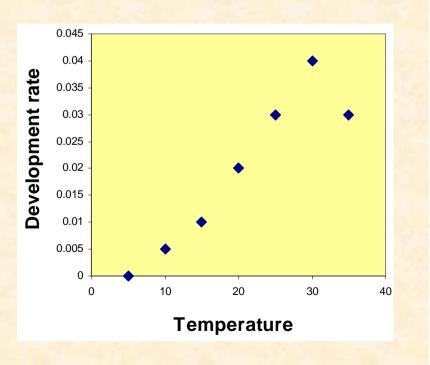


MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ


Linear model

• model is based on the assumption that development rate is a linear function of temperature

▶ valid for the region of moderate temperatures (15-25°)

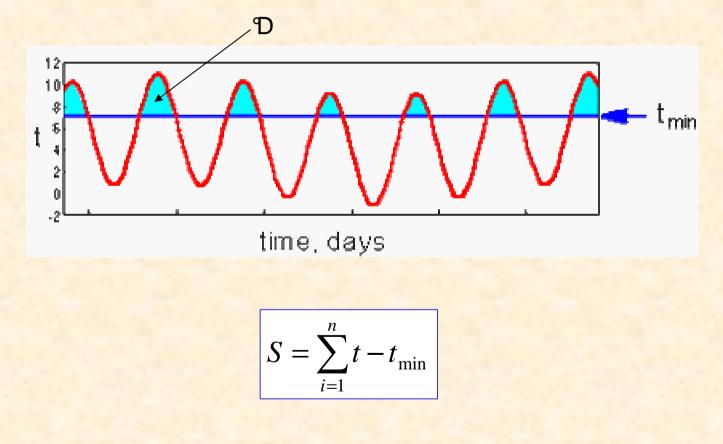
• at low temperatures organisms die due to coldness, and at high temperatures organisms die due to overheating

 $D \dots \underline{development time} (days)$ $v \dots \underline{rate of development} = 1/D$ $t_{\min} \dots \underline{lower temperature limit}$ - temperature at which development rate = 0

ET.. <u>effective temperature</u> .. developmental temperature between t_{max} and t_{min} *S* .. <u>sum of effective temperature</u> .. number of degree-days [°D] required to complete development

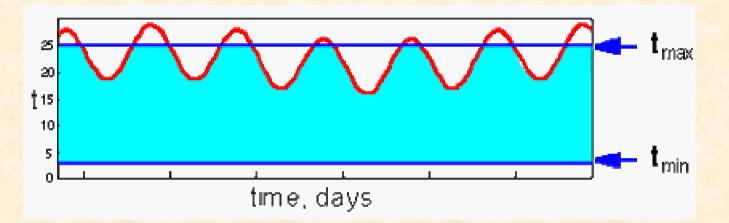
... does not depend on temperature = D * ET

 t_{\min} and S can be estimated from the regression line of v = a + bt


$$t_{\min}: a + bt_{\min} = 0 \implies t_{\min} = -\frac{a}{b}$$

S:
$$S = D(t - t_{\min}) = D\left(t + \frac{a}{b}\right)$$

$$D = \frac{1}{v} = \frac{1}{a+bt} \implies S = \frac{t+a/b}{a+bt} \implies S = \frac{1}{b}$$


• sum of effective temperature (S) [°D] is equal to area under temperature curve restricted to the interval between current temperature (t) and t_{min}

 biofix .. the date when degree-days begin to be accumulated

Non-linear models

• for temperatures between t_{\min} and t_{\max} (upper threshold)

- several different non-linear models (Briere, Lactin, etc.)
- allow to estimate t_{\min} , t_{\max} and t_{opt} (optimum temperature)
- easy to interpret for experiments with constant temperature

▶ instead of using average temperature, use actual temperature because below and above ET model is non-linear

Briere et al. (1999)

$$v = a \times t \times (t - t_{\min}) \times \sqrt{t_{\max} - t}$$

v .. rate of development (=1/*D*) *t* .. experimental temperature t_{\min} .. low temperature threshold t_{\max} .. upper temperature threshold *a* .. constant

Optimum temperature:

$$t_{opt} = \frac{4t_{\max} + 3t_{\min} + \sqrt{16t_{\max}^2 + 9t_{\min}^2 - 16t_{\min}t_{\max}}}{10}$$

parameters are estimated using non-linear regression

Lactin et al. (1995)

$$v = e^{\rho t} - e^{(\rho t_m - \frac{t_m - t}{\Delta})} + \phi$$

v .. rate of development t .. experimental temperature $t_{\rm m}$, Δ , ρ , ϕ .. constants

 t_{max} and t_{min} can be estimated from the formula:

$$0 = e^{\rho t} - e^{(\rho t_m - \frac{t_m - t}{\Delta})} + \phi$$

 $t_{\rm opt}$ can be estimated from the first derivative:

$$\frac{\partial v(t)}{\partial t} = \rho e^{\rho t} - \frac{1}{\Delta} e^{\rho t_m - \frac{t_m - t}{\Delta}}$$