Sol-gel process:

Hydrolysis Condensation Gelation Ageing Drying Densification

Powders: microcrystalline, nanocrystalline, amorphous

Monoliths, Coatings, Films, Fibers

Aerogels

Glasses, Ceramics, Hybrid materials

Sol = a stable suspension of colloidal solid particles or polymers in a liquid

Gel = porous, three-dimensional, continuous solid network surrounding a continuous liquid phase

Colloidal (particulate) gels = agglomeration of dense colloidal particles

Polymeric gels = agglomeration of polymeric particles made from subcolloidal units

Agglomeration = covalent bonds, hydrogen bonds, polymeric chain entanglement

Aggregation = van der Walls forces

Sol and Gel

Colloidal suspension of volume V

 (a) Sol

Wet monolith of volume V (b) Gel

Sol-Gel Process

Sol-Gel Chemistry

Aqueous

- •**Colloid Route – inorganic salts, pH, hydrolysis, polycondensation**
- •**Metal-Oragnic Route – metal alkoxides, amides, hydrolysis, polycondensation**
- •**Pechini and Citrate Gel Method – inorganic metal salts, complexing agent, chelate formation, polyesterification with polyfunctional alcohol**

Nonaqueous

- •**Hydroxylation**
- •**Heterofunctional Condensations**

Colloid Route

0 **Colloid Route**

metal salts in aqueous solution, pH and temperature control

Hydrolysis $\mathbf{M}(\mathbf{H}_{2}\mathbf{O})_{\mathbf{b}}$ Z^+ \leftrightarrow $[M(H_2O)_{b-1}OH]^{(Z-1)+}$ + H^+

Condensation-polymerization $\mathbf{M}(\mathbf{H}_2\mathbf{O})_\mathbf{b}$ Z^+ \leftrightarrow $[(H_2O)_{b-1}M(OH)_2M(H_2O)_{b-1}]^{(2Z-2)+}$ + $2H^+$

Colloid Route

Colloid Route $Fe^{2+}(aq) + CO_3$ $Fe^{3+} (aq) + CO_3$ **2** − → **?**

Sol-Gel Methods

2 − → **?**

Pechini Sol-Gel Route

Metal-Oragnic (Alkoxide) Route

Metal Alkoxides $[M(OR)_{x}]_{n} + H_{2}O \rightarrow ROH + M-O-H$ **Hydrolysis**

> **Metal Amides** $\left[\mathbf{M}(\mathbf{NR}_2)_{\mathbf{x}}\right]_{\mathbf{n}} + \mathbf{H}_2\mathbf{O} \rightarrow \mathbf{R}_2\mathbf{NH} + \mathbf{M}\cdot\mathbf{O}\cdot\mathbf{H}$

Condensation

 $2 M \cdot 0 \cdot H \rightarrow M \cdot 0 \cdot M + H_2 O$

OXIDE

Metal Alkoxides and Amides

Metal Alkoxides [M (OR) x] n

formed by the replacement of the hydroxylic hydrogen of an alcohol (R O H) through a metal atom

Metal Amides [M (N R 2) x] n

formed by the replacement of one of the hydrogen atoms of an amine ($\rm R_2NH$) through a metal atom

Metal Alkoxides and Amides

Homometallic Alkoxides

 \mathbf{G} eneral Formula: $\mathbf{[M(OR)}_{\mathbf{x}}\mathbf{]}_{\mathbf{n}}$

Heterometallic Alkoxides

 \mathbf{G} eneral Formula: $\mathbf{M}_{\mathbf{a}}\mathbf{M'}_{\mathbf{b}}(\mathbf{OR})_{\mathbf{x}}\mathbf{I}_{\mathbf{n}}$

Metal Amides

 \mathbf{G} eneral Formula: $\mathbf{[M(NR_2)\text{,}I_n]}$

M = Metal or metalloid ofvalency ^x O = Oxygen Atom N = Nitrogen atom R = simple alkyl, substituted alkyl or aryl group n = degree of molecular association

Sol-gel in Silica Systems

Metal-Oragnic Route

0**Metal-organic Route metal alkoxide in alcoholic solution, water addition**

Acid catalysed hydrolysis

Base catalysed hydrolysis

Oligomers formed by hydrolysis-condensation process

- **-linear**
- **-branched**
- **-cyclic**
- **-polyhedral**

Never goes to pure SiO 2

n Si(OR) $_{4}$ + 2n+(a–b)/2 H $_{2}$ O \rightarrow Si $_{\mathrm{n}}$ O $_{\mathrm{2n-(a+b)/2}}$ (OH) $_{\mathrm{a}}$ (OR) $_{\mathrm{b}}$ + (4n–b) ROH

GC of TMOS hydrolysis products

Silicate anions in aqueous alkaline media (detected by 29Si-NMR)

M = OSiR 3 $D = O_2$ SiR₂

T = O ³SiR

Q = O ⁴Si

 $Q^0 = O_4 Si$ $Q^1 = O_3$ **SiOSi** $Q^2 = O_2$ **Si** $(OSi)_2$ $Q^3 = OSi(OSi)_3$ $Q^4 = \text{Si(OSi)}_4$

 $\mathrm{Si}_{50}\mathrm{O}_{75}(\mathrm{OH})_{50}$ three-dimensional **clusters formed by (A) four-rings (B) six-rings**

The Electrical Double Layer

The electrical double layer at the interface of silica and a diluted KCl solution

ψ**, local potential OHP, outer Helmholtz plane** *^u***, local electroosmotic velocity**

Negative surface charge stems from deprotonated silanols Shielding of this surface charge occurs due to adsorbed ions inside the OHPand by mobile ions in a diffuse layer Potential and EOF velocity profiles are shown at right

The shear plane is where hydrodynamic motion becomes possible; z is the potential at this plane

The Electrical Double Layer

Isoelectronic point: zero net charge

 $pH = 2.2$ for silica

Rate of H + catalyzed TEOS hydrolysis (gel time) as a function of pH

Precursor substituent effects

Steric effects: branching and increasing of the chain length LOWERS the hydrolysis rate $\text{Si}(\text{OMe})_{4} > \text{Si}(\text{OEt})_{4} > \text{Si}(\text{O}^{\text{n}}\text{Pr})_{4} > \text{Si}(\text{O}^{\text{i}}\text{Pr})_{4} > \text{Si}(\text{O}^{\text{n}}\text{Bu})_{4} > \text{Si}(\text{OHex})_{4}$

Inductive effects: electronic stabilization/destabilization of the transition state (TS).

Electron density at Si decreases:

R→**Si > RO**→**Si > HO**[−]**Si > SiO**←**Si**

Acidic conditions:

Hydrolysis reaction rate decreases as more alkoxy groups are hydrolyzed TS (+) is destabilized by increasing number of electron withdrawing OH groups The reaction at terminal Si favored, as there is only one electron withdrawing SiO group Linear polymer products are favored, fibers RSi(OR) 3 is more reactive than Si(OR) 4

Basic conditions:

Hydrolysis reaction rate increases as more alkoxy groups are hydrolyzed TS ([−]**) is stabilized by increasing number of electron withdrawing OH groups The reaction at central Si favored, as there is more electron withdrawing SiO groups Branched polymer products are favored, spherical particles, powders RSi(OR) 3 less reactive than Si(OR) 4**

Si-OH becomes more acidic with increasing number of Si-O-Si bonds

Nucleophilic catalysis:

F-

HMPA N-methylimidazol N,N-dimethylaminopyridin

Small amount of water = slow hydrolysis due to the reduced reactant concentration

Large amount of water = slow hydrolysis due to the reactant dilution

Hydrophobic effect

Si(OR) 4 are immiscible with water cosolvent ROH is used to obtain a homogeneous reaction mixture polarity, dipole moment, viscosity, protic behavior

alcohol produced during the reaction alcohols - transesterificationsonicationdrying

Condensation

Acid catalysed condensation fast protonation, slow condensation

Positively charged transition state, fastest condensation for (RO) ³SiOH > (RO) ²Si(OH) 2 > ROSi(OH)3 > Si(OH) 4

TS (+) is destabilized by increasing number of electron withdrawing OH groups

Hydrolysis fastest in the first step, i.e. the formation of (RO) ³SiOH

Condensation for this species also fastest, the formation of linear chains

Condensation

Base catalysed condensation

fast deprotonation, slow condensation

Negatively charged transition state, fastest condensation for $({\bf R}{\bf O})_3{\bf SiOH} <({\bf R}{\bf O})_2{\bf Si(OH)_2<}{\bf SOSi(OH)_3<}{\bf Si(OH)_4}$

TS ([−]**) is stabilized by increasing number of electron withdrawing OH groups**

Hydrolysis speeds up with more OH, i.e. the formation of Si(OH) 4

Sol-Gel Methods 33 **Condensation for the fully hydrolysed species fastest, the formation of highly crosslinked particles**

Reaction limited cluster aggregation (RLCA)

Reaction limited monomer cluster growth (RLMC) or Eden growth

Acid catalysed condensation condensation to linear chainssmall primary particles microporosity, Type I isotherms

Base catalysed condensation

condensation to highly crosslinked particles

large primary particles

mesoporosity, Type IV isotherms

Gelation

Gelation

gel point - a spannig cluster reaches across the container, sol particles, oligomers and monomer still present

a sudden viscosity increase at the gel point

further crosslinking - increase in elasticity

Ageing

Crosslinking condensation of the OH surface groups, stiffening and shrinkage

Syneresis shrinkage causes expulsion of liquid from the pores

Coarsening materials dissolve from the convex surfaces and deposits at the concave surfaces: necks

Rippening Smaller particles have higher solubility thean larger ones

Phase separation Fast gelation, different miscibility, isolated regions of unreacted precursor, inclusions of different structure, opaque, phase separation

Drying

1. The constant rate period the gel is still flexible and shrinks as liquid evaporates

2. The critical point

the gel becomes stiff and resists further shrinkage, the liquid begins to recede (contact angle $\theta)$ into the pores (radius r), surface tension γ creates large capillary pressures $\bm{P_c,}$ **stress, cracking**

$$
P_c = \frac{2\gamma\cos\theta}{r}
$$

3. The first falling -rate period

a thin liquid film remains on the pore walls, flows to the surface and evaporates, the menisci first recede into the largest pores only, as these empty, the vapor pressure **drops and smaller pores begin to empty**

4. The second falling -rate period liquid film on the walls is broken, further liquid transport by evaporation

Drying Methods

To avoid cracking:

- •**No meniscus**
- •**Decrease surface tension**
- •**Increase wetting angle (isopropanol)**
- •**Increase pore size**
- •**Make a stiff gel**

$$
P_c = \frac{2\gamma\cos\theta}{r}
$$

1. Supercritical drying

2. Freeze-drying

3. Drying control chemical additives

4. Ageing

5. Large pore gels

Aerogels

1931 Steven S. Kistler J. Phys. Chem. 34, 52, 1932

Aerogels = materials in which the typical structure of the pores and the network is largely maintained while the pore liquid of a gel is replaced by air

The record low density solid material - 0.001 g/cm 3 density of air 1.2 mg/cm 3

Sol-Gel Methods 40

Aerogels - Supercritical Drying

Silica aerogel

From sodium silicate – 3 steps •**Salt washing** •**Water replacement** •**Supercritical drying**

From silicon alkoxides – 1 step •**Supercritical drying**

Supercritical Drying

Cold supercritical drying path in the Pressure (P) Temperature (T) phase diagram of CO_2

Supercritical Drying

43

Densification

Densification

Stage I. Below 200 °**C, weight loss, no shrinkage**

pore surface liquid desorption

Stage II. 150 - 700 °**C, both weight loss and shrinkage**

loss of organics - weight loss further condensation - weight loss and shrinkage structural relaxation - shrinkage

Stage III. Above 500 °**C, no more weight loss, shrinkage only**

close to glass transition temperature, viscous flow, rapid densification, large reduction of surface area, reduction of interfacial energy, termodynamically favored

Sintering mechanisms

Sintering mechanisms

solid, liquid, gas phase

1. Evaporation-condensation and dissolutionprecipitation

2. Volume diffusion

3. Surface diffusion

4. Grain boundary diffusion

5. Volume diffusion from grain boundaries

6. Volume diffusion from dislocations, vacancies

Densification

Densification

Dehydration sequence of hydrated alumina in air

Path (b) is favored by moisture, alkalinity, and coarse particle size (100µm) path (a) by fine crystal size (<10µm)

HT-XRD of the phase transitions

Gibbsite to Boehmite to Gamma

Gibbsite γ-Al(OH), to Boehmite γ-Al(O)OH to γ-Al,O, alumina (defect spinel) CCP

27Al Solid-State NMR spectra

Bayerite to Diaspore to Corundum

Bayerite ^α**-Al(OH) 3 to Diaspore** ^α**-Al(O)OH to** α**-Al 2O 3 Corundum HCP**

Metal Coordination

Oxygen Coordination

bent

trigonal pyramidal

linear terminal

planar

tetrahedral

pentagonal

bipyramidal

Metal-Oxide Clusters

Metal-Oxide Clusters

