

MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204

EVROPSKÁ UNIE

MINISTERSTVO ŠKOLSTVÍ,
MLÁDEŽE A TĚLOVÝCHOVY

OP Vzdělávání

pro konkurenceschopnost

TANA BR

Ecological Models

- aim: to simulate (predict) what can happen
- model is tested by comparison with observed data

• <u>realistic models</u> - complex (many parameters), realistic, used to simulate real situations simulate real situations

Strategic models - simple (few parameters), unrealistic, used for understanding the model behaviour understanding the model behaviour

• a model should be:
1 a satisfactory descri-

- 1. a satisfactory description of diverse systems
- 2. an aid to enlighten aspects of population dynamics
- 3. a system that can be incorporated into more complex models
- deterministic models everything is predictable
- stochastic models including random events

discrete models:
- time is composed

- time is composed of discrete intervals or measured in generations
- used for populations with synchronised reproduction (annual species)
- modelled by difference equations
- Continuous models:
- time is continual (very short intervals) thus change is instantaneous
- used for populations with asynchronous and continuous overlapping reproduction
- modelled by differential equations

STABILITY

• stable equilibrium is a state (population
density) to which a population will density) to which a population will move after a perturbation

Population processes

-focus on rates of population processes

I number of cockroaches in a living room increases:
influx of cockroaches from adioining rooms

influx of cockroaches from adjoining rooms \rightarrow <u>immigration</u> [*I*]

cockroaches were born \rightarrow <u>birth</u> [*B*]

• number of cockroaches declines:

 dispersal of cockroaches [→] emigration [*E*] cockroaches died [→] death [*D*]

 $N_{t+1} = N_t + I + B - D - E$ **Blatta** orientalis

population increases if $I + B > E + D$

 \blacktriangleright rate of increase is a summary of all events $(I + B - E - D)$

→ growth models are based on *B* and *D*

b spatial models are based on *L* and *E*

- spatial models are based on *^I* and *^E*

Density-independent population increase

Population processes are independent of its density

Assumptions:

- immigration and emigration are none or ignored
• all individuals are identical
- all individuals are identical
- natality and mortality is constant
• all individuals are genetically sin
- all individuals are genetically similar
• reproduction is asexual
- reproduction is asexual
• population structure is
- population structure is ignored
- resources are infinite
• population change is
- population change is instant, no lags

Used only for

- -relative short time periods
- -closed and homogeneous environments (experiemental chambers)

Discrete (difference) model

• for population with discrete generations (annual reproduction), no
coneration overlap generation overlap

time (*t*) is discrete, equivalent to generation

-exponential (geometric) growth

• Malthus (1834) realised that any species can potentially increase in
numbers according to a geometric series numbers according to a geometric series

*N*0 .. initial density *b* .. birth rate (per capita),

$$
b = \frac{B}{N}
$$

$$
\Delta N = bN_{t-1} - dN_{t-1}
$$

$$
N_t - N_{t-1} = (b - d)N_{t-1}
$$

$$
N_{t} = (1 + b - d)N_{t-1}
$$

d .. death rate (per capita)

 $d = -$

N

D

where
$$
1+b-d = \lambda
$$

\n $N_t = N_{t-1}\lambda$
\n $b-d = R$
\n $\lambda = 1 + R$

-if *λ* is constant, population number in generations *^t* is equal to

$$
N_2 = N_1 \lambda = N_0 \lambda \lambda
$$

$$
N_t = N_0 \lambda^t
$$

-number of individuals is multiplied each time - the larger the population the larger the increase

λ = finite growth-rate, per capita rate of growth*λ* = 1.23 .. 23% increase

average of finite growth rates:

$$
\overline{\lambda} = \left(\prod_{i=1}^t \lambda_i\right)^{\frac{1}{t}} = (\lambda_1 \lambda_2 ... \lambda_t)^{\frac{1}{t}}
$$

Continuous (differential) model

• populations that are continuously reproducing, with overlapping
generations generations

-when change in population number is permanent

• derived from the discrete model

 $N_{t} = N_{0} \lambda^{t}$

N^t $\ln(N_t) = \ln(N_0) + t \ln(\lambda)$ $\ln(N_t) - \ln(N_0) = t \ln(\lambda)$ N_0) = *t* ln(λ) $ln(\lambda)$ 1 dt i d—— — = \mathcal{X} *tNN* $\frac{d\mathbf{x} \cdot \mathbf{y}}{dt} = N \ln(\lambda)$ d $\frac{1}{2}$ = N \mathcal{X} *tN* $=$

Comparison of discrete and continuous generations

$$
if \quad r = \ln(\lambda)
$$

r - intrinsic rate of natural increase, instantaneous per capita growth rate

$$
\frac{\mathrm{d}N}{\mathrm{d}t}=Nr
$$

Solution of the differential equation:

analytical or numerical

• at each point it is possible to determine the rate of change by differentiation (slope of the tangent) differentiation (slope of the tangent)

• when *t* is large it is approximated by the exponential function

$$
\frac{dN}{dt} = Nr
$$

dN 1

 $= r$

$$
\frac{dt}{\int_{0}^{T} \frac{1}{N} dN} = \int_{0}^{T} r dt
$$

$$
\ln(N_T) - \ln(N_0) = r(T - 0)
$$

$$
\ln\left(\frac{N_T}{N_0}\right) = rT
$$

$$
\frac{N_T}{N_0} = e^{rT}
$$

$$
N_t = N_0 e^{rt}
$$

• doubling time: time required for a
nopulation to double population to double

$$
t = \frac{\ln(2)}{r}
$$

r **versus** *^λ*

$$
N_{t} = N_{0} \lambda^{t}
$$

$$
N_{t} = N_{0} e^{rt}
$$

$$
\lambda^{t} = e^{rt}
$$

$$
r = \ln(\lambda)
$$

r is symmetric around 0, λ is not $r = 0.5 ... \lambda = 1.65$ *r* = -0.5 ... *^λ* = 0.61

Population structure

• Demography - study of organisms with special attention to stage
or age structure or age structure

- processes are associated to age, stage or size

x .. age/stage/size category

px .. age/stage/size specific survival

$$
p_x = \frac{S_{x+1}}{S_x}
$$

*m*_x .. reproductive rate (expected average number of offspring per female)

- -main focus on births and deathsimmigration & emigration is ignored
- no adult survive
- one (not overlapping)

generation per year

- egg pods over-winter
- despite high fecundity they just replace themselves

▶ breed at discrete
periods periods• no overlapping
generations generations

Biennal species

- breed at discrete periods
- adult generation may overlap

Perennial species

- breed at discrete periods
- breeding adults consist of
- individuals of various ages (1-5 years)
- adults of different generations are
- equivalent
- overlapping generations

Parus major

Age-size-stage life-table

→ age/stage
classification classification is based on developmental time

Size may be more appropriate than age (fish, sedentary animals)

▶ Hughes (1984) used
combination of combination of age/stage and size for the description of coral growth

Agaricia agaricites

Age-dependent life-tables

• show organisms' mortality and reproduction as a function of age

Static (vertical) life-tables

• examination of a population during

one segment (time interval) one segment (time interval)-- segment = group of individuals of different cohorts

designed for long-lived organisms

ASSUMPTIONS:

- birth-rate and survival-rate are constantover time
- population does not grow

Sx- number of survivors

^Dx- number of dead individuals

$$
D_x = S_x - S_{x+1}
$$

lx- standardised number of survivors

> $S^{}_{0}$ *S* $l_x = \frac{v_x}{s}$

^qx- age-specific mortality

x $x = \frac{-x}{S}$ *D* q_{x} = -

px – age-specific survival

Lowe (1969)

x $\frac{d}{dx} = \frac{d}{dx}$ $p_{x} = \frac{l_{x+1}}{l}$

Cervus elaphus

Cohort (horizontal) life-table

 \rightarrow examination of a population in a cohort = a group of individuals born at the same period at the same period

- followed from birth to death
- provide reliable information
- designed for short-lived organisms
- only females are included

Stage or size-dependent life-tables

- survival and reproduction depend on stage / size rather than age
- age-distribution is of no interest
• used for invertebrates (insects i
- used for invertebrates (insects, invertebrates)
- time spent in a stage / size can differ

Campbell (1981)

Lymantria dispar

Survivorship curves

- display change in survival by plotting log(*lx*) against age (*x*)
- sheep mortality increases with age
- -survivorship of lapwing (*Vanellus*) is independent of agebut survival of sheep is age-dependent

Pearls (1928) classified hypothetical age-specific mortality:

- Type I .. mortality is concentrated at the end of life span (humans)
- Type II .. mortality is constant over age (seeds, birds)
- Type III .. mortality is highest in the beginning of life (invertebrates,
fish reptiles) fish, reptiles)

Birth rate curves

- fecundity potential number of offspring
• fertility real number of offspring
- fertility real number of offspring
- semelparous .. reproducing once a life
• iteroparous reproducing several time
- iteroparous .. reproducing several times during life

birth pulse.. discrete reproduction (seasonal reproduction)**birth flow... continuous**

reproduction

Key-factor analysis

- k-value - **killing power** - another measure of mortality

 $k = -\log(p)$

- k-values are additive unlike *^q*

$$
K = \sum k_x
$$

Exey-factor analysis - a method to identify the most important factors that regulates population dynamics factors that regulates population dynamics

 \blacktriangleright k-values are estimated for a number of years

-important factors are identified by regressing *kx* on log(*N*)

Leptinotarsa decemlineata

• over-wintering adults emerge in June \rightarrow eggs are laid in clusters on the lower side of leafs \rightarrow larvae pass through A in clusters on the lower side of leafs \rightarrow larvae pass through 4 instars \rightarrow form punal cells in the soil \rightarrow summer adults emerge in August

- → form pupal cells in the soil → summer adults emerge in August
→ begin to bibernate in September
- → begin to hibernate in September
- mortality factors overlap

 \bigcup

Harcourt (1971)

Summary over 10 years

• highest k-value indicates the role of a factor in each generation
• profile of a factor parallel with the K profile reveals the key **Follomerally Fundom** profile of a factor parallel with the *K* profile reveals the key factor

factor

• emigration is the key-factor

Matrix (structured) models

• model of Leslie (1945) uses parameters (survival and fecundity) from life-tables life-tables

• where populations are composed of individuals of different age, stage
or size with specific natality and mortality or size with specific natality and mortality

- generations are not overlapping
- reproduction is asexual
• used for modelling of d

• used for modelling of density-independent processes (exponential growth) growth)

^N*x,t* .. no. of organisms in age *^x* and time *^t*

*G*x .. probability of persistence in the same size/stage

*F*x .. age/stage specific fertility (average no. of offspring per female)

px .. age/stage specific survival

• class 0 is omitted

• number of individuals in the first age class

$$
N_{1,t+1} = \sum_{x=1}^{n} N_{x,t} F_x = N_{1,t} F_1 + N_{2,t} F_2 + \dots
$$

• number of individuals in the remaining age class

$$
N_{x+1,t+1} = N_{x,t} p_x
$$

Example 2 each column in **A** specifies fate of an organism in a specific age:
3rd column: organism in age 2 produces *F* offspring and goes to as 3rd column: organism in age 2 produces *F2* offspring and goes to age 3 with probability p_{23}

- **A** is always a square matrix
- \blacktriangleright **N**_t is always one column matrix = a vector

▶ fertilities/fecundities (*F*) and survivals (*p*) depend on census and reproduction reproduction

populations with discrete pulses post-reproductive census

$$
p_{x} = \frac{l_{x+1}}{l_{x}} \qquad F_{x} = p_{x} m_{x+1}
$$

populations with discrete pulses pre-reproductive census

$$
p_x = \frac{l_{x+1}}{l_x} \qquad F_x = p_0 m_{x+1}
$$

 for populations with continuous reproduction post-reproductive survivals and fertilities are

$$
p_x = \left(\frac{l_x + l_{x+1}}{l_{x-1} + l_x}\right)
$$

$$
p_x = \left(\frac{l_x + l_{x+1}}{l_{x-1} + l_x}\right) \qquad F_x = \frac{\sqrt{l_1} (m_x + p_x m_{x+1})}{2}
$$

Stage-structured

• only imagoes reproduce thus $F_{1,2,3} = 0$
• no imago survives to another reproduc • no imago survives to another reproduction period: $p_4 = 0$

$$
\begin{bmatrix} 0 & 0 & 0 & F_4 \\ p_1 & 0 & 0 & 0 \\ 0 & p_2 & 0 & 0 \\ 0 & 0 & p_3 & 0 \end{bmatrix}
$$

• model of Lefkovitch (1965) uses 3 parameters (mortality, fecundity
and persistence) and persistence)

 \blacktriangleright $F_1 = 0$

$$
\begin{bmatrix} G_{11} & F_2 & F_3 & F_4 \ p_1 & G_{22} & 0 & 0 \ 0 & p_2 & G_{33} & 0 \ 0 & 0 & p_3 & G_{44} \end{bmatrix}
$$

Matrix operations

• addition / subtraction

$$
\begin{bmatrix} 2 & 3 \ 5 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 4 \ 5 & 8 \end{bmatrix} = \begin{bmatrix} 3 & 7 \ 10 & 15 \end{bmatrix}
$$

 $\overline{}$

 $\overline{}$

 $\left[\times\right]$

 $\overline{}$

 $5\quad7$ ^{\^}\

3

 $\overline{}$

2

 $\overline{}$

4

 $\overline{}$

 \times 4+7 \times

+

2

 \times

4

 $\begin{array}{c} \n\begin{array}{c} \n\end{array} \\
\begin{array}{c} \n\end{array} \\
\$

 $5\vert$ | $5\times4+7\times$

 $\overline{}$

55

23

 $\overline{}$

 $\Big] = \Big[$ $\overline{}$

5

 \times

3

 $5 \times 4 + 7 \times 5$ $\begin{array}{|c|c|} 5.1 \end{array}$

- multiplication by a vector

F2 3
- by a scalar $\overline{}$ $\overline{}$ $\overline{}$ $\bigg[\times 3 = \bigg[$ $\overline{}$ $\overline{}$ $\overline{}$ 15 ²¹ 69 $3=1$ 5 7 1 23

- determinant

$$
\begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix} = 2 \times 7 - 4 \times 3 = 2
$$

► eigenvalue (λ)
 $\begin{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} & \begin{bmatrix} 2 \\ 2 \end{bmatrix} \end{bmatrix}$

$$
\begin{bmatrix} 2 & 4 \ 0.25 & 0 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 4 \ 0.25 & 0 - \lambda \end{bmatrix} = (2 - \lambda) \times (0 - \lambda) - (0.25 \times 4) = \lambda^2 - 2\lambda - 1
$$

$$
\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \qquad \lambda_1 = 2.41 \lambda_2 = -0.41
$$

$$
N_2 = AN_1
$$

\n
$$
N_3 = AN_2
$$

\n
$$
N_{t+2} = AAN_t = A^2N_t
$$

\n
$$
N_t = A^tN_0
$$

• parameters are constant over
time and independent of populat time and independent of population density

• follows constant exponential

orowth after initial damped growth after initial damped oscillations

