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Teoretická fyzika – Proč kvantová mechanika? 

Michal Lenc – podzim 2012 

1. Záření černého tělesa 

1.1 Rayleigh 1900 

Termín Rayleighův – Jeansův zákon je všeobecně užíván, vede však k nesprávnému 

závěru, že Lord Rayleigh a Sir James uvažovali jen dlouhovlnnou část spektra. Základním 

článkem k problematice je Rayleighova stručná poznámka, uveřejněná v Philosophical 

Magazine (5. serie) 49 (1900), 539 – 540. 

Remarks upon the Law of Complete Radiation 

By complete radiation I mean the radiation from an ideally black body, which according 

to Stewart* and Kirchhoff is a definite function of the absolute temperature  θ  and the wave-

length  λ.  Arguments of (in my opinion
†
) considerable weight have  been  brought forward by 

Boltzmann and W. Wien leading to the  conclusion  that the function  is of  the form 

 5 d ,   (1) 

expressive of the energy in that part of  the spectrum which lies between λ and λ+Δλ. A 

further specialization by determining the form of the function  was attempted later
‡
. Wien 

concludes that the actual law is 

 25

1 d ,
c

c e   (2) 

in which c1 and c2  are constants, but viewed from the theoretical side the result appears to me 

to be little more than a conjecture. It is, however, supported upon general thermodynamic 

grounds by Planck
§
. 

       Upon the experimental side, Wien's law (2) has met with important confirmation. 

Paschen finds that his observations are well represented, if he takes 

 2 14,455 ,c   

θ being measured in centigrade degrees and λ in thousandths of a millimetre (μ). 

Nevertheless, the law seems rather difficult of acceptance, especially the implication that as 

the temperature is raised, the radiation of given wavelength approaches a limit. It is true that 

for visible rays the limit is out of range. But if  we take  λ=60 μ,  as (according to the 

remarkable researches of Rubens) for the rays selected by reflexion at surfaces of Sylvin, we 

see that for temperatures over 1000° (absolute) there would be but little further increase of 

radiation. 
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       The question is one to be settled by experiment; but in the meantime I venture to suggest 

a modification of (2), which appears to me more probable à priori. Speculation upon this 

subject is hampered by the difficulties which attend the Boltzmann – Maxwell doctrine of the 

partition of energy. According to this doctrine every mode of vibration should be alike 

favoured ; and although for  some reason  not  yet  explained the doctrine fails in general, it 

seems possible that it may apply to the graver modes. Let us consider in illustration the  case 

of a  stretched string vibrating transversely. According to the Boltzmann – Maxwell law the 

energy should be equally divided among all the modes, whose frequencies are as 1, 2, 3, ..... 

Hence if k be the reciprocal of λ, representing the frequency, the energy between the limits k 

and k+dk is (when k is large enough) represented by dk simply. 

       When  we pass  from  one  dimension to three dimensions, and consider for example the  

vibrations of  a  cubical  mass  of air, we have  („Theory of  Sound‟, §267) as the equation for  

k
2
 , 

 
2 2 2 2 ,k p q r   

where p, q, r are integers representing the  number of subdivisions in the three directions. If 

we regard p, q, r as the coordinates of points forming a cubic array, k is the distance of any 

point from the origin. Accordingly the number of points for which k lies between k and k+dk,  

proportional to the volume of the corresponding spherical shell, may be represented by  k
2
dk,  

and this expresses the distribution of energy according to the Boltzmann – Maxwell law, so 

far as regards the wave-length or frequency. If we apply this result to radiation, we shall have, 

since the energy in each mode is proportional to θ, 

 
2 d ,k k   (3) 

or, if we prefer it, 

 
4 d .   (4) 

It may be regarded as some confirmation of the suitability of (4) that it is of the prescribed 

form (1). 

       The suggestion is that (4) rather than, as according to (2) 

 
5 d   (5) 

may be the proper form when λθ is great*. If we introduce the exponential factor, the 

complete expression will be 

 24

1 d .
c

c e   (6) 

If, as is probably to be preferred, we make k the independent variable, (6) becomes 
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 22

1 d .
c k

c k e k   (7) 

       Whether (6) represents the facts of observation as well as (2) I am not in a position to say. 

It is to be hoped that the question may soon receive an answer at the hands of the 

distinguished experimenters who have been occupied with this subject. 

* Stewart's work appears to be insufficiently recognized upon the Continent. [See Phil.Mag. i. p. 98, 1901; p. 

494 below.] 

† Phil. Mag. Vol.  XLV. p. 522 (1898). 

‡ Wied. Ann. Vol.  LVIII. p. 662 (1896). 

§ Wied. Ann. Vol. i. p. 74 (1900). 

 

       *[1902. This is what I intended to emphasize. Very shortly afterwards the anticipation 

above expressed was confirmed by the important researches of Rubens and  Kurlbaum (Drude 

Ann. iv. p. 649, 1901), who operated with exceptionally long waves. The formula of Planck, 

given about the same time, seems best to meet the observations. According to this 

modification of Wien's formula, 2ce  in (2) is replaced by 21 1
c
e . When λθ is great, 

this becomes λθ/c2 , and the complete expression reduces to (4).] 

 

1.2 Planck 1901 

Model, který přesně popisuje spektrální hustotu v celém frekvenčním rozsahu 

publikoval Max Planck jako “Über das Gesetz der Energieverteilung im Normalspektrum” v 

Annalen der Physik (4. serie) 4 (1901), 553 – 563. Uvádím anglický překlad, originální článek 

je snadno dostupný.  

On the Law of Distribution of Energy in the Normal Spectrum 

Introduction.  

The recent spectral measurements made by O. Lummer and E. Pringsheim
1
, and even 

more notable those by H. Rubens and F. Kurlbaum
2
, which together confirmed an earlier 

result obtained by H. Beckmann
3
, show that the law of energy distribution in the normal 

spectrum, first derived by W. Wien from molecular-kinetic considerations and later by me 

from the theory of electromagnetic radiation, is not valid generally. 

                                                 

1 O.Lummer, E.Pringsheim, Verhandl. Der. Deutscg. Physikal. Gesellsch. 2. p.163. 1900. 
2 H.Rubens, F.Kurlbaum, Sitzungsber. D. k. Akad. D. Wissensch. Zu Berlin vom 25. October 1900, 

p.929. 
3 H. Beckmann, Inaug.-Dissertation, Tübingen 1898. Vgl. Auch H.Rubens, Wied. Ann. 69. p.582. 1899. 
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In any case the theory requires a correction, and I shall attempt in the following to 

accomplish this on the basis of the theory of electromagnetic radiation which I developed. For 

this purpose it will be necessary first to find in the set of conditions leading to Wien‟s energy 

distribution law that term which can be changed; thereafter it will be a matter of removing this 

term from the set and making an appropriate substitution for it. 

In my last article
4
 I showed that the physical foundations of the electromagnetic 

radiation theory, including the hypothesis of “natural radiation,” withstand the most severe 

criticism; and since to my knowledge there are no errors in the calculations, the principle 

persists that the law of energy distribution in the normal spectrum is completely determined 

when one succeeds in calculating the entropy S of an irradiated, monochromatic, vibrating 

resonator as a function of its vibrational energy U. Since one then obtains, from the 

relationship dS/dU = 1/θ, the dependence of the energy U on the temperature θ, and since the 

energy is also related to the density of radiation at the corresponding frequency by a simple 

relation
5
, one also obtains the dependence of this density of radiation on the temperature. The 

normal energy distribution is then the one in which the radiation densities of all different 

frequencies have the same temperature. 

Consequently, the entire problem is reduced to determining S as a function of U, and it 

is to this task that the most essential part of the following analysis is devoted. In my first 

treatment of this subject I had expressed S, by definition, as a simple function of U without 

further foundation, and I was satisfied to show that this from of entropy meets all the 

requirements imposed on it by thermodynamics. At that time I believed that this was the only 

possible expression and that consequently Wien‟s law, which follows from it, necessarily had 

general validity. In a later, closer analysis
6
, however, it appeared to me that there must be 

other expressions which yield the same result, and that in any case one needs another 

condition in order to be able to calculate S uniquely. I believed I had found such a condition in 

the principle, which at the time seemed to me perfectly plausible, that in an infinitely small 

irreversible change in a system, near thermal equilibrium, of N identical resonators in the 

same stationary radiation field, the increase in the total entropy SN = NS with which it is 

associated depends only on its total energy UN = NU and the changes in this quantity, but not 

on the energy U of individual resonators. This theorem leads again to Wien‟s energy 

distribution law. But since the latter is not confirmed by experience one is forced to conclude 

                                                 

4 M. Planck, Ann. D. Phys. 1. p.719. 1900. 
5 See Eq. (8) below. 
6 M. Planck, loc. cit., p. 730 ff. 
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that even this principle cannot be generally valid and thus must be eliminated from the 

theory
7
. 

Thus another condition must now be introduced which will allow the calculation of S, 

and to accomplish this it is necessary to look more deeply into the meaning of the concept of 

entropy. Consideration of the untenability of the hypothesis made formerly will help to orient 

our thoughts in the direction indicated by the above discussion. In the following a method will 

be described which yields a new, simpler expression for entropy and thus provides also a new 

radiation equation which does not seem to conflict with any facts so far determined. 

I. Calculations of the entropy of a resonator as a function of its energy.  

§ 1. Entropy depends on disorder and this disorder, according to the electromagnetic 

theory of radiation for the monochromatic vibrations of a resonator when situated in a 

permanent stationary radiation field, depends on the irregularity with which it constantly 

changes its amplitude and phase, provided one considers time intervals large compared to the 

time of one vibration but small compared to the duration of a measurement. If amplitude and 

phase both remained absolutely constant, which means completely homogeneous vibrations, 

no entropy could exist and the vibrational energy would have to be completely free to be 

converted into work. The constant energy U of a single stationary vibrating resonator 

accordingly is to be taken as time average, or what is the same thing, as a simultaneous 

average of the energies of a large number N of identical resonators, situated in the same 

stationary radiation field, and which are sufficiently separated so as not to influence each 

other directly. It is in this sense that we shall refer to the average energy U of a single 

resonator. Then to the total energy 

(1) NU NU   

of such a system of N resonators there corresponds a certain total entropy 

(2) NS N S   

of the same system, where S represents the average entropy of a single resonator and the 

entropy SN depends on the disorder with which the total energy UN is distributed among the 

individual resonators. 

§ 2. We now set the entropy SN of the system proportional to the logarithm of its 

probability W, within an arbitrary additive constant, so that the N resonators together have the 

energy UN 

                                                 

7 Moreover one should compare the critiques previouslymade of this theorem by W. Wien (Report of the 

Paris Congress 2, 1900, p. 40) and by O. Lummer (loc. cit., 1900, p.92). 
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(3) ln const.NS k W   

In my opinion this actually serves as a definition of the probability W, since in the basic 

assumptions of electromagnetic theory there is no definite evidence for such a probability. 

The suitability of this expression is evident from the outset, in view of its simplicity and close 

connection with a theorem from kinetic gas theory
8
. 

§ 3. It is now a matter of finding the probability W so that the N resonators together 

possess the vibrational energy UN. Moreover, it is necessary to interpret UN not as a 

continuous, infinitely divisible quantity, but as a discrete quantity composed of an integral 

number of finite equal parts. Let us call each such part the energy element ε; consequently we 

must set 

(4) ,NU P   

where P represents a large integer generally, while the value of ε is yet uncertain. 

Now it is evident that any distribution of the P energy elements among the N resonators 

can result only in a finite, integral, definite number. Every such form of distribution we call, 

after an expression used by L. Boltzmann for a similar idea, a “complex” (v originálu 

“Complexion”). If one denotes the resonators by the numbers 1, 2, 3, . . .N, and writes these 

side by side, and if one sets under each resonator the number of energy elements assigned to it 

by some arbitrary distribution, then one obtains for every complex a pattern of the following 

form: 

1 2 3 4 5 6 7 8 9 10 

7 38 11 0 9 2 20 4 4 5 

Here we assume N = 10, P = 100. The number R of all possible complexes is obviously 

equal to the number of arrangements that one can obtain in this fashion for the lower row, for 

a given N and P. For the sake of clarity we should note that two complexes must be 

considered different if the corresponding number patters contain the same numbers but in a 

different order. 

From combination theory one obtains the number of all possible complexes as: 

 
. 1 . 2 ... 1 1 !

.
1 . 2 . 3 ... 1 ! !

N N N N P N P

P N P
  

Now according to Stirling‟s theorem, we have in the first approximation: 

 ! ,NN N   

                                                 

8 L.Boltzmann, Sitzungsber. D. k. Akad. D. Wissensch. Zu Wien (II) 76. p.428, 1877. 
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And consequently, the corresponding approximation is: 

 .

N P

N P

N P

N P
  

§ 4. The hypothesis which we want to establish as the basis for further calculation 

proceeds as follows: in order for the N resonators to possess collectively the vibrational 

energy UN, the probability W must be proportional to the number R of all possible complexes 

formed by distribution of the energy UN among the N resonators; or in other words, any given 

complex is just as probable as any other. Whether this actually occurs in nature one can, in the 

last analysis, prove only by experience. But should experience finally decide in its favor it 

will be possible to draw further conclusions from the validity of this hypothesis about the 

particular nature of resonator vibrations; namely in the interpretation put forth by J.v. Kries
9
 

regarding the character of the “original amplitudes, comparable in magnitude but independent 

of each other.” As the matter now stands, further development along these lines would appear 

to be premature. 

§ 5. According to the hypothesis introduced in connection with equation (3), the entropy 

of the system of resonators under consideration is, after suitable determination of the additive 

constant: 

(5) ln ln ln lnNS k k N P N P N N P P   

and by considering (4) and (1): 

 1 ln 1 ln .N

U U U U
S k N   

Thus, according to equation (2) the entropy S of a resonator as a function of its energy U 

is given by 

(6) 1 ln 1 ln .
U U U U

S k   

II. Introduction of Wien’s displacement law.  

§ 6. Next to Kirchoff‟s theorem of the proportionality of emissive and absorptive power, 

the so-called displacement law, discovered by and named after W. Wien
10

 which includes as a 

special case the Stefan – Boltzmann law of dependence of total radiation on temperature, 

                                                 

9 Joh. V. Kries, Die Principien der Wahrscheinlichkeitsrechnung p.36. Freiburg 1886. 
10 W. Wien, Sitzungsber. D. k. Akad. D. Wissensch. Zu Berlin vom 9. Febr. 1893. p.55. 
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provides the most valuable contribution to the firmly established foundation of the theory of 

heat radiation, In the form given by M. Thiesen
11

 it reads as follows: 

 5.d .d ,E   

where λ is the wavelength, E dλ represents the volume density of the “black-body” radiation
12

 

within the spectral region λ to λ + dλ, θ represents temperature and ψ(x) represents a certain 

function of the argument x only. 

§ 7. We now want to examine what Wien‟s displacement law states about the 

dependence of the entropy S of our resonator on its energy U and its characteristic period, 

particularly in the general case where the resonator is situated in an arbitrary diathermic 

medium. For this purpose we next generalize Thiesen‟s form of the law for the radiation in an 

arbitrary diathermic medium with the velocity of light c. Since we do not have to consider the 

total radiation, but only the monochromatic radiation, it becomes necessary in order to 

compare different diathermic media to introduce the frequency ν instead of the wavelength λ. 

Thus, let us denote by u dν the volume density of the radiation energy belonging to the 

spectral region ν to ν + dν; then we write: u dν instead of E dλ; c/ν instead of λ, and cdν/ν
2
 

instead of dλ. From which we obtain 

 
5

2
.

c c
u   

Now according to the well-known Kirchoff – Clausius law, the energy emitted per unit 

time at the frequency ν and temperature θ from a black surface in a diathermic medium is 

inversely proportional to the square of the velocity of propagation c
2
; hence the energy 

density U is inversely proportional to c
3
 and we have: 

 
5

2 3
,f

c
u   

where the constants associated with the function f are independent of c. 

In place of this, if f represents a new function of a single argument, we can write: 

(7) 
3

3
f

c
u   

and from this we see, among other things, that as is well known, the in the cube of the volume 

λ
3
 at a given temperature and frequency the radiant energy u · λ

3
 is the same for all diathermic 

media. 

                                                 

11 M. Thiesen, Verhandl. D. Deutsch. Phys. Gesellsch. 2. p.66. 1900. 
12 Perhaps one should speak more appropriately of a „white“ radiation, to generalize what one already 

understands by total white light. 
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§ 8. In order to go from the energy density u to the energy U of a stationary resonator 

situated in the radiation field and vibrating with the same frequency ν, we use the relation 

expressed in equation (34) of my paper on irreversible radiation processes
13

: 

 
2

2
U

c
K   

(K is the intensity of a monochromatic linearly, polarized ray), which together with the well-

known equation: 

 
8

c

K
u =   

yields the relation: 

(8) 
2

3

8
.U

c
u =   

From this and from equation (7) follows: 

 ,U f   

where now c does not appear at all. In place of this we may also write: 

 .
U

f   

§ 9. Finally, we introduce the entropy S of the resonator by setting 

(9) 
1 d

.
d

S

U
  

We then obtain: 

 
d 1

d

S U
f

U
  

and integrated: 

(10) ,
U

S f   

that is, the entropy of a resonator vibrating in an arbitrary diathermic medium depends only 

on the variable U/ν, containing besides this only universal constants. This is the simplest form 

of Wien‟s displacement law known to me. 

                                                 

13 M. Planck, Ann. D. Phys. 1. p.99 1900. 
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§ 10. If we apply Wien‟s displacement law in the latter form to equation (6) for the 

entropy S, we then find that the energy element ε must be proportional to the frequency ν, 

thus: 

 h   

and consequently: 

 1 ln 1 ln .
U U U U

S k
h h h h

  

here h and k are universal constants.  

By substitution into equation (9) one obtains: 

 
1

ln 1 ,
k h

h U
  

(11) 

1

h

k

h
U

e

  

and from equation (8) there then follows the energy distribution law sought for: 

(12) 
3

3

8 1

1

h

k

h

c
e

u   

or by introducing the substitutions given in § 7, in terms of wavelength λ instead of the 

frequency: 

(13) 
5

8 1
.

1

ch

k

ch
E

e

  

I plan to derive elsewhere the expressions for the intensity and entropy of radiation 

progressing in a diathermic medium, as well as the theorem for the increase of total entropy in 

nonstationary radiation processes 

III. Numerical values  

§ 11. The values of both universal constants h and k may be calculated rather precisely 

with the aid of available measurements. F. Kurlbaum
14

, designating the total energy radiating 

into air from 1 sq cm of a black body at temperature t °C in 1 sec by St, found that: 

 
5

100 0 2 2

Watt erg
0,0731 7,31.10 .

cm cm sec
S S   

                                                 

14 F. Kurlbaum, Wied. Ann. 65. p.759. 1898. 
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From this one can obtain the energy density of the total radiation energy in air at the 

absolute temperature 1: 

 
5

15

3 410 4 4

4.7,31.10 erg
7,061.10 .

cm grad3.10 . 373 273
  

On the other hand, according to equation (12) the energy density of the total radiant 

energy for θ = 1 is: 

 
2 33

3

3 3

0
00

8 d 8
d d

1

h h h

k k k
h

k

h h
u e e e

c c
e

u   

and by termwise integration: 

 

4 4

3 4 4 4 3 3

8 1 1 1 48
6 1 .1,0823 .

2 3 4

h k k
u

c h c h
  

If we set this equal to 7,061.10
−15

, then, since c = 3.10
10

 cm/sec, we obtain: 

(14) 
4

15

3
1,1682.10 .

k

h
  

§ 12. O. Lummer and E. Pringsheim
15

 determined the product λmθ, where λm is the 

wavelength of maximum E in air at temperature θ, to be 2940 μ·grad. Thus, in absolute 

measure: 

 0,294cm.grad .m   

On the other hand, it follows from equation (13), when one sets the derivative of E with 

respect to θ equal to zero, thereby finding λ = λm  

 1 1
5

m

ch

k

m

ch
e

k
  

and from this transcendental equation: 

 .
4,9651.

m

c h

k
  

        Consequently: 

 
11

10

4,9651.0,294
4,866.10 .

3.10

h

k
  

From this and from equation (14) the values for the universal constants become: 

(15) 
276,55.10 erg.sec ,h   

                                                 

15 0.Lummer, E.Pringsheim, Verhandl. Der Deutschen Physikal. Gesellsch. 2 p.176. 1900. 
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(16) 
16 erg1,346.10 .
grad

k   

These are the same number that I indicated in my earlier communication. 

 


