibiting clear subcellular distribution patterns. The fre-

quency and variety of localization events suggests that vir-

tually all aspects of cellular function are impacted by RNA

trafficking pathways. We conclude that mRNA localization

is a major mechanism for controlling cellular architecture

and function.

RESULTS

Method Development, Screening,
and Localization Database
To circumvent the deficiencies of existing in situ hybridiza-

tion protocols, considerable effort was made to develop

a procedure with optimal subcellular resolution, sensitiv-

ity, consistency, throughput and economy. Typical results

obtained with the resulting method (Lécuyer et al., 2007),

versus traditional alkaline phosphatase-based probe de-

tection, are illustrated in Figures 1A and S1 in the Supple-

mental Data available with this article online. Reassuringly,

control analyses using probes with increasing sequence

divergence indicate that the occurrence of false positive
signals due to cross-hybridization to mRNAs with similar

sequences is highly unlikely (Figure S2).

Following high-throughput FISH, samples were

mounted and analyzed using epifluorescence micros-

copy. For each expressed gene, representative low and

high magnification images were captured at key develop-

mental stages and incorporated within a relational data-

base. The first 4.5 hr of Drosophila development, spanning

embryonic stages 1–9, was chosen for analysis, as this in-

terval is manageable in terms of data annotation and en-

compasses major developmental landmarks such as the

midblastula transition (MBT), gastrulation and the specifi-

cation of many cell types. The MBT is the period during

which developmental regulation switches from control

by maternally synthesized gene products to control by zy-

gotically transcribed genes (Tadros et al., 2007b). Impor-

tantly, our FISH method enables the unambiguous distinc-

tion between maternal and zygotic mRNA populations.

Maternally provided transcripts are generally cytoplasmic,

exhibit FISH signal intensities above background in stage

1 embryos and decrease in intensity during later stages.

Zygotic mRNAs, on the other hand, are always first

detected in nascent transcript foci within subsets of
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embryonic nuclei and are not generally observed until

stage 4. Examples of maternal and zygotic mRNAs are

illustrated in Figures 1A and 1B.

An annotation term hierarchy has been created to doc-

ument stage-specific expression, localization and degra-

dation dynamics of each transcript. In addition, an RNA lo-

calization database resource, containing annotation terms

and representative images of all transcripts detected, has

been established using previously described web-based

tools (Tomancak et al., 2002) and can be accessed

through a searchable web-browser at: http://fly-fish.ccbr.

utoronto.ca.

Embryonic Gene Expression Dynamics
Of the 3370 genes (�25% of genome) successfully

screened, 2314 were expressed during the developmental

window analyzed (Figure 1C). Of these, 2198 were mater-

nally provided, 504 were zygotically expressed, and 388

were expressed both maternally and zygotically (Figures

1C and 1D). The percentage of genes that we find to be

maternally expressed (65%) is more than twice that of ear-

lier predictions (�30%; Arbeitman et al., 2002), although it

more closely resembles estimates from a recent microar-

ray-based study (�55%; Tadros et al., 2007a). Our higher

values likely reflect the thorough gene-by-gene approach

that was used and the improved sensitivity of the de-

tection procedure. Consistent with the importance of

transcript degradation in the transition from maternal to

zygotic control of embryogenesis (Tadros et al., 2007a),

the majority (�65%) of these maternal mRNAs are no

longer detectable by stages 8–9 (Figure 1E).

Gene ontology (GO) term enrichment analysis reveals

that maternal transcripts are enriched for genes involved

in RNA metabolism (Figures 1D, S3, S4A, and Table S1),

including, for example, many components of the spliceo-

some (crn, prp8, SmD3, snRNP69D, snRNP70K, U2af50).

This finding is consistent with the large and diverse mater-

nal mRNA contingent, and the need to organize aspects of

their processing, translation, stability and localization. In-

terestingly, these terms are more strongly enriched among

the more stable maternal mRNA subsets that continue to be

detected through stages 6–9 (Figure S4A and Table S1), in

agreement with recent observations (Tadros et al., 2007a).

The first major burst of zygotic transcription occurs at

stages 4–5 as the Drosophila embryo begins to transition

from syncytial to cellular growth (Figure 1E). Approxi-

mately half (230) of the zygotically expressed genes de-

tected are initiated during stages 4–5 and continue to be

expressed throughout the developmental period analyzed

(Figure S5A). Interestingly, several of the earliest tran-

scribed mRNAs, which were unexpectedly detected as

early as stages 1–2, are encoded by transposable/repeti-

tive elements (copia, Doc, Ste12DOR). The significance of

these early expression events will be addressed further

below. As a group, the zygotically expressed genes are

strongly enriched for functions relating to transcriptional

regulation, cell fate determination, tissue/organ develop-

ment and morphogenesis (Figures 1D, S4B, and Table
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S1), consistent with the rapid patterning and morphoge-

netic processes that follow the MBT. These functional en-

richments are in agreement with a recent study by De

Renzis et al. (2007), who identified 1158 putative zygoti-

cally expressed genes using microarray analyses of chro-

mosome deletion mutants (De Renzis et al., 2007). How-

ever, their dataset does not include 337 of the 504

genes that we unambiguously found to be zygotically

expressed. Thus, by extrapolation, we predict the number

of zygotically expressed genes during this period to be

significantly higher (�2043 versus 1158; Figure 1C). Alto-

gether, our projections suggest that >9000 genes are

expressed either maternally or zygotically during the early

stages of Drosophila embryogenesis (Figure 1C), repre-

senting a vast and complex set of regulatory interactions.

Transcript Localization
Of the 2314 mRNAs expressed, a remarkable 71% are

subcellularly localized (Figure 1C), with a peak in localiza-

tion frequency observed between embryonic stages 4–7

(Figure 1E). This peak in localized transcript numbers

may reflect a relatively high demand for localization events

during the conversion from syncytial to cellular environ-

ments. Alternatively, it may be skewed by the relative

ease of detection of localization in large embryos versus

small cells. Further analyses of transcript localization in

other tissues and developmental stages, and using higher

resolution microscopy techniques, will undoubtedly reveal

many additional localization events. Hence, our numbers

represent a conservative estimate of the total number of

localized mRNAs encoded in the fly genome.

The 1644 localized transcripts observed were grouped

into �35 localization categories, most of which are listed

in Table 1. The following sections will focus on some of

the more diverse and striking of these localization patterns

and their functional implications.

Subembryonic Localization Patterns
The most prevalent localization patterns observed are the

sub-embryonic ‘exclusionary’ categories, where mRNAs

are excluded from parts of the embryo, such as the pe-

ripheral apical cytoplasm or the germline pole cells that

form at the posterior tip (Table 1). Although these patterns

might easily be missed in smaller somatic cells, their im-

portance is clear. For example, the pole cell-excluded

subgroup is specifically enriched for transcripts encoding

ribosomal constituents and factors involved in mRNA me-

tabolism and processing (Table S2). This is consistent with

the general need to prevent transcript synthesis and trans-

lation in germline cells during early embryogenesis (Sey-

doux and Dunn, 1997; Van Doren et al., 1998), and pro-

vides new insights into the mechanisms responsible.

Similar mechanisms are likely to be used in somatic cells

to prevent translation or related processes in portions of

the cytoplasm.

Perhaps the most easily detected of the subembry-

onic patterns are the previously documented anterior and

posterior categories. Notably, the number of anterior

http://fly-fish.ccbr.utoronto.ca
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Table 1. Summary of mRNA Localization Patterns

Localization Patterns

Number of Genesa

(Projectedb)

Percent of

Expressed

Number of Genes/Stage Range

St. 1–3 St. 4–5 St. 6–7 St. 8–9

Expressed 2314 (9379) 100.0 2213 2183 1592 1154

Localized 1644 (6663) 71.0 233 1578 1135 187

Subembryonic patterns 1468 (5950) 63.4 207 1431 1041 147

Exclusionary patterns 1397 (5662) 60.3 123 1371 976 8

Pole plasm/Pole cell exclusion 1272 (5156) 54.9 83 1235 920

Apical exclusion 1145 (4641) 49.5 NA 1142 747 6

Basal exclusion 256 (1038) 11.1 NA 225 112

Yolk cortex exclusion 207 (839) 8.9 58 175 6

Yolk cortex localization 277 (1123) 12.0 9 171 172 3

Posterior localization 198 (803) 8.6 74 195 106

Pole/Germ cell localization 195 (790) 8.4 NA 192 105 62

Pole plasm localization 70 (284) 3.0 70 NA NA NA

Pole buds 54 (219) 2.3 54 NA NA NA

RNA islands 44 (178) 1.9 44 NA NA NA

Anterior localization 5 (20) 0.2 5 3

Subcellular localization

patterns

366 (1483) 15.8 42 135 270 107

Basal localization 209 (847) 9.0 NA 25 190 50

Nuclei-associated localization 82 (332) 3.5 27 43 36 24

Perinuclear localization 81 (328) 3.5 25 37 35 24

Perinuclear yolk nuclei 59 (239) 2.5 6 25 35 22

Perinuclear cortical nuclei 27 (109) 1.2 8 21 2

Intranuclear accumulation 14 (57) 0.6 2 14 4 4

Apical localization 78 (316) 3.4 NA 59 54 15

Diffuse apical localization 36 (146) 1.6 NA 29 18 12

Discrete apical foci 27 (109) 1.2 NA 20 18 2

Apical clusters 24 (97) 1.0 NA 15 20 0

Apical in neuroblasts 6 (24) 0.3 NA NA NA 6

Cytoplasmic foci 45 (182) 1.9 14 38 14 15

Cell division apparatus 33 (134) 1.4 16 29 1 1

Microtubule-associated 10 (41) 0.4 9 6 1

Spindle midzone localization 10 (41) 0.4 1 10

Centrosomal localization 6 (24) 0.3 6 4 1 1

Chromatin-associated 14 (57) 0.6 2 12

Cell junction-associated 12 (49) 0.5 4 10 9 6

Membrane-associated 8 (32) 0.3 5 5 5 2

Polar body-associated 4 (16) 0.2 4 NA NA NA

NA, not applicable to these embryonic stages; St., stages.
a All screened genes encoding localized mRNAs in either of the analyzed stages; patterns are not necessarily mutually exclusive.
b Projected number of localized transcripts encoded in the Drosophila genome, out of a total of 13,659 coding genes.
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Figure 2. Anterior/Posterior Patterns and Functional Enrichments

(A–E) Sagittal views of entire embryos (A and B) or of the posterior region (C–E) between stages 2–5, following FISH with probes to bcd (A), asp (B), osk

(C), orb (D), or grp (E) transcripts (mRNA green/nuclei red). (A and B) Varieties of anterior patterns, with bcd mRNA (A) showing tight anterior local-

ization and asp transcripts (B), a more diffuse anterior enrichment. (C–E) Early and late posterior localization patterns. While both osk and orb tran-

scripts localize to the posterior pole plasm in stage 1–2 embryos ([C and D] arrowheads), orb mRNA forms distinctive rings around pole cell nuclei at

stage 3 ([D] arrow). In contrast, grp transcripts localize in the posterior yolk plasm in early stage 4 embryos ([E] arrow). All of these transcripts localize to

the pole cells at stage 5.

(F) GO term enrichments exhibited by transcripts found within annotation categories pertaining to anterior and posterior localization in stage 1–5

embryos (column categories 1 and 2 refer to stages 1–3 and 4–5, respectively). The ‘‘hot metal’’ color scale reflects statistical significance (�log 10

of the p value) of the GO term enrichments.
transcripts is far outnumbered by those that are posteri-

orly localized (5 versus 198; Table 1). For both of these

categories, the sensitivity and resolution of detection

enabled the identification of distinct subgroups of patterns

(Figure 2). For example, among the anteriorly localized

mRNAs, which include bcd, CycB, lok, milt and asp, only

bcd exhibits tight anterior localization (Figure 2A), con-

sistent with its extensively characterized function as the

primary determinant of anterior cell fate specification

(Ephrussi and St Johnston, 2004). The other four mRNAs

exhibit a more diffuse gradient of anterior enrichment (Fig-

ure 2B). Interestingly, three of these encode proteins

involved in cytoskeleton organization and microtubule-

based processes (Figure 2F and Table S3).
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The posterior group of mRNAs could be clearly subdi-

vided into three categories: (1) transcripts that localize to

early pole plasm (Figure 2C), a specialized region of cyto-

plasm that directs the formation of germline pole cells; (2)

transcripts that reside in the pole plasm and then localize

further into distinctive rings around pole cell nuclei

(Figure 2D); and (3) transcripts that only begin to localize

posteriorly in early stage 4 embryos (Figure 2E). The bio-

logical significance of these subcategories is under-

scored by their specific GO term enrichments (Figure 2F

and Table S3). For example, the category 1 and 2 pole

plasm localized transcripts, which include mRNAs such

as aret, eIF5, gcl, Imp, nos, osk, orb, pAbp, pum, spir,

and Tm1, are strongly enriched for cell development,



Figure 3. Varieties of Apicobasal Localization Patterns and Their Functional Enrichments

(A–L) Sagittal views through the embryonic epithelium of embryos hybridized with the indicated probes. Several distinctive subcategories of apical

(A–E), basal (G–I), or exclusionary (J and K) patterns are shown. (F and L) CG14896 transcripts are apical in posterior epithelial cells (F) and in later

arising neuroblasts ([L] arrowheads). For all images, mRNAs are green and nuclei red.

(M) GO term enrichments observed for different subcategories of apical mRNAs. Enrichment scores are depicted using a hot metal color scale con-

veying statistical significance (�log 10 of the p value). Column categories 2–4 refer to embryonic stages 4–5, 6–7, and 8–9, respectively.
translation regulation, pole plasm assembly and RNA

localization functions (Figure 2F). In contrast, the late

posterior group, which includes genes such as aur,

CG14030, CycA, grp, gwl, Rbp-1, Su(var)3-9, and ttk,

is enriched for protein kinases and negative regulators

of gene expression, again consistent with previous find-

ings that germ cells are transcriptionally silent (Seydoux

and Braun, 2006; Seydoux and Dunn, 1997; Van Doren

et al., 1998). Taken together, these observations sug-

gest the existence of distinct early and late pathways for

posterior transcript localization.

Notably, no maternal transcripts were identified as be-

ing either dorsally or ventrally localized. Instead, differen-

tial distribution of transcripts along the dorso-ventral axis

was always a consequence of localized zygotic tran-

scription. The preponderance of transcripts localized to

the posterior pole of the embryo, in comparison to the

other embryonic poles, seemingly reflects special re-

quirements for germ cell specification and the sufficiency

of existing zygotic mechanisms to define the other coor-

dinates.
Subcellular Categories: Apicobasal Patterns
Besides the subembryonic localization patterns, a large

collection of mRNAs, either of maternal or zygotic origin,

were found to exhibit intricate subcellular localization

patterns. Classic examples include the subset of mRNAs

that localize to the apical cytoplasm within the embryonic

epithelium (Figure 3). Although apical mRNAs have been

characterized previously and considered as a homoge-

neous group (Davis and Ish-Horowicz, 1991; Simmonds

et al., 2001; Tepass et al., 1990), many distinctive sub-

groups of apical transcripts could be distinguished, rang-

ing from broad gradients of apical enrichment to tightly

localized clusters or foci (Figures 3A–3E). Likewise,

a large number of basally localized mRNAs were identi-

fied, which also fall into a number of subgroups (Figures

3G–3I). Other patterns that vary along the apico-basal

axis include transcripts that are excluded from the apical

cytoplasm or from the entire blastoderm layer (Figures 3J

and 3K).

The functional relevance of these subgroup classifica-

tions is underlined by the GO term enrichments observed.
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Figure 4. Membrane-AssociatedPatterns

(A–F) Surface plane (upper panels) and sagittal

(lower panels) views of stage 3 (A and B), 4 (C),

5 (E and F), and 6 (D) embryos hybridized with

probes for the transcripts indicated in lower

panels (mRNA green/nuclei red). cno tran-

scripts localize within cortical polygonal net-

works ([A] arrowhead), while anillin mRNA is

first perinuclear ([B] arrowhead) and then

evolves into a cell junction type pattern (C).

(D–F) Patj, dlg1, and mira transcripts localize

at different positions along the lateral mem-

brane (arrowheads).
For example, the apical clusters category, which includes

mRNAs such as Ama, bib, Btk29A, crb, fra, Gp150, htl, Ptr,

scb, sog, and smo, is enriched for GO categories for

plasma membrane and signaling pathway components

(Figure 3M and Table S4). In contrast, the diffuse apical

group, which contains several pair-rule gene transcripts

(hairy, odd, prd, run), is enriched for functions associated

with transcriptional regulation and pattern/axis specifica-

tion.

In addition to the apicobasal patterns detected in the

embryonic epithelium, several mRNAs were observed

with asymmetric patterns in neuroblasts. This category in-

cludes transcripts such as asp, Gp150, mira, odd, pros,

and wg, some of which have been observed previously

(Broadus et al., 1998; Schuldt et al., 1998), and not sur-

prisingly, show GO term enrichments for asymmetric cell

division functions (Figure 3M). We also identified mRNAs

from uncharacterized genes, such CG14896, which

exhibit apical localization both in the posterior embryonic

epithelium underlying the pole cells and in neuroblasts

that arise later in embryogenesis (Figures 3F and 3L).

This example suggests the likelihood that many

localization mechanisms will operate in a variety of cell

types.

Membrane-Associated Patterns
Also remarkable are transcripts that localize to mem-

brane-associated structures prior to and following cellula-

rization (Figure 4). For example, cno and anillin mRNAs

(Figures 4A and 4B) associate with the embryonic cortex
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or perinuclear clouds as early as stage 3, and then evolve

into polygonal mosaic networks shortly thereafter (Figures

4A and 4C). These patterns resemble subsequent actin

filament distributions and dynamics and precede cell

junction formation. Several other mRNAs encoding cell

junction components, such as Patj (Figure 4D) and dlg1

(Figure 4E), localize at specific sites along the basolateral

membrane. In contrast, mira transcripts localize through-

out the lateral membrane of embryonic epithelial cells

(Figure 4F). Accordingly, this category is enriched for

GO terms related to cytoskeleton organization and biogen-

esis (Table S5). These observations imply a significant

role for mRNA localization in the nucleation and position-

ing of cytoskeletal networks and membrane-associated

structures.

Cell Division and Nuclei-Associated Patterns
Many of the most striking subcellular patterns observed

occur during nuclear or cellular division (Figure 5). These

include transcripts that localize to spindle poles, centro-

somes/centrioles, astral microtubules, or along the mitotic

spindles themselves during anaphase and telophase (Fig-

ures 5A–5H). Furthermore, several mRNAs that are zygoti-

cally transcribed in early stage 4 embryos concentrate

around metaphase chromosomes during mitosis and of-

ten become associated with spindle midbodies (Figure

5D). Intriguingly, many of these mRNAs encode trans-

criptional regulators (dpld, nullo, odd, rib, run, stwl, Taf4).

The genes in these categories show GO term enrich-

ments for cell division related processes (Figure S3 and



Figure 5. Cell Division and Nuclei-Associated Transcripts

(A–P) Surface plane (A–L and O) or sagittal (M, N, and P) views of stage 1–5 embryos hybridized with the indicated probes (mRNA green/nuclei red).

(A–H) Examples of mRNAs that localize to different sections of the cell division apparatus, including spindle poles (A), microtubule networks and cen-

trosomes (B, C, E, and F), the spindle midzone (G and H), or in proximity to metaphase chromosomes (D). (I and J) Doc-element transcripts localize to

centromeric chromatin regions on polar body chromosomes (I) and during mitosis in diploid nuclei (J). (K and L) Ste12DOR transcripts localize in chro-

matin-associated foci during metaphase (K), which then become telomeric during anaphase (L). (M) roX1 RNA shows polarized enrichment in the

basal portion of blastoderm nuclei (arrowhead). (N) Bsg25D transcripts exhibit perinuclear localization around peripheral blastoderm and yolk nuclei.

(O and P) Several mRNAs exhibit nuclear retention; (O) cas transcripts are retained in groups of ventral nuclei following zygotic expression in stage 4

embryos, and (P) CG15634 mRNA is retained in nuclei situated just below the peripheral layer (arrowhead).
Table S5), implying important roles for localized mRNAs in

the establishment, function and regulation of cell division

machineries.

Interestingly, several of the earliest zygotically ex-

pressed mRNAs, such as those encoded by the Doc

and copia transposons, exhibit intricate chromatin-asso-

ciated patterns. Indeed, Doc-element RNA localizes in

the vicinity of centromeres, either along the ‘rosettes’

formed by the polar body chromosomes or in dividing dip-

loid nuclei (Figures 5I and 5J). In contrast, mRNA encoded

by the Ste12DOR gene is found within large chromatin-

associated foci that localize to telomeric regions during

anaphase (Figures 5K and 5L). Notably, this gene is highly
homologous and in close proximity to the tandemly re-

peated Stellate gene cluster on the X chromosome, which

has been implicated in the maintenance of male fertility

through an RNA interference process involving the Su(Ste)

gene cluster located on the Y chromosome (Aravin et al.,

2001). Finally, roX1, a noncoding RNA involved in X chro-

mosome dosage compensation (Park et al., 2002), local-

izes to the basal side of blastoderm nuclei, where the

X chromosome presumably resides (Figure 5M). As has

been demonstrated for roX1, these assorted DNA-associ-

ated RNAs may be functioning to help organize, establish

and/or maintain chromatin domains. For Doc and Ste12-

DOR, the chromosome-associated RNA may be
Cell 131, 174–187, October 5, 2007 ª2007 Elsevier Inc. 181



Figure 6. Correlations in mRNA and

Protein Distribution Patterns

(A–F) Stage 4 (B–E), 5 (A) and 9 (F) embryos hy-

bridized with probes for the indicated apical

(A), cell division-associated (B and C), mem-

brane-associated (D), and nuclear retained (E

and F) mRNAs (red signal, left panels) and co-

labeled with antibodies against the indicated

protein products (green signal, middle panels).

Overlaid mRNA and protein signals are shown

in the right panels. Nuclei are shown in blue in

the left and middle panels in (A)–(E). Arrow-

heads in (E) and (F) indicate nuclei showing

an accumulation of kuk and cas mRNAs,

respectively.
functioning in the ‘repeat-associated small interfering

RNA’ (rasiRNA) pathway, which acts in part to suppress

transposable element activity (Slotkin and Martienssen,

2007). If so, this autoregulation would add a new dimen-

sion to our understanding of this process.

Finally, other nuclei-associated mRNAs were observed

that range from mRNAs with tight perinuclear localization

(Figure 5N) to those that appear to be uniformly localized

throughout the nucleus (Figures 5O and 5P). These in-

clude cas, CG15634, CG8552, Eip71CD, hb, Jra, kuk,

mfas, and scw. Interestingly, some of these are only re-

tained within nuclei that appear to be dropping out of

the blastoderm layer (Figures 5P and 6E). As these nuclei

are generally observed in pairs, and ‘nuclear fallout’ may

be a consequence of unsuccessful nuclear divisions

(Rothwell et al., 1998), this suggests a potential function

of these mRNAs in nuclear migration, sorting and/or

apoptosis.

Colocalization of RNAs and Proteins
In many of the cases cited above, where details are known

about protein localization or gene function, there is a strik-

ing correlation between transcript localization and the

patterns or functions of the encoded proteins (Table S6).

To further illustrate some of these relationships, double-
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staining for selected transcripts, their protein products

or relevant markers was carried out (Figure 6). Examples

are shown for mRNAs that are apically localized (Figure

6A), cell division apparatus-associated (Figures 6B and

6C), or that reside at cell junctions (Figure 6D). In each

of these cases, mRNA localization is noted prior to the

appearance of protein, consistent with the view that

transcript localization generally predetermines protein

distribution at most subcellular destinations. Another in-

triguing example is CG14438 mRNA, which appears to lo-

calize at the level of centrioles and is found nestled within

structures labeled with the pericentriolar marker CNN

(Figure 6C). These types of examples support the notion

that localized transcripts, and the proteins they encode,

play central nucleation functions within the cell. These ob-

servations further suggest that the necessary translation

and secretory machineries are generally available at each

of these sites.

Interestingly, a reverse correlation exists for mRNAs

that show nuclear retention, as shown for kuk and cas

transcripts (Figures 6E and 6F). Indeed, while Kuk protein

exhibits robust nuclear envelop localization in cortical

nuclei where the mRNA is cytoplasmic, no protein is

observed in or around the yolk nuclei in which kuk mRNA

is retained (Figure 6E). Similarly, in stage 9 neuroblasts,



Cas protein is expressed robustly in cells with diffuse

cytoplasmic cas mRNA, but shows little or no protein ex-

pression in cells where cas mRNA is nuclear (Figure 6F).

These examples suggest that nuclear mRNA retention

serves as a means of precisely timing or coordinating

protein expression to related cellular processes (Brandt

et al., 2006; Grosskortenhaus et al., 2006; Kambadur

et al., 1998; Pilot et al., 2006). Although this mechanism

of translational control has only once been documented

before (Prasanth et al., 2005), it may prove to be a

relatively common form of post-transcriptional gene

regulation.

DISCUSSION

The striking diversity and frequency of localized mRNAs

observed in this study, and the numerous correlations be-

tween mRNA and protein distribution and function uncov-

ered, show that mRNA localization plays a far greater role

in coordinating cell physiology and anatomy than ever

previously suspected. Over the years, mRNA localization

has primarily been thought to coordinate specialized bio-

logical processes such as morphogen gradient formation

and asymmetric cell division (Kloc et al., 2002; St John-

ston, 2005). Our findings, however, necessitate a change

in perspective, implicating mRNA localization as a means

of regulating a vast number, if not the majority, of cell func-

tions.

mRNAs as Nucleators of Localized Complexes
The major inference of this study is that, since mRNA lo-

calization generally occurs prior to encoded protein pro-

duction, and is so pervasive in scope, it must play a major

role in the nucleation and assembly of protein complexes

and organelles. One such example is anillin mRNA, which

encodes an actin-interacting protein and is localized in

dynamic patterns that closely resemble actin filament

distributions that form subsequently (Field and Alberts,

1995; Karr and Alberts, 1986). Another example is the

set of chromatin-associated RNAs, which may be acting

like some siRNAs to recruit chromatin remodeling com-

plexes. Other organelles likely to be controlled by mRNA

localization include various subcomponents of the cell

division apparatus. An example is CG14438 mRNA,

which localizes to centrosome-associated foci that

move during cell division to nestle within CNN-contain-

ing clusters (Figure 6C). Notably, CG14438 encodes a

protein containing 21 zinc finger domains of the C2H2

type, which could readily serve as a nucleating scaf-

fold for RNA-containing centrosomal/centriolar com-

plexes. Our findings are consistent with recent studies

suggesting a role for RNAs in the regulation of centro-

some dynamics (Alliegro et al., 2006; Blower et al.,

2005; Lambert and Nagy, 2002). Moreover, our study ex-

tends these previous findings, by revealing a large collec-

tion of cell-division apparatus associated mRNAs that

await further characterization.
Localized RNAs as Functional Components
of RNP Complexes
In some cases, localized mRNAs are likely to have roles in

addition to targeting protein synthesis. For example, they

could well serve as structural or catalytic components

of RNP complexes, as seen for the many noncoding

RNA molecules found in ribosomes and spliceosomes

(Eddy, 2001; Erdmann et al., 2001; Prasanth and Spector,

2007). Indeed, a structural function for RNAs that localize

to the vegetal pole of Xenopus oocytes has recently been

uncovered (Kloc et al., 2005), and genetic studies of the

oskar gene in Drosophila have shown that protein null al-

leles yield only a subset of the phenotypic traits exhibited

by RNA nulls (Jenny et al., 2006). This may also be the

case for many other genes for which protein null alleles

are considered to be genetic knockouts. These additional

roles would be consistent with the recent explosion of

newly recognized RNA-dependent processes, and with

the hypothesis that RNAs preceded proteins evolutionarily

in many cellular functions (Gilbert, 1986). Taken further,

the high proportion of the genome that is transcribed but

noncoding (Mattick, 2004; Willingham and Gingeras,

2006) suggests that we may only now be looking at the

tip of an iceberg.

RNA Localization and Disease
As our data suggests that mRNA localization has a key

role in targeting various cellular machineries, it can be

imagined that the integrity of transcript localization path-

ways will be essential for ensuring appropriate cell growth

and differentiation, while also preventing cellular transfor-

mation and tumorigenesis. Indeed, inappropriate target-

ing of mRNAs would lead to aberrant protein distributions

within the cell, interference with normal regulatory path-

ways and altered complex stoichiometries. In support of

this general view, several of the localized mRNAs charac-

terized in this study (ex: mira, dlg1, raps) encode well-

known regulators of cell polarity and asymmetric cell divi-

sion with demonstrated tumor suppressor functions

(Caussinus and Gonzalez, 2005; Pagliarini and Xu, 2003;

Siegrist and Doe, 2005). Other examples include the

CG6522 mRNA, which exhibits an early cell membrane-

associated pattern. Homology searches reveal that this

mRNA likely encodes the Drosophila ortholog of Testin,

a cytoskeleton-associated LIM-domain protein that has

been identified as a tumor suppressor in mice and humans

(Drusco et al., 2005; Mueller et al., 2007). This example

typifies the potential usefulness of our database in identi-

fying genes with human disease relevance. Altogether, our

findings force a reassessment of many cancer pathways

for which modeling has been entirely concentrated on

events and interactions occurring at the post-translational

level.

Database Usage
The accompanying mRNA localization database will im-

pact many different biological disciplines. For example,

it will augment existing resources currently being used to
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study functional and regulatory genetic relationships.

Since our strategy provides additional levels of detail

with regards to spatio-temporal expression dynamics, this

dataset will also serve as a powerful tool for deciphering

and validating gene regulatory networks.

As there is a tight correlation between mRNA localiza-

tion and protein function, a more specific use for this re-

source will be its predictive value in assigning functions

for uncharacterized genes. Indeed, 919 of the subcellu-

larly localized mRNAs in this study are encoded by

poorly characterized genes designated only by ‘‘CG’’ num-

bers. For many of these, we can now postulate a func-

tion with significantly higher confidence due to our know-

ledge of where the mRNA is localized in the cell and

which other mRNAs, proteins and organelles it tempo-

rally and spatially colocalizes with. These predictive

values may also suggest new functions for well-chara-

cterized genes. Thus, this approach may help identify

or confirm many new components of regulatory com-

plexes and pathways. We expect that previously un-

characterized macromolecular complexes will also be

discovered, many of which will be spatially and develop-

mentally regulated.

Another area of research that will benefit greatly from

this dataset will be the study of RNA cis-regulatory ele-

ments and trans-acting factors that dictate the localiza-

tion of different mRNA subpopulations. In the past,

these studies have been tedious and complicated, due

in part to the complexity of RNA regulatory elements,

trans-acting complexes and the limitations of RNA struc-

ture prediction algorithms. Unlike DNA cis-elements,

RNA regulatory elements tend to possess complex

features of both sequence and structure. The richness

of the data set provided here will reveal common se-

quence and/or structural elements. Together with the

growing list of Drosophila genome sequences available

to assess sequence and structure conservation, rapid

advances in the identification of conserved cis-elements

and trans-acting machineries should be possible. In

point of fact, a consensus localization motif for mRNAs

in the diffuse apical category has been identified using

exactly this approach (dos Santos et al., 2007). Tran-

scripts that colocalize are also likely to share other

types of regulatory elements. For example, similarly lo-

calized mRNAs may share common regulatory elements

used to couple translation and stability control.

Future Prospects and Considerations
An important point that remains to be confirmed is

whether the extent and variety of mRNA localization

events observed here occur in other tissues and organ-

isms. The amazing level of conservation between Dro-

sophila genes and developmental processes, and those

of higher organisms, suggests that these mRNA localiza-

tion frequencies and mechanisms will also be highly con-

served. In fact, it may have been the prior existence of

these elements and machineries that made early Dro-

sophila syncytial development an evolutionary possibility.
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This would also be consistent with suggestions that RNA-

based processes have played a major role in promoting

phenotypic variation and complexity in higher eukaryotes

(Mattick, 2004).

EXPERIMENTAL PROCEDURES

Probe Production

The Drosophila gene collection 1 and 2 (DGC1 and 2) bacterial cDNA

libraries (Rubin et al., 2000; Stapleton et al., 2002) were obtained as

bacterial glycerol stocks in 96-well plates. Overnight cultures served

as templates for PCR using universal primers to amplify library cDNA

sequences containing flanking bacteriophage promoter elements

(T7, T3, or Sp6). Following PCR product purification on filter plates

(Whatman Inc., Clifton, NJ, USA), fragments were concentrated by

ethanol precipitation and resuspended in nuclease-free water. Anti-

sense RNA probes labeled with digoxigenin (DIG) were synthesized

as described by Lécuyer et al. (2007). The efficiency and accuracy of

all PCR amplifications and transcription reactions was systematically

verified by agarose gel electrophoresis after each step. Samples for

which no PCR product was obtained, or that contained multiple frag-

ments, were excluded from further analysis.

Embryo Collection, Fixation, and Fluorescent In Situ

Hybridization (FISH)

Wild-type Oregon R flies were maintained at 25�C and 50% humidity

in large plexiglass cages (60 3 60 3 60 cm). Following a 1 hr preclear-

ing step, embryos were collected on fresh food plates for 4.5 hr and

processed for fixation and storage as described by Lécuyer et al.

(2007). Conditions and methods for FISH and double FISH are also

described in detail by Lécuyer et al. (2007). The following antibodies

were used for immunostaining: mouse anti-BicD 4C2 and mouse

anti-Crumbs Cq4 (Developmental Studies Hybridoma Bank, Iowa

City, IA, USA), rabbit anti-Anillin (Provided by Dr. Julie Brill, The Hos-

pital for Sick Children, Toronto, ON, Canada), rabbit anti-Cas (Kamba-

dur et al., 1998), rabbit anti-CNN (Provided by Dr. Thomas Kaufman,

Indiana University, Bloomington, IN, USA), and rabbit anti-Kuk (Brandt

et al., 2006). Mouse and rabbit antisera were used at 1:10 and 1:100

dilutions, respectively.

Sample Imaging Procedure

Samples were analyzed on a Leica DMRA2 epifluorescence micro-

scope equipped with a rotating stage and a Q-imaging Retiga EX

digital camera (Quorum Technologies Inc., Guelph, ON, Canada)

and Openlab imaging software (Improvision Ltd., Coventry, England).

For each positive sample, a combination of low (103) and high mag-

nification (203 and 403) images were captured to document tran-

script dynamics. As often as possible, care was taken to capture

images with embryos in the traditional orientation, with anterior to

the left and dorsal to the top. Controls probes were included in

each experiment to control for experimental variations in staining

levels. An autoexposure function was used as a semiquantitative

measure of maternal transcript abundance in stage 1–2 embryos,

with exposure times used to categorize expression levels as strong

(1–20 ms), intermediate (21–40 ms), weak (41–80 ms), or nonex-

pressed (>81 ms). A maximum exposure time of 80 ms was used

at 203 magnification, as this provided a comparative standard, in

particular for transcripts that are degraded over time. The autoexpo-

sure function was also used for DAPI images. Tyramide-Cy3 and

DAPI images were false-colored in green and red, respectively, using

Openlab, as this color scheme was found to provide the best con-

trast. All overlaid images were saved as high-resolution TIF files. Fig-

ures were constructed using Photoshop (Adobe Systems Inc., San

Jose, CA, USA).



Data Annotation and Database Setup

All of the image and annotation data were organized within a MySQL

database using Perl-based annotation tools adapted from a previous

study (Tomancak et al., 2002). Images were sorted into appropriate

stage ranges (stages 1–3, 4–5, 6–7, 8–9, >10) and saved with a numer-

ical identifier. An annotation term hierarchy was created to document

mRNA localization, degradation, and zygotic expression characteris-

tics within each stage range. For each gene, relevant annotation terms

were selected and submitted to the database along with specific anno-

tator comments regarding staining quality and/or experimental obser-

vations.

Computational Analysis

The annotation data was converted into a binary matrix, containing

genes on one axis and localization terms on the other, where the pres-

ence of a localization feature for a given gene was indicated numeri-

cally as ‘‘1,’’ while lack of a feature was annotated as ‘‘0.’’ This matrix

was then used for GO term enrichment analysis. Functional GO anno-

tations for all genes were downloaded from Flybase (http://flybase.bio.

indiana.edu/genes/lk/function/). Annotations were up-propagated us-

ing the GO hierarchy (Ashburner et al., 2000), and calculations were re-

stricted to genes that were both GO annotated and analyzed in this

study (1651 genes). The hypergeometric distribution was used to cal-

culate probabilities of overlap between each localization category

against all GO categories containing three or more genes. The Benja-

mini-Hochberg procedure (Benjamini and Hochberg, 1995) was used

to control for multiple testing by computing a P-value threshold corre-

sponding to a false discovery rate (FDR) of 0.25. Transcript subgroups

were also analyzed independently for GO term enrichments using

EASE (Hosack et al., 2003). EASE scores of less that 0.05 were consid-

ered significant, as reported previously (Tadros et al., 2007a).

Supplemental Data

Supplemental Data include five figures and six tables and can be found

with this article online at http://www.cell.com/cgi/content/full/131/1/

174/DC1/.
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