
HW 1	Inorganic Materials	Name:	
	Chemistry		
Points:	C7780	Date:	
Max. 100 points	Fall 2012	A	

1. Assume that CaO reacts with CeO_2 and forms $CaCeO_3$. What could be the structure type of this compound?

Write balanced chemical equations for the reactions taking place at the interfaces I and II (assume counter diffusion of both cations) and calculate the Kirkendall ratio for this process.

	I	I	I
CaO		CaCeO ₃	CeO ₂

- 2. Derive Miller indices for planes that intersects the cell axes at a/2, 2b/3, 2c.
- 3. Give stoichiometric formulas for these structures. Large atoms = A, small atoms = B

- 4. Specific surface area of α -Fe₂O₃ was measured by nitrogen adsorption at 77 K and its value is 120 m² g⁻¹. Density of this oxide is 5.277 g cm⁻³. Calculate the particle size assuming a spherical particle shape.
- 5. Maghemite γ -Fe₂O₃ crystallizes in a defect inverse spinel structure (as Fe₃O₄), but some positions of Fe³⁺ in octahedral holes must be vacant, in order to maintain stoichiometry. What part of these holes must be empty in comparison with Fe₃O₄.

 \square = vacancy, empty hole, (X) = tetrahedral position, [Y] = octahedral position Fill stoichiometric coeficients at the horizontal lines:

(Fe)	Fe		O_4
\ - - /		, —	1 ~ 4