

MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Density-dependent growth

-includes all mechanisms of population growth that change with density

- population structure is ignored
- extrinsic effects are negligible
- response of *^r* to *^N* is immediate

-*r* decreases with population density either because natality decreases or mortality increases or both

■ *K* .. carrying capacity
• upper limit of populatio upper limit of population growthwhere $\lambda = 1$ or $r = 0$

is constant

Discrete (difference) model

there is linear dependence of λ on *^N*

$$
N_{t+1} = N_t \lambda \qquad \qquad \frac{N_t}{N_{t+1}} = \frac{1}{\lambda}
$$

$$
N_{t+1} = \frac{N_t \lambda}{1 + \frac{(\lambda - 1)N_t}{K}}
$$

if
$$
a = \frac{\lambda - 1}{K}
$$
 then

$$
N_{t+1} = \frac{N_t \lambda}{1 + aN_t}
$$

Continuous (differential) model

- logistic growth
- \blacktriangleright first used by Verhulst (1838) to describe growth of human population
-

$$
\frac{dN}{dt} = Nr \rightarrow \frac{dN}{dt} \frac{1}{N} = r
$$

- when
$$
N \rightarrow K
$$
 then $r \rightarrow 0$

$$
\frac{dN}{dt} = Nr\left(1 - \frac{N}{K}\right)
$$

Solution of the differential equation

$$
N_{t} = \frac{KN_{0}}{(K - N_{0})e^{-rt} + N_{0}}
$$

Examination of the logistic model

Model equilibria

1. *N* = 0 .. unstable equilibrium

2. $N = K$.. stable equilibrium .. if $0 < r < 2$

• "Monotonous increase" and "Damping oscillations" has a stable
equilibrium equilibrium

• "Limit cycle" and "Chaos"
has no equilibrium has no equilibrium

r < 2 .. stable equilibrium *r* = 2 .. 2-point limit cycle *r* = 2.5 .. 4-point limit cycle *r* = 2.692 .. chaos

• chaos can be produced by
deterministic process deterministic process

• density-dependence is stabilising only when *r* is rather low

Observed population dynamics

a) yeast (logistic curve)b) sheep (logistic curve with oscillations) c) *Callosobruchus*(damping oscillations)d) *Parus* (chaos) e) *Daphnia*

• of 28 insect species in one species chaos was identified, one other showed limit cycles, all other were in stable equilibrium

Estimation of lambda & K

General logistic model

-Hassell (1975) proposed general model for DD- *^r* is not linearly dependent on *^N*

 where *θ*.. the strength of competition *θ* >> 1 .. scramble competition (over-compensation) strong DD, leads to fluctuations, oscillations around *^K*

 $\theta = 1$.. contest competition (exact compensation) stable density

θ < 1 .. under-compensation weak DD, population will return to K

 $(1+aN_t)^{\theta}$

N

 $t_{t+1} = \frac{1+t^{2}}{(1+aN)^{2}}$

 $N_{4+1} =$ —

=

+

+

 $1 - (1$

λ

t

Models with time-lags

• species response to resource change is not immediate but delayed due to maternal effect seasonal effect predator pressure maternal effect, seasonal effect, predator pressure

• appropriate for species with long generation time where reproductive rate
is dependent on density of a previous generation is dependent on density of a previous generation

- time lag (*^d* or *τ*) .. negative feedback of the 2nd order

discrete model and the continuous model

$$
N_{t+1} = \frac{N_t \lambda}{1 + aN_{t-d}}
$$

$$
_{+1} = \frac{N_t \lambda}{1 + aN_{t-d}}
$$
\n
$$
\frac{dN}{dt} = N_t r \left(1 - \frac{N_{t-\tau}}{K}\right)
$$

- many populations of mammals cycle with 3-4 year periods
• time-lag provokes fluctuations of certain amplitude at certain
- \rightarrow time-lag provokes fluctuations of certain amplitude at certain periods
 \rightarrow period of the cycle in continuous model is always 4τ
- \triangleright period of the cycle in continuous model is always 4τ

Solution of the continuous model:

$$
N_{t+1} = N_t e^{-r\left(1 - \frac{N_{t-\tau}}{K}\right)}
$$

 $r \tau < 1 \rightarrow$ monotonous increase
 $r \tau < 3 \rightarrow$ damping fluctuations *r* τ < 3 → damping fluctuations
r τ < 4 → limit cycle fluctuation $r \tau < 4 \rightarrow$ limit cycle fluctuations
 $r \tau > 5 \rightarrow$ extinction $r \tau > 5 \rightarrow$ extinction

Harvesting

-Maximum Sustainable Harvest (*MSH*)

- to harvest as much as possible with the least negative effect on *N*
- ignore population structure
- ignore stochasticity

$$
\frac{dN}{dt} = Nr\left(1 - \frac{N}{K}\right) = 0
$$

$$
N = \frac{K}{2}
$$

$$
MSH = \frac{rK}{4}
$$

4

-Robinson & Redford (1991)Maximum Sustainable Yield (*MSY*)

$$
MSY = a\left(\frac{\lambda K - K}{2}\right)
$$

where $a = 0.6$ for longevity < 5 $a = 0.4$ for longevity $= (5,10)$ $a = 0.2$ for longevity > 10

Surplus production (catch-effort) models
- when r/λ and K are not known

 when *r/*λ and *^K* are not known effort and catch over several

years is known

- Schaefer quadratic model
- local maximum of the functionidentifies optimal effort

Alee effect

• individuals in a population may cooperate in hunting, breeding –
positive effect on population increase positive effect on population increase

- Allee (1931) discovered inverse DD
- <u>- genetic inhreeding decrease in tertil</u> genetic inbreeding – decrease in fertility
- demographic stochasticity biased sex ratio
- small groups cooperation in foraging, defence, mating, thermoregulation
- K_2 .. extinction threshold, unstable equilibrium**population increase is slow** at low density but fast at higher density

$$
\frac{dN}{dt} = Nr\left(1 - \frac{N}{K_1}\right)\left(\frac{N}{K_2} - 1\right)
$$
\n
$$
K_2
$$

