BASIC CHEMOMETRIC EVALUATION Arithmetic mean x : ∑= = n i ix n x 1 1 where: n …number of parallel analyses, xi ….measured values. Parameter estimation σ is standard deviation SD, s. The precision calculated for n ≥ 10 according follow: ( ) ( )∑= − − = n i i xx n s 1 2 1 1 For n ≤ 10, calculated according to Dean and Dixon with variation range R: Rks nR ⋅= minmax xxR −= where: kn … Dean-Dixon’s coefficient for n measurements (values in table S.1), xmax …the heights (maximum) value in their ascending order. xmin ....the lowest (minimum) one. Tab. S.1: Dean-Dixon’s coefficient kn n kn n kn 2 3 4 5 6 0.8862 0.5908 0.4857 0.4299 0.3946 7 8 9 10 0.3698 0.3512 0.3367 0.3249 Relative standard deviation (RSD): [ ]%100⋅= x s sr The confidence interval is interval in which is the value with predetermined probability 1 – α, if the method is not affected by systematic error. Confidence level 1 – α is most often 0.95. For n ≥ 10, the confidence interval L2,1 the following: n t sxL v)(2/ 1,2 α ±= where: tα/2(v) is critical value of Student’s distribution for selected value α and number of degrees of freedom v = n – 1 (in table S.2). Tab. S.2: Critical values of Student’s distribution tα//2(v) For n ≤ 10, the confidence interval L2,1 is according Dean and Dixon: RKxL α n ⋅±=1,2 where: Kn α ... Dean-Dixon’s ccoefficient for pro for selected value α and number of measurements n (values in table S.3). Tab. S.3: Values of Dean-Dixon’s ccoefficient Kn α (1-α) (1-α) n 0.95 0.99 n 0.95 0.99 2 3 4 5 6 6.40 1.30 0.72 0.51 0.40 31.80 3.01 1.32 0.84 0.63 7 8 9 10 0.33 0.29 0.26 0.23 0.51 0.43 0.37 0.33 α α ν 0.1 0.05 0.039 0.01 ν 0.1 0.05 0.039 0.01 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6.314 2.920 2.353 2.132 2.045 1.943 1.895 1.860 1.833 1.812 1.796 1.782 1.771 1.761 1.753 12.706 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 16.303 4.914 3.517 3.024 2.778 2.631 2.534 2.465 2.414 2.374 2.342 2.317 2.295 2.277 2.262 63.657 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250 3.169 3.106 3.055 3.012 2.977 2.947 16 17 18 19 20 25 30 40 50 60 80 100 200 ∞ 1.746 1.740 1.734 1.729 1.725 1.708 1.697 1.684 1.676 1.671 1.664 1.660 1.652 1.645 2.120 2.110 2.101 2.093 2.086 2.060 2.042 2.021 2.008 2.000 1.990 1.984 1.972 1.960 2.248 2.237 2.226 2.217 2.209 2.178 2.159 2.134 2.120 2.210 2.099 2.092 2.078 2.066 2.921 2.898 2.878 2.861 2.845 2.787 2.750 2.704 2.678 2.668 2.639 2.626 2.606 2.576 2.2. The outlier test The Grubbs (T-test) or Dean-Dixon’s test are used in practice. The tests eliminate the outlier values from results. The testing is performed for the highest (xn) and lowest (x1) value of results ordered in ascending order by size. Grubbs test: n n n s xx T − = . ns xx T 1 1 − = ( )∑= −= n i in xx n s 1 21 Calculated values Tn and T1 are confirmed with tabulated critical values Tn α . If is Tn ≥ Tn α , or T1 ≥ Tn α ., the highest, or lowest results outlier. In this case, we must eliminate this value from results and the next evaluation carries out without it. The tabulated critical values Tn α are in table S.4. Tab. S.4: Critical tabulated values of Tn α α α n 0.01 0.025 0.05 0.1 n 0.01 0.025 0.05 0.1 3 4 5 6 7 8 9 10 11 1.414 1.723 1.955 2.130 2.265 2.374 2.464 2.540 2.606 1.414 1.710 1.917 2.067 2.182 2.273 2.349 2.414 2.470 1.412 1.689 1.869 1.996 2.093 2.172 2.237 2.294 2.343 1.406 1.545 1.791 1.894 1.974 2.041 2.097 2.146 2.190 12 13 14 15 16 17 18 19 20 2.663 2.714 2.759 2.800 2.837 2.871 2.903 2.932 2.959 2.519 2.562 2.602 2.638 2.670 2.701 2.728 2.754 2.778 2.387 2.426 2.461 2.493 2.523 2.551 2.577 2.600 2.623 2.229 2.264 2.297 2.326 2.354 2.380 2.404 2.426 2.447 For numbers of measurements, n = 3–10, the outlier test for extreme values can be perform according Dean-Dixon’s test. All three values must be to each other different!: ,1 R xx Q nn n −− = R xx Q 12 1 − = Calculated values Qn and Q1 are confirmed with tabulated critical values Qn α . If is Qn ≥ Qn α , or Q1 ≥ Qn α , the highest, or lowest results outlier. In this case, we must eliminate this value from results and the next evaluation carries out without it. The tabulated critical values Qn α are in table S.5. Tab. S.5: Critical tabulated values of Qn α α α n 0.01 0.025 0.05 0.1 n 0.01 0.025 0.05 0.1 3 4 5 6 0.886 0.679 0.557 0.482 0.941 0.765 0.642 0.560 0.972 0.846 0.729 0.644 0.988 0.889 0.760 0.698 7 8 9 10 0.434 0.399 0.370 0.349 0.507 0.468 0.437 0.412 0.586 0.543 0.510 0.483 0.637 0.590 0.555 0.527