Audio test:

Start

Brno, PS 2012

Přednášející: doc. Jiří Sopoušek E-mail: sopousek@mail.muni.cz, tel.: 549497138 Ofice: UKB A12/M231

Vlastnosti nanočástic

42

Vlastnosti nanočástic (NPs)

Okolí (kapalná, plynná nebo tuhá fáze, vč. roztoku) Interface

(povrch, může být funkcinalizován)

> Výsledné vlastnosti jsou dány spolupůsobením všech částí soustavy

Vlastnosti jádra (NPs)

Elektronová struktura nanočástic

http://www.lct.jussieu.fr/pagesperso/silvi/metal_english.html

Elektronová struktura nano hematitu

Electronová structura: EA = electronová affinita, FL = Fermiho hladina (energie nejvyššího obsazeného kvantového stavu elektrony za absolutní nuly), E_{o} = band gap. Lines in the conduction band of 38 and 120 nm NPs represent the LF states. LF transitions become more forbidden with decreasing NP size, as schematized by vanishing contrast of the lines color.

Kvantové tečky

Kniha o Q

6

Atomární klastry

Atomární klastry:

Au₉₂₃ cluster showing adatoms/adparticles

- Částice tvořené řádově 10-1000 atomy (řádově 0,1-1 nm).
- Soubory klastrů jsou vždy polydisperzní, ale rozdělení velikostí není statistické.
- Převažující velikosti klastrů odpovídají určitým počtům atomů (magic numbers), jejichž posloupnosti jsou dány buď geometrickým faktorem (atomární struktura) nebo elektronovým faktorem (uzavřené elektronové slupky).
- Mohou vytvářet struktury s krystalickou strukturou bulku, amorfní nebo tzv. kvazikrystalické struktury bez translační symetrie s 5-četnou symetrií (icosaedr, zkoseny decaedr)
- Atomic shell (geometrická pravidla)
- Electronic shell (spherical jellium Nano dell' PS 2012

Energie nanočástic Ni v závislosti na počtu atomů *N* částici tvořících (energie *E* je vztažena k "nulové" hodnotě *E*Ni = 271,8994 – 292,8873*N*1/3 +260,6812*N*2/3 – 292,9018*N*,ε je modelový parametr s rozměrem energie)

Entalpie tání atomárních klasterů

Závislosti teploty tání (a) a entalpie tání (b) atomárních klastrů **Al** n (n = 25-83 atomů) na jejich velikosti (Ref.59)

(vodorovná čárkovaná čára (– – –) v obrázku (a) odpovídá teplotě tání *bulku* (933,5 K),

černé plné body (••) v obrázku (b) představují hodnoty entalpie tání pro 1 mol klastrů dané velikosti,

červené prázdné body (OO) představují hodnoty entalpie tání přepočtené na 1 atom v klastru

vyjádřené relativně vzhledem k bulku (10,71 kJ mol–1)

Magické čísla

Full-shell "magic number" clusters	\$				
Number of shells	V 1	2	3	4	5
Number of atoms in cluster	13	55	147	309	561
Percentage of surface atoms	92	76	63	52	45
		$N_{\rm at} = \frac{10}{3}v$	$\frac{3}{3} + 5v^2 + \frac{11}{3}v$	· +1	

Magická čísla se liší pro pro různé typy atomů a sloučenin. Závisí také na typu převládajících sil.

Magnetické vlastnosti látek

 Magnetické vlastnosti materiálu se odvíjí od jeho magnetického stavu. Magnetický stav materiálu má atomový původ a je především určen elektrony atomů.

 - Z magnetického hlediska je každý atom charakterizován magnetickým momentem μ, který se skládá z následujícícch:

1). Orbitální pohyb elektronů po dráze kolem jádra atomu;

2). Spin elektronů ("vnitřní" magnetický moment);

3). Vnější magnetické pole ovlivňující pohyb elektronů kolem jádra.

A) Magneticky neuspořřádané materiály 1).
 Diamagnetické látky→χ < 0;

Paramagnetické látky $\rightarrow \chi > 0$;

B). Uspořádané magnetické materiály – feromagnetické, antiferomagnetické, ferimagnetické látky atd. $\rightarrow \chi >> 0$.

Magnetic

Field

Current

direction

X ...magnetická susceptibilita Nanocastice PS 201 (citlivost na vnější mg. pole) 12

Magnetická susceptibilita prvků

Uspořádané magnetické látky

(Spontanní magnetizace, existence teploty magnetického uspořádání, vysoká susceptibilita)

Feromagnetické

Fe, Ni, Co a jejich slitiny

susceptibilia

Ferimagnetické

Oxidy s více mřížkami Magnetit: [Fe³⁺]A [Fe³⁺,Fe²⁺]B O₄

Ferrimagnetism

Nano aplikace Nanočástice PS 2012

Anti feromagnetické

Oxidy s více ekvivalentními mřížkami. Hematit

Antiferromagnetisn

14

Magnetické domény bulk materiálů

Vznikají spontálně z důvodu snížení celkové energie soustavy

B₀

Magnetická anisotropie BCC FE. Magnetizační kčivky pro tři hlavní krystalografické osy [100], [110], [111] buňky Fe krystalu; (J) magnetizace, (H) intenzita magnetického pole.

Magnetické domény

Magnetické vlastnosti NPs

Superparamagnetismus (extra vysoký magnetický moment ve směru snadné magnetizace)
Změny Currie a Neel Teploty
Spinové sklánění a povrchové spinové efekty

Figure 1. A generic ferrimagnet, composed of Fe and Gd, shows the alignment of magnetic moment. Courtesy of I.Radu et al., Nature 472 205 (2011).

Teoretická elektronová pásová struktura clusteru Fe15BCC

Superparamagnetismus NPs

Je-li objem podkritický 1NPs = 1 doména

nacerita	D _{crit} (nm)	material	$D_{\rm crit}$ (nm)
Co Fe Ni	70 14 55	$\begin{array}{c} \mathrm{Fe_3O_4} \\ \gamma \mathrm{-Fe_2O_3} \end{array}$	128 166
Energy			
	\uparrow	,	
	in particle		Snadná magnetizace
SPM			vnějším polen
	The C	\uparrow	vysoká spontánní
			magnetizace z

Superparamagnetické NPs

Blokavací teplota pro superparamagnetismus NPs

Vyšší teplota - snadné přeskočení do nového směru snadné magnetizace (stačí slabé mg. pole).

Blokovací teplota závisí na velikosti částic, distribuci velikosti částic, morfologii, mezičásticových interakcích, vnějším magnetickém poli...

Relaxační čas (doba za kterou klesne dany směr magnetizace na 1/e tj. =1/2,303) pro SPM částice o objemu V: K...anisotropická konstanta

 $\tau = \tau_0 \exp$

Ani fixované NPs neudrží původní směr mag. monentu.

Důsledky existance blokovací teploty

Spinové sklánění

-nad 15nm již není pozorováno

 s rostoucí teplotou klesá a nad určitou teplotou mizí

Interakce magnetických nanočástic

b

Fe3O4(magnetit),

SPIO-SuperParamagnetic

Iron oxides

nanočástice nejsou v SPM stavu, nebo jsou-li v SPM stavu vystaveny mg.poli

Řetězce se

tvoří pokud

Magnetická dekantace NPs

Fe^T[Fe_{5/3}(vac)_{1/3}]^OO₄

Mechanické vlastnosti

Napěťové pole dislokací a poruch

Rovnovážná koncentrace vakancí v nano klesá

Poruchy jsou přitahovány vzájemně i povrchy, kde probíhají relaxační procesy (A)

Nanočástice však nejsou dokonalými krystaly (dilatace mřížky, dvojčata)

Mechanické vlastnosti nanostrukturovaných materiálů

Mez kluzu v závislosti na velikosti zrna

Dislokace a jiné poruchy mříže jsou v nanočásticích kovů ale i jiných materiálů nestabilní. Není např. dislokační zpevnění.

http://www.sciencedirect.com/science/article/pii/S0261306911002986

Superplasticita

а Nutno mít dokonale plastickou zónu se Grain boundary snadným zdrojem a skluzem dislokací **Primary Slip** b Hard Grain boundary Soft Soft **Primary Slip** Schematic illustration showing the

a) $\varepsilon_{zz} = 0.0$

d) $\epsilon_{zz} = 0.50$

grain sliding mechanism of superplastic material.

Model of grain boundary sliding: (a) primary slip; (b) secondary slip [22].

Dokonale plastická zóna = NPs

Video

<u>plastické</u>

deformace

<u>NPs</u>

Neexistují zpevňující efekty (dislokační síť, mikrosegregace, bodové poruchy)

(IIII) 5 mm

> Pohyb dislokace v Ag-nano při nanoindentaci Pt hrotem

Superplasticita pří různých druzích namáhání

Tlak

ZrO2-3mol%Y2O3 sample, before (L) and after (R) superplastic deformation in simple uniaxial compression. Doping of the top half of the sample with http://www.nsk-gov.ch/e-hades_to_faster_strain rates in that portion of the

Superplastická Cu (zrno 60nm), válcováno. Není mechanismus zpevnění.

Diskuse

 Nanočástice s magnetickými vlastnostmi v krevním řečišti a jejich odbouratelnost

Nanovrstvy + spec struktury, C-nanotubes

Průzkum stránek: http://faculty.ucr.edu/~yadongy/Publication.html

There is plenty of fun at the bottom...

http://www.beilsteinjournals.org/bjnano/single/articleFullText.htm ?publicId=2190-4286-1-6

Schematic illustration of magnetic fluctuations in a nanoparticle. At low temperatures the direction of the magnetization vector M fluctuates near one of the easy directions (collective magnetic excitations). At higher temperatures the thermal energy can be comparable to the height, KV, of the energy barrier separating the easy directions, and the magnetization can fluctuate between the easy directions (superparamagnetic relaxation).